Information
-
Patent Grant
-
6368228
-
Patent Number
6,368,228
-
Date Filed
Friday, December 8, 200024 years ago
-
Date Issued
Tuesday, April 9, 200222 years ago
-
Inventors
-
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 473 54
- 473 97
- 473 98
- 473 99
- 473 106
- 473 110
- 473 111
-
International Classifications
-
Abstract
A covered rail assembly for the bowling ball return of a bowling alley. The rails are made of cylindrical metal and the cover for the rail fits over the engaging surface thereof and is secured thereto by ties, with the ball engaging surface of the cover of concave semi cylindrical shape so as to conform to a ball's surface contacted thereby. The cover is impregnated with oil absorbing particles.
Description
BACKGROUND OF THE INVENTION
1) Field of The Invention:
This invention relates to covers for the rails of bowling ball returns generally, and more particularly to such a cover which is configured to provide more than a minimal line contact of the bowling ball and also constructed so as to assist in removing oil from the surface of bowling balls.
2) Description of the prior art:
The rails for ball returns are generally constructed of solid or hollow members or pipes made or a strong metal. A pair of laterally spaced rails contact the balls and support the same as they move in the ball return in a well known manner. These rails, if they directly contact the bowling balls, can impose wear and/or damage on the surface of a ball To alleviate the situation, prior art devices, such as seen at numeral 88 in U.S. Pat. 3,297,322,“are covered with a frictional surface covering, such as rubber tubing, which aids in the elevation of balls”. This rubber tubing also, by its very nature, protects the surface of the ball from damage by the direct engagement with the metal rails. However, the contact between the rubber tubing and the rails would be external sphere to external cylinder point contact, were it not for the fact that the rubber tubing can deflect somewhat to thereby give a rolling contact in the neighborhood of {fraction (1/16)} inch diameter, as has been observed. While the resilience of the rubber material lessens damage to the ball, it does not do so to the extent that a rail cover according to the instant invention does. Additionally, the material of these prior cover does not remove oil from the ball's surface, other than by some incidental wiping, while the material of the instant invention, in itself, contributes to the removal of oil from the surface of the ball
SUMMARY OF THE INVENTION
A rail cover of the instant invention is superior to the prior art covers in two very important aspects, namely, it provides an increase in the contact area between the ball and the supporting surface of the rail cover, and it provides a contacting surface on the rail that can remove oil from the contacting surface of the ball. To that end, the rail covers are provided with a concave semi cylindrical contact surface so that when they are assembled on to the rails they thereby provide a curvilinear contact between the cover of the rail and the ball of substantial magnitude (external sphere to internal cylinder) to thereby lessen the potential for damage to the bowling ball. Additionally, an oil absorbing material comprised of a multitude of oil absorbent fragments, randomly from a powdery minuscule size to about ⅛ inches in diameter, is embedded in the urethane matrix of the cover and these fragments function as oil control modules.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a side elevational view of a portion of a ball return assembly showing a ball about to be placed on the covered rail of this invention and showing that a rail cover has four sections;
FIG. 2
is a view like
FIG. 1
showing the ball after it has been moved partially up the covered rails;
FIG. 3
is a cross sectional view taken along the lines
3
—
3
in
FIG. 2
;
FIG. 4
is a side elevational view of the lowest section of a cover;
FIG. 5
is a side elevational view of one of the two intermediate sections of a cover;
FIG. 6
is a side elevational view of the uppermost section of a cover; and
FIG. 7
is an enlarged cross sectional view taken like
FIG. 3
showing the scattered particles in the cover.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the drawings and more particularly to
FIGS. 1 and 2
, a portion of a ball return assembly is shown generally at
10
, comprised of a conventional ball elevating mechanism
11
including an endless belt
11
A which engages a ball
14
to roll the latter, in a well known manner, up a rail assembly shown generally at
12
. As seen in
FIG. 3
, the rail assembly
12
is comprised of a pair of laterally spaced rails
16
and
16
A. In
FIGS. 1 and 2
, it is seen that these conventional rails are angled upwardly and to the right, and the upper end thereof curves back down to end below the horizontal The surface of the rails which faces the ball is the ball engaging surface of the rail.
On each of the rails
16
and
16
A is a cover assembly C, which assembly comprises four sections, namely, a lower section
17
, two intermediate sections
18
and
19
, and a top section
61
20
. Referring now to
FIGS. 4
,
5
and
6
, each of the sections
17
,
18
,
19
and
20
have a plurality of openings in the form of slots
19
A extending laterally therethrough, with the upper surface S of the sections being of cylindrical shape so that the contact between the ball
14
and the covers C on the rail assembly
12
is that of the external surface of a sphere contacting a the internal concave wall of a cylinder. The lower portion of each of the
66
sections of the covers C are of an open concave semi-cylindrical shape, as seen at
22
and are closely received on the periphery of the rails
16
and
16
A. Through each of the openings
19
A, a securing member in the form of a wire tie
19
W is passed, the free ends of the tie are passed under the rail
16
and secured tightly to each other as shown at T to thereby tightly secure the cover C to the rail
16
and
16
A. It should be noted that a section
17
is placed on the lower end of the rail
16
with its base end B projecting downwardly and its upper end
17
C projecting upwardly. This section is the one that is first struck by the bowling ball as it reaches the assembly
10
, and wears out first. It is smaller than the other sections and therefore can be easily and cheaply replaced, and has only two ties
19
W therein. Sections
18
and
19
are identical, with the lower end
18
C of the section
18
abutting the upper end
17
C of the section
17
, and its opposite end abutting section
19
. The upper end of section
19
engages the lower end
20
C of the section
20
, and the upper end of section
20
is free. Section
17
is shown with two openings
19
A for receiving ties
19
W, longer sections
18
and
19
have three openings
19
A for receiving ties
19
W, while section
20
, because it mounts on a curved upper end of rail
16
, is shown with ten openings
19
A for receiving ties
19
W because it must be bent and held in an arcuate shape to be assembled onto the rail
16
.
The cover sections
17
,
18
,
19
and
20
are made from a two part mix of urethane (obtained from the Synair Corporation of Chattanooga, Tenn. as“Duothane S601”) which is pour cast into its final shape and then cured in a conventional manner to a shore A hardness in the general range of 60, to thereby provide a tough, durable, and resilient cover C. To further the properties of the cover C, the urethane mix, prior to casting, is supplied with, and thereby includes, a quantity of oil and grease absorbent particles
24
. These particles
24
as seen in
FIG. 8
, are then present throughout the structure of the sections
17
,
18
,
19
, and
20
, including the upper surface S of the sections which engage the bowling bails. A concentration of approximately 9.6 to 9.8 percent particles to urethane has been found to be adequate to perform the desired function. Once the rail covers are made and installed, the particles are activated by scraping the upper surface S thereof with a sharp utensil until the grey specs of the particles are clearly evident. As the balls traverse the surface S of the sections, the particles aid the cover in removing oil from the surface of the ball A suitable source of the particles is from all purpose oil and grease absorbent material obtainable from auto parts stores, such as Discount Auto Parts. It has been observed that the particle size is in the general range of almost powdery to approximately ⅛ inch diameter. If the surface S and the particles
24
require cleaning, a wipe with acetone will suffice. While it is only the contacting surface S of the covers C that requires the particles
24
to perform the desired oil removing function, for ease of manufacture, they are simply disbursed throughout the urethane, as shown, when it is cast. It could be a two part cast, and thereby only have the particles in the surface area S of the covers C.
While only a single embodiment of this invention has been shown and described, it is apparent that many changes can be made therein without departing from the scope of this invention as defined by the following claims
Claims
- 1. A covered rail assembly for use in the bowling ball return of a bowling alley, comprising in combination, a conventional metallic rail having an upper engaging surface, and a cover therefor secured upon the engaging periphery of said rail, said cover being characterized in that a first portion is of concave semi cylindrical shape conforming to the surface of the rail and a second portion thereof securely carried by said first portion and projecting from said first portion has the upper surface thereof which is shaped semi cylindrically after a bowling ball is placed thereon so as to conform to the external configuration of a bowling ball whereby an arcuate line contact will exist between said second portion and a bowling ball placed thereon.
- 2. A covered rail assembly according to claim 1 wherein said assembly includes means for securing said cover upon said rail.
- 3. A covered rail assembly according to claim 2 wherein said securing means is a plurality of ties passing through openings in said cover and passing under said rail.
- 4. A covered rail assembly according to claim 2 wherein said cover is made from urethane having a durometer hardness of approximately 60A.
- 5. A covered rail assembly according to claim 4 wherein said urethane cover contain approximately 9.7% oil absorbent particles.
- 6. A covered rail assembly according to claim 5 wherein said particles range in size from powdery to approximately ⅛ inches thick.
US Referenced Citations (10)