The present invention relates to tapes for carrying components and a method and apparatus for making such tapes.
In manufacturing settings, it is often necessary to hold and transport components. For example, in the field of electronics circuit assembly, electronic components are often carried from a supply of components to a specific location on a circuit board for attachment thereto. The components may be of several different types, including surface mount components. Particular examples include memory chips, integrated circuit chips, resistors, connectors, processors, capacitors, gate arrays, etc. It is possible to transport small and delicate components using a carrier tape/cover tape system, such as that disclosed in U.S. Pat. No. 5,325,654.
The electronic industry is continually moving towards smaller devices and thus smaller components, which in turn require more delicate and precise removal of such components from the carrier tape/cover tape system. Most known cover tapes use heat activated adhesive (HAA) or pressure sensitive adhesive (PSA) to bond the cover tape to the carrier tape. Removal of the components is done by first carefully peeling or debonding the cover tape off of the carrier tape to expose the component to vacuum nozzles or other component handling equipment for safe component removal.
However, known cover tapes present several operational difficulties. For instance, peeling the cover tape from the carrier tape can create “shocky”, rough, nonuniform and inconsistent peels, which cause movement of the carrier tape/cover tape that can displace the small components. Shocky peels have also been known to eject the small components out of the pocket in the carrier tape, thus causing miss-picks and eventual shut down of automated component handling equipment.
The peel force of adhesive cover tape can vary considerably depending on the width of the cover tape and the type of carrier tape used. Wider HAA cover tapes require higher heat to get secure bonds. Likewise, wider PSA cover tapes have lower peel forces and require wider adhesive exposure to get secure bonds. In addition, cover tapes that are designed for one type of carrier tape (e.g., polystyrene) do not always have good performance from other types of carrier material (e.g., polycarbonate). Even if cover tapes do nominally work with different types of carrier tapes, they may have less than optimum peel force and nonuniform peels. Moreover, HAA cover tapes also have poor stability as the peel force degrades with time and temperature.
Additionally, known cover tapes present difficulties in storing and transporting the cover tape. For instance, adhesive “squeeze-out” can occur when adhesives on a bottom surface of a tape migrate and deform under pressure and/or heat such that adhesive moves beyond the edges of the tape. This is problematic, as it can cause adhesives to adhere in undesired locations, lead to contamination, necessitate undesired cleaning, lessen aesthetic values, as well as present other problems such as undesired equipment downtime. Moreover, where a cover tape made of a flat film (i.e., a film without recesses) is wound upon itself, it can cause undesired sagging in between adhesive stripes, which leads to an unstable roll.
In one aspect of the present invention, an article includes a cover tape, which includes a base film layer, recessed areas, tear enabling features, and an adhesive. The base film layer has opposed longitudinal edges. The recessed areas extend along the longitudinal edges of the base film layer. The tear enabling features are substantially parallel to the longitudinal edges of the base film. The adhesive is disposed on the recessed areas.
In another aspect of the present invention, a method of making a cover tape includes providing a base film layer having opposed longitudinal edges, forming a recessed area extending along each longitudinal edge, forming tear enabling features substantially parallel to the longitudinal edges, and applying an adhesive on each of the recessed areas.
The above summary is not intended to describe each disclosed embodiment or every implementation of the present invention. The figures and the detailed description, which follow, more particularly exemplify illustrative embodiments.
While the above-identified drawing figures set forth several embodiments of the invention, other embodiments are also contemplated, as noted in the discussion. In all cases, this disclosure presents the invention by way of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art, which fall within the scope and spirit of the principles of the invention. The figures may not be drawn to scale. Like reference numbers have been used throughout the figures to denote like parts.
Aspects of the present invention relate to a cover tape, a carrier tape/cover tape system, as well as to a method and apparatus for making a cover tape. A cover tape according to the present invention can be adhered to a carrier tape, which can hold components for storage and transportation. The cover tape can cover pockets in the carrier tape that can hold components, and has a portion that can be separated from the system to expose the pockets in the carrier tape. Tear enabling features on the cover tape permit the portion of the cover tape to be separated from other portions of the cover tape (and a carrier tape to which the cover tape was adhered) with a substantially consistent and uniform separation force, which reduces the possibility of undesired movement of components held by the carrier tape during the separation process. As used herein, the term “tear” means generally controlled separation of portions of a component. In addition, the cover tape according to the present invention provides recesses along the longitudinal edges of the cover tape, which help the cover tape maintain a relatively flat profile during storage and application. The location of the adhesive is spaced from the edge of the cover tape, which helps prevent contamination of the adhesive and undesired adhesion of the adhesive to other surfaces, such as cover tape handling equipment.
The recesses 36 and 38 are located at the longitudinal edges 24 and 26, respectively, of the film 22. The recesses 36 and 38 are each open facing the bottom face 30 and longitudinal edges 24 and 26, respectively, of the film 22. Alternatively, recesses may be formed on both surfaces of the cover tape. This feature would be useful, for example, if the thicknesses of the adhesive stripes are greater than depth DR, because it would facilitate winding of the cover tape.
In the embodiment shown in
The film 22, including recesses 36 and 38 and any microtextures, can be formed using processes such as scoring, extrusion, calendaring, micro-replication, laser ablation, ultrasound, die cutting, chemical etching, and stripping. In further embodiments, the recesses 36 and 38 can be formed using different processes. Moreover, the film 22 can be formed using a film that can fracture or delaminates along a centerline (i.e., a line halfway between the top and bottom faces 28 and 30 of the film 22), and separation lines can be cut from the top and bottom to the centerline in order to form the recesses. As illustrated in
As shown in
The adhesive stripes 46 and 48 on bottom portion 50 of recesses 36 and 38 can be, for instance, pressure sensitive adhesives (PSAs), heat activated and microencapsulated adhesives. The adhesive stripes 46 and 48 can have thicknesses greater than, less than or equal to a depth DR of the recessed areas 36 and 38. Typically, the thickness is less than or equal to depth DR. The adhesive stripes 46 and 48 have widths equal to or less than widths WR of the recessed areas 36 and 38. Having widths less than widths DR of recessed areas 36 and 38 provides substantially adhesive-free zones longitudinally extending along the bottom portions 50 of the recesses 36 and 38 on either side of each of the adhesive stripes 46 and 48 when the cover tape 20 is not applied to a surface (i.e., is not under tension).
The tear enabling features 32 and 34 are located relative to the bottom face 30 of the film 22, and can be located adjacent the recesses 36 and 38 at the side portions 52 thereof. However, in further embodiments, the tear enabling features 32 and 34 can be located nearly anywhere along the top face 28, bottom face 30, or both faces of the film 22, so long as they are each spaced from the longitudinal edges 24 and 26 of the film 22. As shown in
In one embodiment, provided by way of example and not limitation, the cover tape 20 can have the following dimensions. An overall width W0 of the film 22 (measured between elongate edges 24 and 26) is about 1 inch (2.54 cm). A thickness T of the film 22 is about 2 mil (0.0254 mm) (measured at the thickest portion of the central region 40 of the film 22). The recesses 36 and 38 each have a width WR of about 0.0393701 inch (1 mm) and a depth DR of about 0.5 mil (0.0127 mm). The tear enabling features 32 and 34 are score lines each having a depth of about 1.5 mil (0.0381 mm) (measured from the bottom face 30 of the film 22). It should be recognized that dimensions of the cover tape 20 can vary, as desired. For instance, a width of the central portion 40 of the film 22 can be selected such that it is at least as wide as the pockets of a carrier tape with which the cover tape 20 is used.
The material interfaces 108 exhibit weaker bonding or connection strength than internal bonding or cohesion of either the first material 104 or the second material 106. The relative weakness of the material interfaces 108 facilitates substantially consistent and uniform tearing, that is, the separation of the first material 104 and the second material 106 at the material interfaces 108. Thus, the material interfaces 108 can form tear enabling features.
The first and second materials 104 and 106 can generally be selected from the same types of materials discussed with respect to
The films 22 of cover tapes 100 can be fabricated using processes such as co-extrusion and profile extrusion. With co-extrusion, the first and second materials 104 and 106 are extruded together in a desired arrangement. With profile extrusion, the first and second materials 104 and 106 are extruded individually in desired shapes and are joined while still molten after the initial individual extrusion process. Fabrication may result is some negligible intermingling of the first and second materials 104 and 106 at their interface (e.g., at interface 108 in
The second material 106 is generally weaker than the first material 104. In other words, the second material 106 has weaker internal cohesive or bonding properties than does the first material 104. This facilitates consistent and uniform tearing of the film 22 within the bands 110 and 112 of the second material 106. The bands 110 and 112 thus constitute tear enabling features. In some embodiments, the first material 104 can resist tearing. The second material 106 can comprise a different and weaker form of the type of material as the first material 104, or can be an entirely different type of material. The first and second materials can generally be selected from the same types of materials discussed with respect to
It is possible to place cover tape according to the present invention in the form of a roll.
Cover tape can be placed in a roll (e.g., the roll 120 of
Cover tape can be used in a carrier tape/cover tape system.
In order to expose and remove the components 138, a portion of the cover tape 20 is separated from the system 130. As shown in
The central portion 40 of the cover tape 20 is separated at the tear enabling features 32 and 34 (e.g., score lines in the embodiments shown and described with respect to
It is desirable to have a substantially uniform tear force when tearing away a portion of the cover tape. Although lasers or blades can be used to create scoring lines, making multiple precise scoring lines capable of less than 0.001 inch (0.0254 mm) in variation can be expensive with lasers, and is nearly impossible with known uses of blades that are hindered by variations in blade cutting edge alignment.
In order to achieve uniform tearing with cover tapes having scoring lines, it is desired to provide scoring lines with very little variation in depth along the length of the cover tape as well as between distinct scoring lines. Scoring lines with substantially uniform depth can be simply and efficiently formed in a film web using the method and apparatus described below. Scoring lines are generally formed in a film web after the film has been formed with recesses; however, scoring lines can be performed at other stages of a cover tape fabrication process. For example, one possible manufacturing process includes forming a plurality of parallel, laterally spaced apart and longitudinally extending recesses in a large film web. Next, longitudinal scoring lines are formed in the large film web. Then longitudinal adhesive stripes are applied to the recesses of the film (e.g., two spaced apart stripes of adhesive, with one stripe within each recess). Finally, the large film web is cut and separated into a plurality of individual cover tape strips by cutting through each recess between the adhesive bands therein.
The main structure 206 of the blade assembly 204 can be formed of any material (e.g., metal, glass, polymers, etc.) such that the precision inner surface 224 resists cutting by the blades 220. In one embodiment, the main structure 206 is formed of a metallic material that is at least as hard as the blades 220.
In operation, an unscored film 22A passes between the roller 202B and the blade assembly 204. The cutting edges 222 of the blades 220 are adjusted with alignment means 218 relative to the roller 202B, such that desired cutting depths are achieved. It is possible to provide different cutting depths for different blades. For instance, some blades can provide scoring while other blades can simultaneously cut apart individual cover tape strips from an article that includes a plurality of connected cover tape strips. However, cutting to separate individual cover tape strips need not be performed at the same time as scoring.
After passing the blade assembly 204, the now scored film 22B can be moved by the roller 202C to other locations for further processing, and can be ultimately wound in a roll (e.g., roll 120 as shown and described with respect to
It is possible to provide a plurality of score lines in a film simultaneously using the apparatus shown and described with respect to
In further embodiments, the spacers 226 can be integrally formed with the main structure 206 of the blade assembly 204. In such embodiments, a blade alignment plane can be collectively defined by the plurality of precision surfaces 224 formed relative to each gap.
In light of the discussion above, numerous advantages and benefits of the present invention should be recognized. One advantage of the cover tape according to the present invention is that it has a very uniform removal force of the central portion of the tape, which reduces the risk of miss-picks during storage and transportation operation due to parts or components “jumping” out of the carrier pocket of the carrier tape. In addition, the cover tape can be made more cost effective by using adhesive stripes while resolving the winding issues normally encountered with adhesive stripe-coated tapes (e.g., unstable rolls with sagging problems). In addition, the cover tape of the present invention also reduces a risk of adhesive build-up on equipment due to adhesive “squeeze-out” by keeping the adhesive substantially contained in the recesses before and after tearing of the middle portion of the tape. It also has substantially tack-free side edges when wound in a roll format, which reduces a risk of contamination when the roll of cover tape is laid on a table or other surface. Further, while forming the cover tape, no cutting through adhesive is required, which may lead to more effective processing by avoiding adhesive build-up on cutting equipment.
The method and apparatus for scoring the film also present numerous advantages. Scoring can be accomplished, simply, efficiently, and in a cost-effective manner. The scoring apparatus of the present invention permits substantially uniforms scoring depth to be provided, with relatively little variation in scoring depth. By using conventional blades (e.g., blades resembling single-edged razor blades) in the manner of the present invention, the scoring apparatus is relatively simple, and the blades and apparatus are relatively inexpensive. Moreover, by aligning the blades directly at their respective cutting edges, rather than using blade reference features (e.g., notches and holes) that are spaced from the cutting edges, undesired variation in cutting or scoring depth due to individual variations in the blades can be reduced.
Although the present invention has been described with reference to several alternative embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. For instance, various types of tear enabling features can be used according to the present invention, and those tear enabling features can have various arrangements.