The invention relates to a cover system for a load bed of a vehicle having a winding shaft which is rotatably mounted in a support structure, having a flexible flat structure which is mounted such that it can be wound up and unwound on the winding shaft between a rest position and a covering position, and which is connected to a dimensionally stable pull-out profile on its front end region which lies away from the winding shaft, and having two guide rail arrangements on opposite sides of the flat structure, in which the pull-out profile is guided longitudinally displaceably.
In addition, the invention relates to a vehicle having a load bed which is open at the top and is delimited on all sides by walls which protrude upward from the load bed, and having a cover system which has a flexible flat structure for covering the load bed at least partially, which flat structure is mounted on a winding shaft which is mounted rotatably on the vehicle side such that said flat structure can be moved between a covering position, in which it is pulled off from the winding shaft, and a rest position, in which it is wound onto the winding shaft, and which flat structure is provided with a dimensionally stable pull-out profile on a front end region in the pull-out direction.
DE 199 44 948 C1 has disclosed a passenger station wagon having a load space which is arranged in a vehicle interior and is provided with a cover system in the form of a load space covering. The cover system has a covering tarpaulin which is mounted on a winding shaft such that it can be wound up and unwound. The winding shaft is mounted rotatably in a cassette housing which is mounted in a fixed manner on the vehicle. On its front end region in the pull-out direction, the covering tarpaulin has a dimensionally stable pull-out profile which is held with its front end regions which lie opposite one another in driving slides which are mounted such that they can be displaced longitudinally in guide rails which are arranged in a fixed manner on the vehicle. In the winding-up direction, the winding shaft is loaded with a torque by way of a coil spring arrangement. In the pull-out direction, in contrast, a drive system is active which comprises an electric motor which is arranged fixedly on the vehicle. The electric motor drives the driver slides synchronously with respect to one another via two flex-shafts and displaces said driver slides within the guide rail arrangements. The displacement by way of the electric motor takes place in the pull-out direction counter to the restoring force of the coil spring arrangement which is integrated into the winding shaft.
It is an object of the invention to provide a cover system and a vehicle of the type mentioned at the outset which are improved in comparison with the prior art.
This object is achieved for the cover system by virtue of the fact that the flat structure is reinforced in a manner which is distributed over its length by a plurality of transverse bows which extend in each case over an entire width of the flat structure and are guided on their end sides which lie opposite one another in the guide rail arrangements which lie opposite one another. The transverse bows make particularly satisfactory stability of the flat structure possible in its pulled-out covering position. The cover system according to the invention can therefore be used in a particularly advantageous way for open load beds of pickup vehicles. This is because the flat structure remains in its covering position independently of wind or weather influences even during driving operation of a corresponding pickup vehicle as a result of the high stability of the flat structure with the aid of the transverse bows. The invention is used for load beds which are open toward the surroundings, that is to say they are exposed to ambient influences such as wind and water or snow and ice.
The solution according to the invention is suitable in a particularly advantageous way for an open load bed of a pickup passenger motor vehicle. In the same way, the cover system according to the invention can also be used for open load beds of other wheeled or tracked vehicles or of rail vehicles.
In one refinement of the invention, the transverse bows are arranged above or below the flat structure and are fastened to the flat structure by means of at least one weather strip connection which is extended over the length of the respective transverse bows. Accordingly, depending on the arrangement of the transverse bows, the transverse bows reinforce the flat structure visibly or invisibly. There is a visible reinforcement if the transverse bows are arranged above the flat structure, with the result that they are visible on an outer side of the flat structure. In the case of an arrangement of the transverse bows below the flat structure, the transverse bows are provided invisibly in the region of an inner side of the flat structure, which inner side faces a floor of the load bed in the covering position of the flat structure.
In a further refinement of the invention, the transverse bows have a convexly curved cross-sectional profile. The convexly curved cross-sectional profile ensures particularly high longitudinal stiffness of the transverse bows, with the result that the flat structure is reinforced reliably even over a relatively large width. This is advantageous if the cover system is used in a pickup passenger motor vehicle, the load bed of which, as viewed in the vehicle transverse direction, has a relatively large width. The flat structure can preferably be pulled out or wound up in the vehicle longitudinal direction and the transverse bows extend in the vehicle transverse direction.
In a further refinement of the invention, in order to guide each transverse bow in the guide rail arrangements which lie opposite one another, in each case one sliding body is provided on the end sides of the transverse bow which lie opposite one another, which sliding body is mounted such that it can be moved slidingly in the longitudinal direction of the guide rail arrangement in each case one guide groove of the respective guide rail arrangement. As a result, each transverse bow is supported directly in the guide rail arrangements which lie opposite one another, as a result of which sagging of the flat structure in the pulled-out covering position is avoided reliably.
In a further refinement of the invention, the sliding bodies are held in the end sides of the transverse bow with the aid of complementary plug-in profiles. Both the transverse bows and the sliding bodies are preferably manufactured from plastic materials. The refinement makes particularly simple mounting of the sliding bodies in the end sides of the transverse bow possible. As plug-in profiles which are complementary with respect to one another, the sliding bodies can be provided with plug-in journals and the end sides of the transverse bow can be provided with complementary plug-in sockets.
In a further refinement of the invention, the flat structure is provided on its longitudinal edges which lie opposite one another in each case with lateral guide elements which are held in a positively locking manner transversely with respect to the pull-out direction in a lateral guide channel of the respective guide rail arrangement. The lateral guide elements are provided so as to run longitudinally in a row or in a line on the longitudinal edges of the flat structure which lie opposite one another, and are threaded into the respective lateral guide channel of the guide rail arrangements which lie opposite one another, in order thus to make secure retaining of the longitudinal edges of the flat structure possible transversely with respect to the pull-out direction in the guide rail arrangements which lie opposite one another. The longitudinal edges of the flat structure which lie opposite one another run, as viewed in the pull-out direction of the flat structure, on opposite sides of the flat structure. The lateral guide elements are formed in an advantageous way by bead or knob parts which are connected fixedly to the longitudinal edges. The corresponding bead or knob parts are preferably arranged one behind another at uniform spacings in a row along the respective longitudinal edge. The cross sections of the bead or knob parts are greater than a width of a corresponding longitudinal slot of the respective lateral guide channel in the guide rail arrangements which lie opposite one another, with the result that the desired positively locking retention transversely with respect to the pull-out direction of the flat structure is ensured. The lateral guide elements make a taut arrangement of the flat structure possible transversely with respect to its pull-out direction even in the pulled-out covering position. This is advantageous in the case of wind and weather influences which can have a pronounced effect on the cover system, in particular, during driving operation of a pickup passenger motor vehicle. This is because the lateral guide elements reliably prevent the flat structure from being torn out of the lateral guide rail arrangements in its covering position, in which it covers the load bed.
In a further refinement of the invention, the transverse bows are arranged at a spacing from one another in the longitudinal direction of the flat structure in such a way that the transverse bows in the region of the winding shaft can be wound up in the circumferential direction in different winding layers in an offset manner between transverse bows of in each case one winding layer which lies underneath. As a result, particularly compact winding up of the flat structure can be achieved, as a result of which the support structure which mounts and surrounds the winding shaft can also have relatively compact dimensions.
In a further refinement of the invention, deflection means which are arranged in a stationary manner are provided in a winding region of the flat structure, which deflection means deflect the transverse bows toward the winding shaft in such a way that the transverse bows can be wound up in an oriented manner such that their convex curvature is adapted relative to the winding shaft. This refinement also makes particularly compact winding of the flat structure onto the winding shaft possible.
The object on which the invention is based is also achieved in a cover system of the type mentioned at the outset by virtue of the fact that a cleaning strip is provided in a winding region of the flat structure, which cleaning strip is extended parallel to a rotational axis of the winding shaft and is oriented relative to the flat structure in such a way that, during a winding operation onto the winding shaft or an unwinding operation from the winding shaft, a surface of the flat structure slides past the cleaning strip such that it makes contact. The cleaning strip can be provided with a brush surface or a surface which is provided with other mechanical cleaning means. As a result of the contact of the surface of the flat structure with the cleaning strip when sliding past, the surface of the flat structure is necessarily cleaned. The cleaning strip preferably extends continuously over the entire width of the flat structure, with the result that a uniform cleaning function of the entire flat structure is made possible during a winding-up and/or unwinding operation. The cleaning strip is preferably arranged in a stationary manner. However, according to one embodiment of the invention, it can also be arranged movably and can preferably be pressed by way of spring forces against the surface of the flat structure. The winding-up region of the flat structure is to be understood to mean the spatial region between the guide rail arrangements and the winding shaft, on which the flat structure is released from the longitudinally running extent between the guide rail arrangements, is deflected and is wound onto the winding shaft.
For the vehicle, the object on which the invention is based is achieved by virtue of the fact that the pull-out profile is assigned an elastic hollow profile seal which is extended over an entire width of the flat structure and terminates sealingly with a wall of the load bed in the covering position of the flat structure. As a result, a largely water-tight and/or air-tight closure between the wall of the load bed and the flat structure can be achieved in the covering position of the flat structure. The wall is preferably a rear-side wall of the load bed, with the result that the elastic hollow profile seal produces a sealed rear closure of the covering system in the pulled-out covering position of the flat structure.
In one refinement of the invention, the hollow profile seal has a water discharge lug which extends over an entire length of the hollow profile seal and which protrudes beyond the wall of the load bed in the covering position of the flat structure. The water discharge lug ensures that water which strikes the flat structure from above is guided away beyond the correspondingly adjacent wall of the load bed of the vehicle. This refinement therefore avoids water being able to penetrate between a corresponding rear-side closure of the flat structure and a corresponding rear wall of the load bed of the vehicle into a load space below the flat structure in the region of the load bed.
In a further refinement of the invention, a wall is cut out at least in sections, in order to receive a cassette housing of the cover system in a flush manner, which cassette housing serves as support structure. This ensures particularly compact and integral accommodation of the cover system in the region of the load bed of the vehicle. In a particularly advantageous way, the vehicle is configured as a pickup passenger motor vehicle. The wall is preferably a front-side wall of the load bed, with the result that the flat structure is pulled out from front to rear to a rear-side wall of the load bed in order to transfer it from the rest position into the covering position, with which rear-side wall of the load bed the elastic hollow profile seal terminates sealingly in the pulled-out covering position of the flat structure.
Further advantages and features of the invention result from the claims and from the following description of one preferred exemplary embodiment of the invention which is shown using the drawings, in which:
A wheeled vehicle in the form of a pickup passenger motor vehicle 1 has a passenger cell with front and rear seats in a front region. Toward a rear of the pickup passenger motor vehicle, the passenger cell is adjoined by a load bed 2 which is delimited on all sides by upwardly protruding walls 3 to 5. The load bed 2 has a substantially horizontal load floor. A front wall 5 which is extended in the vehicle transverse direction, is guided upward at a right angle with respect to the load floor and is arranged immediately behind the passenger cell protrudes on the front side from the load floor. Opposite longitudinal sides of the load bed 2 are formed by two side walls 4 which are extended in the vehicle longitudinal direction and likewise protrude upward from the load floor. The side walls 4 open on the rear side into a rear wall 3 which is extended in the vehicle transverse direction and forms a rear-side termination of the load bed 2 which is open at the top. The rear wall 3 is provided in a manner which is not shown with a tailgate which can be folded rearward and downward, in order to make rear-side access to the load bed 2 possible.
In order for it to be possible to close the load bed 2 in an upper edge region of the walls 3 to 5, a cover system 6 is provided which will be described in greater detail in the following text using
Two guide rail arrangements 9 which are connected to the front end regions of the cassette housing protrude parallel to one another from opposite front end regions of the cassette housing 8 in the pull-out direction of the flat structure 7. In the mounted operating state of the cover system 6, the guide rail arrangements 9 protrude rearward in the vehicle longitudinal direction from the cassette housing 8 as far as toward the rear wall 3, the guide rail arrangements 9 flanking the flat structure 7 on its longitudinal sides which lie opposite one another.
As can be seen using
The flexible flat structure 7 which is formed by a single-layer or multiple-layer textile or film web is reinforced over its length by way of a plurality of transverse bows 10, 10a which are positioned at uniform spacings from one another. The transverse bows 10, 10a have a convexly curved, arcuate cross-sectional profile, as can be seen clearly using
As can be seen using
In the embodiment according to
Each transverse bow 10, 10a is manufactured as a dimensionally stable hollow profile made from metal or from plastic, preferably in an extrusion process or an injection molding process.
All the transverse bows 10, 10a are designed identically to one another. A transverse bow 10 (
Each transverse bow 10, 10a is provided on its opposite end sides with in each case one sliding body 33 which can be plugged in a non-positive manner via plug-in profiles 34 in the form of plug-in journals into complementary, end-side plug-in profiles of the transverse bow 10, 10a in the form of plug-in sockets 14. The sliding body 13 forms an end-side termination of the end side of the respective transverse bow 10, 10a. All the transverse bows 10, 10a are provided in each case with corresponding sliding bodies 33 on their end sides which lie opposite one another, as can be seen using
Apart from one exception, the sliding bodies 33 of all the transverse bows 10, 10a are designed identically to one another. This is because the end-side transverse bow 10 which forms an end-side termination of the flat structure 7 is provided with a modified sliding body 33a. The sliding body 33a (
In each case one drive body 32 is mounted longitudinally displaceably in each of the two guide rail arrangements 9, which drive body 32 is provided in each case with a corresponding web G which enters into a plug-in connection with the corresponding driver lug M in the pull-out direction of the flat structure 7. To this end, the hook-shaped driver lug M of each sliding body 33a is open to the rear toward the cassette housing 8, with the result that the corresponding web G can dip into the open side of the driver lug M, in order for it to be possible to drive the driver lug M and therefore the sliding body 33a in the pull-out direction in a positively locking manner. The plug-in connection which is produced as a result between the corresponding web G and the driver lug M has a force flow of such a magnitude that the plug-in connection between the sliding body 33a and the drive body 32 is not released even in the case of a movement in the opposite direction of the drive body 32 in the winding-up direction of the flat structure 7.
The two drive bodies 32 are mounted in each case in a drive channel 27 of the respective guide rail arrangement 9 such that they can be moved glidingly along the respective guide rail arrangement 9. As can be gathered from
The respective deflection roller 36 is mounted in a stationary manner in the respective guide rail arrangement 9 such that it can be rotated. The receiving region 30, the drive channel 27 and the guide groove 29 extend continuously with a constant cross section over the entire length of the guide rail arrangement 9.
As can be gathered from
Each guide rail arrangement 9 is formed by a two-piece hollow profile made from lightweight metal alloy, preferably an aluminum extruded profile, or from a suitable plastic material. The hollow profile comprises a lower structure section 25 and an upper covering section 26 which are detached from one another or can be connected to one another along an approximately horizontal dividing plane. Both the structure section 25 and the covering section 26 are configured in each case as single-piece hollow profile bodies. The structure section 25 comprises the drive channel 27 and the receiving region 30 and a lower half of the lateral guiding channel 28. The covering section 26 comprises the guide channel 29 for the sliding bodies 33, 33a of the transverse bows 10, 10a. The covering section 26 is connected to one another via hook-in webs which are complementary with respect to one another and are not denoted in greater detail in the region of that outer side of the guide rail arrangement 9 which faces the side walls 4 and via central, vertically upward or downward protruding supporting webs which are likewise not denoted in greater detail. In the region of the vertical supporting webs, the joining together of the covering section 26 and the structure section 25 is assisted via a plurality of spring clamping elements 31 which serve as connecting means in the form of relief spring clamps which are bent in an S-shape. Here, the supporting webs which are assigned to the structure section 25 have cutouts 39, into which the spring clamping elements 31 can be inserted. The supporting webs of the covering section 26 are plugged in a simple manner from the top into the mounted spring clamping elements 31. Accordingly, the respective covering section 26 can be connected to the associated structure section 25 without tools and can be dismantled again without tools in the same way. In the region of said dividing plane between the respective covering section 26 and the structure section 25, water discharge paths are provided distributed over the entire length of the hollow profile bodies, which water discharge paths, according to the diagrammatic illustration according to
As can be seen using
As can be seen using
In order to ensure that the transverse bows 10, 10a are wound onto the winding shaft 16 in a correct, space-saving orientation, deflection means 21, 21′, 22′ are provided which, according to
Each wire cable 19 is held such that it can be wound up and unwound in each case on a cable drum 18 which is positioned coaxially with respect to the winding shaft 16 on opposite ends of the winding shaft 16.
A supporting tube 46 is pushed onto the tubular motor 40 on a front end region of the tubular motor 40, which front end region faces the end 41, on which supporting tube 46 a differential coil spring 47 in the form of a helical spring is arranged coaxially. The differential coil spring 47 is connected with one spring end to the motor housing 45 in a rotationally locking manner. The motor housing 45 surrounds the differential coil spring 45 coaxially on the outer side, whereas inner-side support takes place by way of the supporting tube 46. An opposite spring end of the differential coil spring 47 is connected to the cable drum 48 in a rotationally locking manner.
The cable drum 18 (not shown) which lies opposite on the end side is in an operative connection in the same way via a differential coil spring with the winding shaft 16, with the result that different rotational speeds between the cable drums 18 and the winding shaft 16 and, at the same time, stressing or relieving of the respective differential coil spring 47 can be achieved. Accordingly, the differential coil springs 47 make it possible to compensate for different circumferential speeds between the respective outer-side winding layers of the flat structure 7 depending firstly on the winding or unwinding state and secondly on the rotational movement of the cable drums. The motor housing 45 and the winding shaft 16 are connected to one another merely in a non-positive manner in the circumferential direction, with the result that slipping between the winding shaft 16 and the motor housing 45 is also made possible as soon as excessively high loads occur on the winding shaft 16. The tubular motor 40 is an electric motor and is supplied with electrical power via current and control lines which are not denoted in greater detail, and is controlled in a suitable way via an electric or electronic control unit. The tubular motor 40 can be rotated in both rotational directions, with the result that the winding shaft 16 can be loaded by the tubular motor 40 both in the winding direction and in the unwinding direction.
This claims the benefit of U.S. Provisional Application No. 62/115,772, filed Feb. 13, 2015.
Number | Date | Country | |
---|---|---|---|
62115772 | Feb 2015 | US |