The present disclosure relates to prosthetic heart valves, and in particular to prosthetic heart valves including a covering.
In a procedure to implant a transcatheter prosthetic heart valve, the prosthetic heart valve can be positioned in the annulus of a native heart valve and expanded or allowed to expand to its functional size. In order to retain the prosthetic heart valve at the desired location, the prosthetic heart valve may be larger than the diameter of the native valve annulus such that it applies force to the surrounding tissue in order to prevent the prosthetic heart valve from becoming dislodged. In other configurations, the prosthetic heart valve may be expanded within a support structure that is located within the native annulus and configured to retain the prosthetic heart valve at a selected position with respect to the annulus. Over time, relative motion of the prosthetic heart valve and tissue of the native heart valve (e.g., native valve leaflets, chordae tendineae, etc.) in contact with the prosthetic heart valve may cause damage to the tissue. Accordingly, there is a need for improvements to prosthetic heart valves.
Certain disclosed embodiments concern coverings for prosthetic heart valves and methods of making and using the same. This summary is meant to provide some examples and is not intended to be limiting of the scope of the invention in any way. For example, any feature included in an example of this summary is not required by the claims, unless the claims explicitly recite the features. Also, the features described can be combined in a variety of ways. Various features and steps as described elsewhere in this disclosure can be included in the examples summarized here.
In a representative embodiment, a prosthetic heart valve comprises a frame comprising a plurality of strut members, the frame being radially collapsible and expandable between a collapsed configuration and an expanded configuration, the frame having an inflow end and an outflow end, and defining a longitudinal axis. The prosthetic heart valve further comprises a leaflet structure situated at least partially within the frame, and a sealing member disposed around the frame (e.g., around some, a portion, or all of the frame). The sealing member can comprise a first portion extending circumferentially around at least a portion of the frame, the first portion being configured to resiliently stretch in a direction along the longitudinal axis of the frame between a first state corresponding to the expanded configuration of the frame and a second state corresponding to the collapsed configuration of the frame. The sealing member can further comprise a second portion extending circumferentially around at least a portion of the frame, the second portion being configured to resiliently stretch in a circumferential direction between a first state corresponding to the collapsed configuration of the frame and a second state corresponding to the expanded configuration of the frame.
In any or all of the disclosed embodiments, the first portion comprises a resiliently stretchable portion that is stretchable in a direction along the longitudinal axis of the frame.
In any or all of the disclosed embodiments, the resiliently stretchable portion of the first portion comprises texturized yarns extending in a direction along the longitudinal axis of the frame.
In any or all of the disclosed embodiments, the first portion further comprises a first woven portion and a second woven portion spaced apart from the first woven portion in a direction along the longitudinal axis of the frame, and the texturized yarns extend between the first woven portion and the second woven portion and form a floating yarn portion between the first woven portion and the second woven portion.
In any or all of the disclosed embodiments, the texturized yarns are configured to provide compressible volume to the floating yarn portion of the sealing member when the frame is in the expanded configuration.
In any or all of the disclosed embodiments, the texturized yarns are woven into a leno weave pattern in the first woven portion and in the second woven portion.
In any or all of the disclosed embodiments, the first portion of the sealing member comprises a plurality of floating yarn portions spaced apart from each other along the longitudinal axis of the frame.
In any or all of the disclosed embodiments, the second portion comprises a resiliently stretchable portion that is stretchable in a circumferential direction around the frame.
In any or all of the disclosed embodiments, the resiliently stretchable portion of the second portion comprises texturized yarns extending in a circumferential direction around the frame.
In any or all of the disclosed embodiments, the second portion further comprises a first woven portion and a second woven portion spaced apart from the first woven portion in a circumferential direction around the frame, and the texturized yarns extend between the first woven portion and the second woven portion and form a floating yarn portion between the first woven portion and the second woven portion.
In any or all of the disclosed embodiments, the second portion is a first circumferentially resilient portion configured to resiliently stretch in a circumferential direction, and the sealing member further comprises a second circumferentially resilient portion on the opposite side of the floating yarn portion from the first circumferentially resilient portion such that the first circumferentially resilient portion and the second circumferentially resilient portion are axially offset from each other along the longitudinal axis of the frame.
In any or all of the disclosed embodiments, the second portion comprises a plurality of first strands interwoven with a plurality of second strands, and an angle formed between the first strands and the second strands changes as the frame moves between the collapsed configuration and the expanded configuration.
In any or all of the disclosed embodiments, when the frame is in the collapsed configuration, the first strands and the second strands form a first angle and the second portion has a first arc length, and when the frame is in the expanded configuration, the first strands and the second strands form a second angle and the second portion has a second arc length that is greater than the first arc length.
In any or all of the disclosed embodiments, the sealing member comprises an axial dimension in a direction along the longitudinal axis of the frame, and the sealing member remains in contact with the frame along substantially its entire axial dimension between the collapsed configuration and the expanded configuration.
In any or all of the disclosed embodiments, the first portion of the sealing member is directly secured to the frame, and the second portion of the sealing member is coupled to the first portion but not directly secured to the frame.
In another representative embodiment, a prosthetic heart valve comprises a frame comprising a plurality of strut members, the frame being radially collapsible and expandable between a collapsed configuration and an expanded configuration, the frame having an inflow end and an outflow end, and defining a longitudinal axis. The prosthetic heart valve further comprises a leaflet structure situated at least partially within the frame, and a sealing member disposed around the frame. The sealing member comprises a first portion extending circumferentially around at least a portion of the frame, the first portion comprising a plurality of texturized yarns extending along the longitudinal axis of the frame and configured to resiliently lengthen as the frame moves between the expanded configuration and the collapsed configuration. The sealing member further comprises a second portion extending circumferentially around at least a portion of the frame and comprising a plurality of texturized yarns extending in a circumferential direction around the frame, the texturized yarns of the second portion being configured to resiliently lengthen in the circumferential direction as the frame moves between the collapsed and the expanded configurations.
In any or all of the disclosed embodiments, the first portion further comprises a first woven portion and a second woven portion spaced apart from the first woven portion in a direction along the longitudinal axis of the frame, and the texturized yarns of the first portion extend between the first woven portion and the second woven portion and form a floating yarn portion between the first woven portion and the second woven portion.
In any or all of the disclosed embodiments, the texturized yarns are configured to provide compressible volume to the floating yarn portion when the frame is in the expanded configuration.
In any or all of the disclosed embodiments, the texturized yarns can be woven into a leno weave pattern in the first woven portion and in the second woven portion.
In any or all of the disclosed embodiments, the second portion further comprises a first woven portion and a second woven portion spaced apart from the first woven portion in a circumferential direction around the frame, and the texturized yarns of the second portion extend between the first woven portion and the second woven portion and form a floating yarn portion between the first woven portion and the second woven portion.
In another representative embodiment, a prosthetic heart valve comprises a frame comprising a plurality of strut members, the frame being radially collapsible and expandable between a collapsed configuration and an expanded configuration, the frame having an inflow end and an outflow end, and defining a longitudinal axis. The prosthetic heart valve further comprises a leaflet structure situated at least partially within the frame, and a sealing member disposed around the frame. The sealing member comprises a first portion extending circumferentially around at least a portion of the frame, the first portion comprising a floating yarn portion configured to resiliently lengthen in a direction along the longitudinal axis of the frame as the frame moves between the expanded configuration and the collapsed configuration. The sealing member further comprises a second portion extending circumferentially around at least a portion of the frame and comprising a floating yarn portion configured to resiliently lengthen in the circumferential direction as the frame moves between the collapsed configuration and the expanded configuration.
The foregoing and other objects, features, and advantages of the disclosed technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
The present disclosure concerns embodiments of implantable prosthetic heart valves and methods of making and using such devices. In one aspect, a prosthetic heart valve includes a covering or outer covering having a backing layer and a main cushioning layer disposed on the backing layer such that the cushioning layer is oriented radially outward about the circumference of the valve. The cushioning layer can be soft and compliant in order to reduce damage to native tissues of the heart valve and/or of the surrounding anatomy at the implantation site due to, for example, relative movement or friction between the prosthetic valve and the tissue as the heart expands and contracts. The covering can also include an inflow protective portion and an outflow protective portion to cushion the surrounding anatomy and prevent the native tissue of the heart valve from contacting the apices of the strut members of the frame, thereby protecting the surrounding tissue. In one embodiment, the covering can include an inflow strip member and an outflow strip member secured to the cushioning layer and folded over the apices of the strut members to form the inflow and outflow protective portions.
Embodiments of the disclosed technology can be used in combination with various prosthetic heart valves configured for implantation at various locations within the heart. A representative, non-limiting example is a prosthetic heart valve for replacing the function of the native mitral valve.
When the left ventricle contracts, the blood pressure in the left ventricle increases substantially, which urges the mitral valve closed. Due to the large pressure differential between the left ventricle and the left atrium during this time, a possibility of prolapse, or eversion of the leaflets of the mitral valve back into the atrium, arises. A series of chordae tendineae therefore connect the leaflets of the mitral valve to papillary muscles located on the walls of the left ventricle, where both the chordae tendineae and the papillary muscles are tensioned during ventricular contraction to hold the leaflets in the closed position and to prevent them from extending back towards the left atrium. This generally prevents backflow of oxygenated blood back into the left atrium. The chordae tendineae are schematically illustrated in both the heart cross-section of
A general shape of the mitral valve and its leaflets as viewed from the left atrium is shown in
Some transcatheter heart valves are designed to be radially crimped or compressed to facilitate endovascular delivery to an implant site at a patient's heart. Once positioned at a native valve annulus, the replacement valve is then expanded to an operational state, for example, by an expansion balloon, such that a leaflet structure of the prosthetic heart valve regulates blood flow through the native valve annulus. In other cases, the prosthetic valve can be mechanically expanded or radially self-expand from a compressed delivery state to the operational state under its own resiliency when released from a delivery sheath. One embodiment of a prosthetic heart valve is illustrated in
The frame 10 can be made of any body-compatible expandable material that permits both crimping to a radially collapsed state and expansion back to the expanded functional state illustrated in
The frame 10 can comprise an annular structure having a plurality of vertically extending commissure attachment posts 11, which attach and help shape the leaflet structure 20 therein. Additional vertical posts or strut members 12, along with circumferentially extending strut members 13, help form the rest of the frame 10. The strut members 13 of the frame 10 zig-zag and form edged crown portions or apices 14 at the inflow and outflow ends 2, 3 of the valve 1. Furthermore, the attachment posts 11 can also form edges at one or both ends of the frame 10.
In prosthetic valve 1, the skirt 30 can be attached to an inner surface of the valve frame 10 via one or more threads 40, which generally wrap around to the outside of various struts 11, 12, 13 of the frame 10, as needed. The skirt 30 provides a more substantive attachment surface for portions of the leaflet structure 20 positioned closer to the inflow end 2 of the valve 1.
In
The anchor 300 can, optionally, also include an extension portion 308 positioned between the central region 302 and the upper region 306. In some embodiments, the extension portion 308 can instead be positioned, for example, wholly in the central region 302 (e.g., at an upper portion of the central region) or wholly in the upper region 306. The extension portion 308 includes a part of the coil that extends substantially parallel to a central axis of the anchor. In some embodiments, the extension portion 308 can be angled relative to the central axis of the anchor. In some embodiments, the extension portions 308 can be longer or shorter than that shown and can have a larger or smaller angle relative to region 302 and/or region 306. The extension portion 308 can serve to space the central region 302 and the upper region 306 apart from one another in a direction along the central axis so that a gap is formed between the atrial side and the ventricular side of the anchor.
The extension portion 308 of the anchor can be configured to be positioned through, near, and/or around the native valve annulus, in order to reduce the amount of the anchor that passes through, pushes, or rests against the native annulus and/or the native leaflets when the anchor is implanted. This can reduce the force applied by the anchor on the native valve and reduce abrasion of the native leaflets. In one arrangement, the extension portion 308 is positioned at and passes through one of the commissures of the native valve. In this manner, the extension portion 308 can space the upper region 306 apart from the native leaflets of the native valve to prevent the upper region 306 from interacting with the native leaflets from the atrial side. The extension portion 308 also elevates the upper region 306 such that the upper region contacts the atrial wall above the native valve, which can reduce the stress on and around the native valve, as well as provide for better retention of the anchor.
As shown in
In certain embodiments, the anchor or docking device 300 can be configured for insertion through the native valve annulus in a counter-clockwise direction. For example, the anchor can be advanced through commissure A3P3, commissure A1P1, or through another part of the native mitral valve. The counter-clockwise direction of the coil of the anchor 300 can also allow for bending of the distal end of the delivery catheter in a similar counter-clockwise direction, which can be easier to achieve than to bend the delivery catheter in the clockwise direction. However, it should be understood that the anchor can be configured for either clockwise or counter-clockwise insertion through the valve, as desired.
Returning to the prosthetic valve example of
The prosthetic heart valve can include a covering or outer covering 112 configured to cushion (protect) native tissue in contact with the prosthetic valve after implantation, and to reduce damage to the tissue due to movement or friction between the tissue and surfaces of the valve. The covering 112 can also reduce paravalvular leakage. In the embodiment of
The backing layer 114 can have sufficient length in the axial direction such that a proximal end portion or flap 132 of the backing layer 114 can be folded over the proximal end portion 130 of the cushioning layer 116 in the manner of a cuff to form the outflow protective portion 122. Meanwhile, a distal end portion or flap 134 of the backing layer 114 can be folded over the distal end portion 128 of the cushioning layer 116 to form the inflow protective portion 120. The proximal and distal flaps 132, 134 of the backing layer 116 can be secured to the underlying section of the backing layer by attachment means, for example, sutures 136, adhesive, clips, etc. In this manner, the inflow and outflow protective portions 120, 122 are constructed such that the proximal and distal end portions 130, 128 of the cushioning layer 116 are at least partially enclosed by the flaps 132, 134 of the backing layer 116. This construction provides sufficient strength and resistance to bending to the inflow and outflow protective portions 120, 122 so that they extend along the longitudinal axis 126 of the valve without bending or otherwise protruding into the inner diameter of the valve (e.g., by bending under their own weight, by blood flow, or by blood pressure). In this manner, the inflow and outflow protective portions 120, 122 minimally impact flow through the prosthetic valve and avoid interfering with the prosthetic valve leaflets, reducing flow disturbances, and potentially reducing the risk of thrombus.
In the illustrated configuration, the inflow protective portion 120 can extend beyond the apices 124 of the strut members at the inflow end of the frame by a distance d1, and the outflow protective portion 122 can extend beyond the apices 124 of the strut members at the outflow end of the frame by a distance d2. The distances d1 and d2 can be the same or different, depending upon the type of prosthetic valve, the treatment location, etc. For example, for a 29 mm prosthetic valve, the distances d1 and d2 can be from about 0.5 mm to about 3 mm. In a representative embodiment, the distances d1 and d2 can be from about 1 mm to about 2 mm. Because the inflow and outflow protective portions 120, 122 extend beyond the apices 124 of the respective ends of the frame, the inflow and outflow protective portions can shield adjacent tissue and/or another implant adjacent the prosthetic valve from contacting the apices 124 of the frame.
For example,
As shown in
The backing layer 114 can comprise, for example, any of various woven fabrics, such as gauze, polyethylene terephthalate (PET) fabric (e.g., Dacron), polyester fabric, polyamide fabric, or any of various non-woven fabrics, such as felt. In certain embodiments, the backing layer 114 can also comprise a film including any of a variety of crystalline or semi-crystalline polymeric materials, such as polytetrafluorethylene (PTFE), PET, polypropylene, polyamide, polyetheretherketone (PEEK), etc. In this manner, the backing layer 114 can be relatively thin and yet strong enough to allow the covering 112 to be sutured to the frame, and to allow the prosthetic valve to be crimped, without tearing.
As stated above, the cushioning layer 116 can comprise at least one soft, plush surface 118. In certain examples, the cushioning layer 116 can be made from any of a variety of woven or knitted fabrics wherein the surface 116 is the surface of a plush nap or pile of the fabric. Exemplary fabrics having a pile include velour, velvet, velveteen, corduroy, terrycloth, fleece, etc.
The pile 158 can comprise pile strands or pile yarns 164 woven or knitted into loops. In certain configurations, the pile strands or pile yarns 164 can be the warp strands/yarns or the weft strands/yarns of the base layer 162 woven or knitted to form the loops. The pile strands or pile yarns 164 can also be separate strands/yarns incorporated into the base layer, depending upon the particular characteristics desired. In certain embodiments, the loops can be cut such that the pile 158 is a cut pile in the manner of, for example, a velour fabric.
In some configurations, the pile strands or pile yarns 164 are texturized or textured strands/yarns having an increased surface area due to, for example, a wavy or undulating structure. In configurations such as the looped pile embodiment of
The cushioning layer embodiments described herein can also contribute to improved compressibility and shape memory properties of the covering 112 over known valve coverings and skirts. For example, the pile 158 can be compliant such that it compresses under load (e.g., when in contact with tissue, implants, or the like), and returns to its original size and shape when the load is relieved. This can help to improve sealing between the cushioning layer 116 and, for example, support structures or other devices such as the helical anchor 70 in which the prosthetic valve is deployed, or between the cushioning layer and the walls of the native annulus. The compressibility provided by the pile 158 of the cushioning layer 116 is also beneficial in reducing the crimp profile of the prosthetic valve. Additionally, the covering 112 can prevent the leaflets 110 or portions thereof from extending through spaces between the strut members 104 as the prosthetic valve is crimped, thereby reducing damage to the prosthetic leaflets due to pinching of the leaflets between struts.
In some embodiments, the cushioning layer 116 is made of non-woven fabric such as felt, or fibers such as non-woven cotton fibers. The cushioning layer 116 can also be made of porous or spongey materials such as, for example, any of a variety of compliant polymeric foam materials, or woven or knitted fabrics, such as woven or knitted PET. In some embodiments, the proximal and distal end portions of the cushioning layer 116 of the embodiment of
In a representative example illustrated in
The cushioning layer 116 can be attached (e.g., by sutures, adhesive, etc.) to the backing layer 114. In
Once the cushioning layer 116 is secured to the backing layer 114, the resulting swatch can be folded and sutured into a cylindrical shape. The flaps 132, 134 of the backing layer 114 can be folded over the edges of the cushioning layer 116 and sutured to form the inflow and outflow protective portions 120, 122. The resulting covering 112 can then be secured to the frame 102 by attachment means, for example, suturing, clipping, adhering, etc. it to the strut members 104.
In certain configurations, the strip members 150, 152 can be made from any of various natural materials and/or tissues, such as pericardial tissue (e.g., bovine pericardial tissue). The strip members 150, 152 can also be made of any of various synthetic materials, such as PET and/or expanded polytetrafluoroethylene (ePTFE). In some configurations, making the strip members 150, 152 from natural tissues such as pericardial tissue can provide desirable properties such as strength, durability, fatigue resistance, and compliance, and cushioning and reduced friction with materials or tissues surrounding the implant.
Referring to
The spacer layer 210 can comprise a plurality of pile strands or pile yarns 214. The pile strands or pile yarns 214 can be, for example, monofilament strands/yarns arranged to form a scaffold-like structure between the first and second layers 206, 208. For example,
In certain examples, the pile strands or pile yarns 214 can have a rigidity that is greater than the rigidity of the fabric of the first and second layers 206, 208 such that the pile strands or pile yarns 214 can extend between the first and second layers 206, 208 without collapsing under the weight of the second layer 208. The pile strands or pile yarns 214 can also be sufficiently resilient such that the pile strands or pile yarns can bend or give when subjected to a load, allowing the fabric to compress, and return to their non-deflected state when the load is removed.
The spacer fabric can be warp-knitted, or weft-knitted, as desired. Some configurations of the spacer cloth can be made on a double-bar knitting machine. In a representative example, the strands/yarns of the first and second layers 206, 208 can have a denier range of from about 10 dtex to about 70 dtex, and the strands/yarns of the monofilament pile strands/yarns 214 can have a denier range of from about 2 mil to about 10 mil. The pile strands or pile yarns 214 can have a knitting density of from about 20 to about 100 wales per inch, and from about 30 to about 110 courses per inch. Additionally, in some configurations (e.g., warp-knitted spacer fabrics) materials with different flexibility properties may be incorporated into the spacer cloth to improve the overall flexibility of the spacer cloth.
The prosthetic valve can include a covering or outer covering 412 situated about the frame 402. The outer covering 412 can include a main layer or main cushioning layer 414 including a plush exterior surface 432 (e.g., a first surface), similar to the cushioning layer 116 of
For example, with reference to
In the illustrated configuration, the inflow protective portion 416 extends beyond the apices 420 of the frame, similar to the embodiments above. In particular, the inflow end portion 422 of the cushioning layer 414 can extend beyond the apices 420 of the frame and into the inflow protective portion 416 within the folded strip 424. In this manner, the inflow end portion 422 of the cushioning layer 414, together with the strip member 424, can impart a resilient, cushioning quality to the inflow protective portion 416. This can also allow the inflow protective portion 416 to resiliently deform to accommodate and protect, for example, native tissue, other implants, etc., that come in contact with the inflow protective portion.
Optionally, one or more additional materials or layers can be included under and/or to form any of the protective portions (e.g., 120, 122, 416, 418, 518, 520, etc.) to provide added cushioning and/or protection at the apices of the frame.
In the illustrated embodiment, the inflow end portion 422 can extend beyond the apices 420 by a distance d1. The distance d1 can be configured such the inflow end portion 422 can extend over or cover the apices 420 when the inflow protective portion 416 comes in contact with, for example, native tissue at the treatment site. The strip member 424 can also form a dome over the edge of the of the inflow end portion 422 such that the edge of the inflow end portion 422 is spaced apart from the domed portion of the strip member 424. In some embodiments, the strip member 424 is folded such that it contacts the edge of the inflow edge portion 422, similar to the embodiment of
The outflow protective portion 418 can include a member configured as a strip 436 of material folded such that a first circumferential edge portion 438 is adjacent (e.g., contacting) inner surfaces 440 of the strut members, and a second circumferential edge portion 442 is disposed on the exterior surface 432 of the cushioning layer 414, similar to the inflow protective portion 416. An outflow end portion 444 of the cushioning layer 414 can extend beyond the apices 420 by a distance d2, and can be encapsulated by the strip member 436 together with the apices 420 between the first and second circumferential edge portions 438, 442. The distance d2 can be the same as distance d1 or different, as desired. The strip member 436 can be secured to the strut members 404 with attachment means, such as sutures 446, 447, adhesive, etc. The strip member 436 can also form a domed shape similar to the strip member 424.
In certain configurations, the cushioning layer 414 can be a fabric including a plush pile, such as a velour fabric, or any other type of plush knitted, woven, or non-woven material, as described above. In some embodiments, the cushioning layer 414 may also comprise a relatively low thickness woven fabric without a plush pile. In certain configurations, the strip members 424, 436 can be made of resilient natural tissue materials such as pericardium. Optionally, the strip members can also be made from fabric or polymeric materials such as PTFE or ePTFE.
In the illustrated configuration, the cushioning layer 414 and the strip members 424, 436 can have a length dimension L corresponding to a circumference of the frame 402. In a representative example, the length dimension L can be about 93 mm. The strip members 424, 436 can also have respective width dimensions W1, W2. Referring to width dimension W1 for purposes of illustration, the width dimension W1 can be configured such that the strip member 424 extends from the interior of the valve to the exterior of the valve without contacting the apices 420 of the strut members, as shown in
Referring to
Referring to
The outflow protective portion 418 can be formed in a similar manner. For example, the strip member 426 can be aligned with the rung of strut members 404 adjacent the outflow end 408 of the frame, and the strip member 426 and/or the cushioning layer 414 can be sutured to the strut members. The strip member 436 can then be folded over the apices 420 and the cushioning layer 414 at the outflow end of the frame, and the first and second circumferential edge portions 438, 442 can be sutured together, and to the rung of strut members 404 adjacent the outflow end of the frame, to form the outflow protective portion 418. The covering 412 can also be sutured to the frame at one or more additional locations, such as at suture lines 448 and 450, as shown in
The prosthetic valve can include an outer covering 514 situated about the frame 502. The covering or outer covering 514 can include a main cushioning layer 516 (also referred to as a main layer) having a cylindrical shape, and made from a woven, knitted, or braided fabric (e.g., a PET fabric, an ultra-high molecular weight polyethylene (UHMWPE) fabric, a PTFE fabric, etc.). In some embodiments, the fabric of the main cushioning layer 516 can include a plush pile. In some embodiments, the fabric of the main cushioning layer 516 can comprise texturized strands (e.g., texturized yarns, etc.) in which the constituent fibers of the strands/yarns have been bulked by, for example, being twisted, heat set, and untwisted such that the fibers retain their deformed, twisted shape and create a voluminous fabric. The volume contributed by the texturized strands/yarns can improve the cushioning properties of the covering, as well as increase friction between the fabric and the surrounding anatomy and/or an anchoring device into which the valve is deployed. The layer 516 alone or together with protective portions 518, 520 and/or layers 530, 534 can form a sealing member or cover member that can be placed around the frame to form the covering 514.
The outer covering 514 can include an inflow protective portion 518 extending circumferentially around the inflow end 508 of the frame, and an outflow protective portion 520 extending circumferentially around the outflow end 510 of the frame. In certain embodiments, the inflow and outflow protective portions 518 and 520 can be formed on the fabric of the main cushioning layer 516 such that the outer covering 514 is a one-piece, unitary construction, as described further below.
Referring to
In the illustrated configuration, the inflow protective portion 518 can include a second or outer layer configured as a lubricious layer 530 of material disposed on an outer surface 532 of the main cushioning layer 516. The outflow protective portion 520 can also include a second or outer lubricious layer 534 of material disposed on the outer surface 532 of the main cushioning layer 516. In some embodiments, the layers 530 and 534 can be smooth, low-thickness coatings comprising a low-friction or lubricious material. For example, in certain configurations one or both of the layers 530, 534 can comprise PTFE or ePTFE.
In the illustrated configuration, the lubricious layer 530 can have a first circumferential edge 536 (
Referring to
For example, the layers 530 and 534 can be made relatively thin, which can reduce the overall crimp profile of the valve. In certain embodiments, a thickness of the layers 530 and 534 can be from about 10 μm to about 500 μm, about 100 μm to about 500 μm, about 200 μm to about 300 μm, about 200 μm, or about 300 μm. They layers 530 and 534 can be made and/or modified in a variety of ways. In some embodiments, the layer 530 and/or 534 is made by dip-coating, spray-coating, or any other suitable method for applying a thin layer of lubricious material to the main cushioning layer 516. The finished covering or outer covering 514 can then be situated about and secured to the frame 502 using attachment means, for example, sutures, adhesive, ultrasonic welding, or any other suitable attachment method or means. In some embodiments, the main cushioning layer 516 is situated about the frame 502 before the edges are folded, and/or before the lubricious layers 530 and 534 are applied. In some embodiments, one or both of the lubricious layers 530 and/or 534 can be omitted from the first and second circumferential edge portions 522 and 524. In some embodiments, one or both of the first and second circumferential edge portions 522, 524 need not be folded inside the frame, but can extend to the respective inflow or outflow end of the frame, or beyond the ends of the frame on the exterior of the frame, as desired.
In addition to covering the frame 502 and the apices 506, the outer covering 514 can provide a number of other significant advantages. For example, the covering 514 can be relatively thin, allowing the prosthetic valve to achieve a low crimp profile (e.g., 23 Fr or below). The one-piece, unitary construction of the outer covering 514 and the protective portions 518 and 520 can also significantly reduce the time required to produce the covering and secure it to the frame, and can increase production yield.
In some embodiments, one or both of the inflow and outflow protection portions can be configured as separate coverings or covers that are spaced apart from the main layer or main cushioning layer, and may or may not be coupled to the main layer or main cushioning layer. For example,
Returning to
In some embodiments, the strip 626 can be relatively thick to improve the cushioning characteristics of the second covering or cover 616. For example, in some embodiments, the strip 626 can be a PTFE strip having a thickness of from about 0.1 mm to about 0.5 mm, and a width of from about 3 mm to about 10 mm. In a representative embodiment, the strip 626 can have a thickness of about 0.25 mm, and a width of about 6 mm. The second covering or cover 616 can also include one or multiple layers. For example, the second covering or cover 616 can include a single layer (e.g., a single strip 626) wrapped around a row of struts of the frame. The second covering or cover may also include two layers, three layers, or more of strips wrapped around a row of struts of the frame. In some embodiments, the second covering or cover 616 can comprise multiple layers made of different materials. In certain configurations, the second covering or cover 616 can also be porous, and can have a pore size and pore density configured to promote tissue ingrowth into the material of the second covering/cover.
In some embodiments, the first covering or layer 614 and/or the second covering or cover 616 can be secured to the frame by attachment means, for example, suturing, adhesive, etc. In some embodiments, the first and second coverings 614, 616 can also be secured to each other with attachment means. For example, with reference to
Still referring to
The main layer 702 of the outer covering 700 can comprise a woven or knitted fabric. The fabric of the main layer 702 can be resiliently stretchable between a first, natural, or relaxed configuration (
The fabric can comprise a plurality of circumferentially extending warp strands/yarns 712 and a plurality of axially extending weft strands/yarns 714. In some embodiments, the warp strands/yarns 712 can have a denier of from about 1 D to about 300 D, about 10 D to about 200 D, or about 10 D to about 100 D. In some embodiments, the warp strands/yarns 712 can have a thickness t1 (
The weft strands/yarns 714 can be texturized strands/yarns comprising a plurality of texturized filaments 716. For example, the filaments 716 of the weft strands/yarns 714 can be bulked, wherein, for example, the filaments 716 are twisted, heat set, and untwisted such that the filaments retain their deformed, twisted shape in the relaxed, non-stretched configuration. The filaments 716 can also be texturized by crimping, coiling, etc. When the weft strands/yarns 714 are in a relaxed, non-tensioned state, the filaments 716 can be loosely packed and can provide compressible volume or bulk to the fabric, as well as a plush surface. In some embodiments, the weft strands/yarns 714 can have a denier of from about 1 D to about 500 D, about 10 D to about 400 D, about 20 D to about 350 D, about 20 D to about 300 D, or about 40 D to about 200 D. In certain embodiments, the weft strands/yarns 714 can have a denier of about 150 D. In some embodiments, a filament count of the weft strands/yarns 714 can be from 2 filaments per strand/yarn to 200 filaments per strand/yarn, 10 filaments per strand/yarn to 100 filaments per strand/yarn, 20 filaments per strand/yarn to 80 filaments per strand/yarn, or about 30 filaments per strand/yarn to 60 filaments per yarn. Additionally, although the axially-extending textured strands/yarns 714 are referred to as weft strands/yarns in the illustrated configuration, the fabric may also be manufactured such that the axially-extending textured strands/yarns are warp strands/yarns and the circumferentially-extending strands/yarns are weft strands/yarns.
When the fabric is in the relaxed state, the textured filaments 716 of the weft strands/yarns 714 can be widely dispersed such that individual weft strands/yarns are not readily discerned, as in
Thus, for example, when fully stretched, the main layer 702 can have a second thickness t3, as shown in
Additionally, as shown in
In certain embodiments, the distance y1 can be, for example, about 1 mm to about 10 mm, about 2 mm to about 8 mm, or about 3 mm to about 5 mm. In a representative example, the distance y1 can be about 3 mm. In some embodiments, when the fabric is stretched as in
In some embodiments, the strand/yarn count of strands/yarns extending in the circumferential direction (side-to-side or horizontally in
The pile layer 804 can be formed from strands/yarns woven into the base layer 802. For example, the pile layer 804 can comprise a velour weave formed from strands/yarns incorporated in the base layer 802. Referring to
In some embodiments, the base layer 802 can comprise a uniform mesh weave (the density of the weave pattern is uniform) and the pile layer 804 has a varying density.
In some embodiments, the density of the sealing member 800 can vary along the circumference of the sealing member. For example, the pile layer 804 can comprise a plurality of axially-extending, circumferentially-spaced, rows of pile yarns, or can comprise alternating axially-extending rows of higher-density pile interspersed with axially-extending rows of lower-density pile. Similarly, the base layer 802 can comprise a plurality axially-extending rows of higher-density mesh interspersed with rows of lower-density mesh.
In some embodiments, the sealing member 800 includes a base layer 802 and/or a pile layer 804 that varies in density along the circumference of the sealing member and along the height of the sealing member.
Varying the density of the pile layer 804 and/or the base layer 802 along the height and/or the circumference of the sealing member 800 is advantageous in that it reduces the bulkiness of the sealing member in the radially collapsed state and therefore reduces the overall crimp profile of the prosthetic heart valve.
In certain embodiments, the outer covering 800 can include inflow and/or outflow protective portions similar to the protective portions 416 and 418 above. However, in some embodiments, the outer covering 800 need not include protective portions and can extend between the top and bottom row of strut members of a frame, or between intermediate rows of strut members, depending upon the particular application.
Referring to
For example, with reference to
The openings 916 can be formed in a variety of ways. In certain embodiments, the openings 916 are cut (e.g., using a laser) from the fabric of the main layer 906 before the covering is assembled on the frame 904. In some embodiments, the covering 902 comprises two separate outer or main layers spaced apart axially from each other on the frame 904, with one layer extending between, for example, the first row I of struts 920 and the fourth row IV of struts, and the other layer extending along the fifth row V such that the frame openings 918 are uncovered. The openings 916 of the main layer 906 can have any size or shape, can be located at any location along the axis of the prosthetic valve, and/or at different axial locations. The openings 916 can also have any suitable circumferential spacing.
In certain embodiments, the first portion 924 and the second portion 926 comprise different pieces of material. For example, in some embodiments, the first portion 924 is a knitted fabric comprising the plush pile layer 928 described above, and the second portion 926 is a knitted fabric without a pile layer. The first and second portions 924, 926 can be configured to overlap each other (e.g., a portion of the first portion 924 may extend over the second portion 926 where the two pieces of fabric meet). The second portion 926 can also have a different knit pattern than the first portion 924, and can also comprise strands (e.g., yarns, etc.) having different properties (e.g., denier, material, surface characteristics such as texturing, number of filaments, number of plies, number of twists, etc.) from the strands/yarns of the first portion 924. In some embodiments the first portion 924 and/or the second portion 926 comprise knit patterns formed using a two bar system, a three bar system, a four bar system, etc., or as many as an eight bar system. The first portion 924 and/or the second portion 926 can be knitted in a variety of ways, e.g., using a circular technique, a crochet technique, a tricot technique, a raschel technique, other techniques, or combinations thereof. The properties of the second portion 926 can be optimized to allow the openings 916 to be created more easily (e.g., by laser cutting), and to ensure that the fabric retains its structural integrity. For example, cloth or fabric made of certain types of woven strands or woven yarns may be more likely to fall apart and/or fray if openings are cut therein, so the second portion 926 could be made of a bias cloth or bias fabric that is less likely to fall apart or fray when openings are cut therein. Optionally, the first and second portions 924, 926 can comprise a single piece of fabric. In some embodiments, the first portion 924 and/or the second portion 926 comprise a non-woven material (e.g., foam, felt, etc.).
Including openings such as the openings 916 in the outer covering 902 may promote blood flow through the covering from the interior of the prosthetic valve to the exterior such that the struts 920 and the radially-outward surfaces of the leaflets 922 are bathed or washed by blood flowing through the prosthetic valve during valve operation. This may help to reduce blood stasis around the strut members 920, and between the struts 920 and the leaflets 922, which may potentially reduce the risk of thrombosis.
In one example configuration, as illustrated, the sealing member/cover member 1000 comprises a first woven portion 1002A, which can be at the lower or inflow edge of the sealing member/cover member. Moving in a direction along the positive y-axis, the sealing member/cover member 1000 can further comprise a second woven portion 1004A, a floating portion/floating yarn portion 1006A, a second woven portion 1004B, a floating portion/floating yarn portion 1006B, a second woven portion 1004C, a floating portion/floating yarn portion 1006C, a second woven portion 1004D, a floating portion/floating yarn portion 1006D, a second woven portion 1004E, a first woven portion 1002B, a second woven portion 1004F, a floating portion/floating yarn portion 1006E, a second woven portion 1004G, and a first woven portion 1002C at the opposite end of the sealing member/cover member from the first woven portion 1002A. In other words, the first woven portion 1002B and each of the floating portions/floating yarn portions 1006A-1006E can be located between two second woven portions 1004 such that the first woven portion 1002B and each of the floating portion/floating yarn portions 1006A-1006E are bounded or edged in a direction along the x-axis by respective second woven portions 1004.
Referring to
Each of the first strands/yarns 1008 and the second strands/yarns 1010 can comprise a plurality of constituent filaments 1012 that are spun, wound, twisted, intermingled, interlaced, etc., together to form the respective strands/yarns. Exemplary individual filaments 1012 of the second strands/yarns 1010 can be seen in
The second strands/yarns 1010 can be texturized strands/yarns comprising a plurality of texturized filaments 1012. For example, the filaments 1012 of the second strands/yarns 1010 can be texturized, for example, by twisting the filaments, heat-setting them, and untwisting the filaments as described above. In some embodiments, the second strands/yarns 1010 have a denier of from about 1 D to about 200 D, about 10 D to about 100 D, about 10 D to about 80 D, or about 10 D to about 70 D. In some embodiments, a filament count of the second strands/yarns 1010 is between 1 filament per strand/yarn to about 100 filaments per strand/yarn, about 10 to about 80 filaments per strand/yarn, about 10 to about 60 filaments per strand/yarn, or about 10 to about 50 filaments per yarn. In some embodiments, the second strands/yarns 1010 have a denier of about 68 D and a filament count of about 36 filaments per yarn.
The first strands/yarns 1008 and the second strands/yarns 1010 can be woven together to form the woven portions of the sealing member/cover member, as noted above. For example, in the first woven portions 1002A-1002C, the first and second strands/yarns 1008, 1010 can be woven together in a plain weave pattern in which the second strands/yarns 1010 (e.g., the weft strands/yarns) pass over a first strand/yarn 1008 (e.g., a warp yarn) and then under the next first strand/yarn in a repeating pattern. This weave pattern is illustrated in detail in
In the second woven portions 1004A-1004G, the first and second strands/yarns 1008, 1010 can be interwoven in another pattern that is different from the weave pattern of the first woven portions 1002A-1002C. For example, in the illustrated embodiment, the first and second strands/yarns 1008, 1010 are woven together in a leno weave pattern in the second woven portions 1004A-1004G.
In the half-leno weave illustrated in
In certain embodiments, each of the second woven portions 1004A-1004G comprise the leno weave pattern described above. In some embodiments, one or more of the second woven portions 1004A-1004G is configured differently, such as by incorporating more or fewer first strands/yarns 1008 in the leno weave, having multiple leno ends woven around multiple groupings of strands/yarns 1008, etc. In some embodiments, a chemical locking method is used where the leno weave and/or a plain weave includes warp strands/yarns having core-sheath construction filaments. The sheath of the individual filaments can be made of low-melt temperature polymers such as biocompatible polypropylene, and the core of the filaments be made of another biocompatible polymer such as polyester. After the weaving process, the heat setting process described below can enable the softening and/or melting of the sheath. Upon cooling, the softened sheath polymer can bond the core polyester filaments together. This can create a bonded body enabling locking of the woven structure.
Referring again to
In the illustrated embodiment, each of the woven portions 1002A-1002C and 1004A-1004G, and each of the floating portions 1006A-1006E have width dimensions in the y-axis direction. The widths of the constituent portions can be configured such that the overall length L1 (
The first woven portion 1002B can have a width W2. With reference to
The second woven portions 1004A-1004G can have widths W3 (
With reference to
The cumulative effect of the floating portions/floating yarn portions 1006A-1006E increasing in width from the initial width W4 to the second width W5 is that the overall axial dimension of the sealing member/cover member 1000 can increase from the initial length L1 (
Still referring to
In some embodiments, the first and second strands/yarns 1008 and 1010 can comprise any of various biocompatible thermoplastic polymers such as PET, Nylon, ePTFE, UHMWPE, etc., or other suitable natural or synthetic fibers. In certain embodiments, the sealing member 1000 can be woven on a loom, and can then be heat-treated or heat-set to achieve the desired size and configuration. For example, depending upon the material selected, heat-setting can cause the sealing member 1000 to shrink. Heat-setting can also cause a texturizing effect, or increase the amount of texturizing, of the second strands/yarns 1010. After heat treatment, the openings 1016 can be created in the first woven portion 1002B (e.g., by laser cutting), and the sealing member can be incorporated into and/or form an outer covering such as the covering 1018 for assembly onto a prosthetic valve. In some embodiments, the openings 1016 can also be created before heat treatment.
In certain embodiments, the loops, filaments, floating portions, floating yarn portions, etc., of the prosthetic sealing members described herein can be configured to promote a biological response in order to form a seal between the prosthetic valve and the surrounding anatomy. In certain configurations, the sealing members described herein can be configured to form a seal over a selected period of time. For example, in certain embodiments, the open, porous nature of the loops, filaments, strands/yarns, etc., can allow a selected amount of paravalvular leakage around the prosthetic valve in the time period following implantation. The amount of paravalvular leakage past the seal structure may be gradually reduced over a selected period of time as the biological response to the loops, filaments, strands/yarns, etc., causes blood clotting, tissue ingrowth, etc. In some embodiments, the sealing members, and in particular the loops, filaments, strands/yarns, etc., of the paravalvular sealing structure, are treated with one or more agents that inhibit the biological response to the sealing structures. For example, in certain embodiments, the loops, filaments, strands/yarns, etc., are treated with heparin. In certain embodiments, the amount or concentration of the agent(s) is selected such that the agents are depleted after a selected period of time (e.g., days, weeks, or months) after valve implantation. As the agent(s) are depleted, the biological response to the loops, filaments, strands, yarns, etc., of the sealing structures may increase such that a paravalvular seal forms gradually over a selected period of time. This may be advantageous in patients suffering from heart remodeling, such as left atrial or left ventricular remodeling (e.g., due to mitral regurgitation, etc.), by providing an opportunity for the remodeling to reverse as regurgitation past the prosthetic valve is gradually reduced.
The prosthetic valve covering embodiments described herein can also be used on a variety of different types of prosthetic heart valves. For example, the coverings can be adapted, and in some embodiments are adapted, for use on mechanically-expandable prosthetic heart valves, such as the valve 1100 illustrated in
With reference to
As illustrated in
In the illustrated configuration, the inner members 1120 have distal end portions 1124 coupled to the inflow end 1106 of the frame 1102 (e.g., with a coupling element such as a pin member). In the illustrated embodiment, each of the inner members 1120 are coupled to the frame at respective apices 1114 at the inflow end 1106 of the frame. The outer members 1122 can be coupled to apices 1114 at the outflow end 1108 of the frame 1102 at, for example, a mid-portion of the outer member, as shown in
The inner member 1120 and the outer member 1122 can telescope relative to each other between a fully contracted state (corresponding to a fully radially expanded state of the prosthetic valve) and a fully extended state (corresponding to a fully radially compressed state of the prosthetic valve). In the fully extended state, the inner member 1120 is fully extended from the outer member 1122. In this manner, the actuator components 1118 allow the prosthetic valve to be fully expanded or partially expanded to different diameters and retain the prosthetic valve in the partially or fully expanded state.
In some embodiments, the actuator components 1118 are screw actuators configured to radially expand and compress the frame 1102 by rotation of one of the components of the actuators. For example, the inner members 1120 can be configured as screws having external threads that engage internal threads of corresponding outer components. Further details regarding screw actuators are disclosed in U.S. Publication No. 2018/0153689.
The prosthetic valve 1100 can also include a plurality of commissure support elements configured as commissure clasps or clamps 1136. In the illustrated configuration, the prosthetic valve includes a commissure clamp 1136 positioned at each commissure 1132 and configured to grip the leaflets 1110 of the commissure at a location spaced radially inwardly of the frame 1102. Further details regarding commissure clamps are disclosed in U.S. Publication No. 2018/0325665, which is incorporated herein by reference.
In the illustrated configuration, the struts 1204 are arranged in two sets, with the first set being on the inside of the frame 1202, offset circumferentially from each other, and angled such that the struts extend helically around the central axis 1216 of the frame. In the embodiment of
Still referring to
As in the embodiment of
The second woven portion 1304A can extend along the lower edge of the floating portion/floating yarn portion 1306, and second woven portion 1304B can extend along the upper edge of the floating portion/floating yarn portion 1306. In this manner, the floating portion/floating yarn portion 1306 can be bounded or edged in a direction along the x-axis by the second woven portions 1304A and 1304B. In some configurations, the widths of the second woven portions 1304A and 1304B can be relatively small in comparison to the first woven portions 1302A and 1302B, similar to the embodiment of
The sealing member 1300 can be resiliently stretchable between a first, natural width corresponding to a non-tensioned state, and a second width when the sealing member is stretched in the y-direction, similar to the embodiment of
Referring to the outer struts 1204A and 1204D of
With reference to the outer set of struts 1204, the floating portion/floating yarn portion 1306 can extend between about the level of the round portions 1212B to the round portions 1212C. When the frame 1202 is in the expanded configuration, the floating portion/floating yarn portion 1306 can extend or bulge radially outwardly from the frame to form a voluminous, compressible, pillow-like structure or cushion, which can aid in sealing against the surrounding anatomy. The texturized strands/yarns of the floating portion/floating yarn portion 1306 can also provide a porous environment for tissue ingrowth.
Still referring to
For example, in the illustrated configuration the sealing member 1400 can comprise first portion configured as an axially stretchable or resilient portion 1402, and a second portion configured as a circumferentially stretchable or resilient portion 1404. As used herein, “axially stretchable” and “axially resilient” portions refer to portion(s) of a sealing member that are configured to lengthen and shorten primarily in a direction along the longitudinal axis of the frame, although the portions may also lengthen and/or shorten in other directions depending upon the particular characteristics of the material. The portions may be resilient in that the material can lengthen when in a tensioned state, and can return to their initial length or state when the tension is relieved. As used herein, “circumferentially stretchable” and “circumferentially resilient” portions refer to portion(s) of a sealing member that are configured to lengthen and shorten primarily in a circumferential direction around the frame (e.g., such that the sealing member increases in diameter), although the portions may also lengthen and/or shorten in other directions.
In the illustrated embodiment, the axially resilient portion 1402 can comprise a plurality of first woven portions 1406 configured as woven strips or stripes extending circumferentially around the frame 1220, a plurality of second woven portions 1408 configured as woven strips or stripes extending circumferentially around the frame 1220, and a plurality of floating portions/floating yarn portions 1410 (also referred to as floating strand portions) also extending circumferentially around the frame 1220, and/or optionally additional portions. The various woven and floating portions/floating yarn portions can be arranged in a sequence or spaced apart along the longitudinal axis 1216 of the frame 1202.
In one example configuration, as illustrated, the axially resilient portion 1402 of the sealing member/cover member 1400 can comprise two spaced-apart first woven portions 1406 with a series of alternating second woven portions and floating portions/floating yarn portions 1410 arranged between the first woven portions. For example, the axially resilient portion 1402 comprises a first woven portion 1406A, which can be at the lower or inflow edge of the sealing member/cover member. Moving in a direction along the longitudinal axis 1216 toward the outflow end 1210, the axially resilient portion 1402 can further comprise a second woven portion 1408A, a floating portion/floating yarn portion 1410A, a second woven portion 1408B, a floating portion/floating yarn portion 1410B, a second woven portion 1408C, a floating portion/floating yarn portion 1410C, a second woven portion 1408D, a floating portion/floating yarn portion 1410D, a second woven portion 1408E, and a first woven portion 1406B at the opposite end of the sealing member/cover member from the first woven portion 1406A. As in the embodiments above, the floating portions/floating yarn portions 1410A-1410D can be located between two second woven portions 1408 such that the floating portions/floating yarn portions are bounded or edged in the circumferential direction by respective second woven portions 1408. However, in other embodiments the floating strands/yarns/threads can extend directly from one first woven portion to another first woven portion without second woven portions, depending upon the particular characteristics desired.
In the illustrated configuration, the first woven portions 1406 comprise a weave pattern that is different from the weave pattern of the second woven portions 1408, as in the configurations described above. For example, in certain embodiments, the first woven portions 1406 can comprise yarns, threads, or strands woven together in a plain weave or other types of weaves, or knitted together in any of various knitting patterns. The second woven portions 1408 can comprise a second weave pattern, such as a leno weave. Accordingly, in certain embodiments the second woven portions 1408 can comprise one or more leno strands/yarns/threads or “leno ends” woven together with the yarns/threads/strands of the first woven portions 1406 in any of the leno weave patterns described herein. The second woven portions 1408 can also comprise other weave or knit patterns, such as plain weave patterns, twill weave patterns, and/or satin weave patterns, or their derivatives.
The floating portions/floating yarn portions 1410 can comprise a plurality of strands/yarns/threads that exit the leno weave of the second woven portions 1408, extend across the floating portion/floating yarn portions 1410, and are incorporated into the leno weave of the second woven portion 1408 on the opposite side of the floating portion/floating yarn portions 1410, as described above. In certain examples, at least the floating strands/yarns/threads (e.g., the strands/yarns/threads oriented along the longitudinal axis 1216 in the weave) can be texturized, as described above. Thus, when the fabric is in the relaxed state, the texturized filaments of the second strands/yarns/threads can be kinked and twisted in many directions such that the floating portions/floating yarn portions 1410 have a bulky, billowy, or pillow-like quality, and provide a compressible volume or bulk. When tensioned, the kinks, twists, etc., of the filaments can be pulled at least partially straight along the longitudinal axis 1216, causing the floating strands/yarns/threads to elongate, as described above. Accordingly, the floating portions/floating yarn portions 1410 can allow the axially resilient portion 1402 to elongate and shorten along the longitudinal axis 1216 as the frame is collapsed and expanded. In other embodiments, the strands/yarns/threads of the floating portions can be untexturized, and can fold or bend outwardly from the frame as the frame foreshortens in the expanded configuration. In certain embodiments, the floating strands/yarns/threads (oriented longitudinally or circumferentially) can be elastic strands/yarns/threads.
In the embodiment of
In certain embodiments, the circumferentially resilient portion 1404 can be separately formed and secured to the axially resilient portion 1402. For example, in certain embodiments the circumferentially resilient portion 1404 can be sutured or stitched to the axially resilient portion 1402 (e.g., along the edges of the first woven portions 1406C and 1406D), and/or can be attached to the axially resilient portion by other securing means such as adhesive, laces, fasteners such as rivets, hook and loop fasteners, etc. In other embodiments, the circumferentially resilient portion 1404 can be integrally formed or woven with the axially resilient portion 1402, as in the embodiment of
In certain embodiments, the sealing member 1400 can be secured to the frame 1202 by, for example, suturing. For example, in certain embodiments the axially resilient portion 1402 can be sutured to the struts of the frame 1202, or secured by other securing means, such that as the frame collapses and lengthens the axially resilient portion 1402 is pulled into a tensioned state and elongates. In certain embodiments, the circumferentially resilient portion 1404 need not be directly secured to the frame. In the illustrated configuration, the inflow edge (not shown) of the sealing member 1400 comprising the first woven portion 1406A and a corresponding portion of the circumferentially resilient portion 1404 is folded around the inflow apices of the frame struts and secured inside the frame. The outflow edge 1412 of the sealing member 1400 can be located at a height between the round portions 1212D and 1212E (
As the frame 1202 collapses and elongates, the axially resilient portion 1402 will be pulled into a lengthened, expanded, or tensioned state because it is secured to the frame. Thus, the axial dimension of at least a portion of the sealing member 1400 will increase.
Additionally, in certain embodiments, because the sealing member is resiliently stretchable axially and radially, the sealing member 1400 (e.g., the radially inward surface of the sealing member) can remain in contact with the exterior surfaces of the struts 1204 along the entire height or axial dimension of the sealing member, or substantially the entire height or axial dimension of the sealing member, as the sealing member extends and contracts between L1 and L2. In other words, loose material need not drape or hang away from the frame either in the expanded configuration or in the collapsed configuration. This can help reduce the crimp profile of a prosthetic valve incorporating the sealing member 1400 since neither the axial dimension nor the circumference of the sealing member need include extra material or slack to accommodate the frame when the frame is fully expanded or fully collapsed. An additional advantage of the circumferentially expandable sealing member is that it does not significantly resist expansion of the frame.
In the embodiments illustrated in
In the embodiments illustrated in
The circumferentially resilient portion 1504 can comprise a first plurality of yarns, threads, or strands 1512 interwoven with a second plurality of yarns, threads, or strands 1514 at an angle. For example, when the sealing member 1500 is in a first, natural, unstretched state, the strands 1512 and 1514 can form an angle θ1. In the unstretched state, the circumferentially resilient portion 1504 can have a first length L1 (which can be an arc length when disposed around a cylindrical frame such as the frame 1202). Referring to
Referring to
In some embodiments, the strands 1512 and 1514 can be woven, knitted, and/or braided together. For example, in certain embodiments the strands 1512 and 1514 can be woven together in a plain weave, or in other weave patterns such as a satin weave and/or a twill weave and their derivatives. In some embodiments, the circumferentially resilient portion 1504 can comprise an elastically resilient or stretchable mesh. In some embodiments, the strands 1512 and 1514 can be braided together in a regular braid pattern, a diamond braid pattern, a Hercules braid pattern, or other types of braids.
In some embodiments, the axially resilient portion of any of the embodiments above can also include a plurality of strands woven similarly to the circumferentially resilient portion 1504 such that lengthening and shortening of the axially resilient portion is facilitated by changes in the angle between the strands.
In other embodiments, one or both of the axially resilient portion and/or the circumferentially resilient portion can comprise other materials such as elastic fibers, elastic polymeric films or sheets, etc., to facilitate resilient stretching and relaxing of the sealing member. In certain embodiments, the axially resilient portion and the circumferentially resilient portion can be attached to each other with elastic sutures, or any other elastic joint. Elastic strands/yarns/threads that can be used in combination with any of the embodiments described herein can comprise thermoplastic polyurethane, polypropylene, and/or any other natural or polymeric material with elastomeric properties.
The coverings 1400 and 1500 can be used in combination with the mechanically-expandable frame of
The circumferentially resilient portion 1330B can be configured similarly to the portion 1330A, and can be located on an extension portion 1320. The resilient portions 1330A and 1330B can be circumferentially aligned with each other and axially offset. In the illustrated example, the portions 1330A and 1330B can be positioned on opposite sides of the resilient portion 1306. The circumferentially resilient portion 1330B can extend across both the second woven portion 1304B and the first woven portion 1302B, although in other configurations it may extend across one or the other of the first woven portion 1302B or the second woven portion 1304B, or a portion(s) thereof.
In certain embodiments, the sealing member 1300 can comprise a plurality of circumferentially resilient portions spaced apart from each other circumferentially around the sealing member. For example, in certain embodiments the sealing member can comprise two, three, four, or more circumferentially resilient portions on the inflow edge portion, the outflow edge portion, or both. The circumferentially resilient portions on the inflow and outflow aspects may be circumferentially aligned with each other, or circumferentially offset, depending upon the particular characteristics desired.
In other embodiments, the circumferentially resilient portion 1330A and/or 1330B can comprise strands/yarns/threads woven or braided together at an angle such that the resilient portions are configured to axially lengthen and shorten, and configured circumferentially lengthen and shorten, similar to the embodiment of
Although the prosthetic valve covering embodiments described herein are sometimes presented in the context of mitral valve repair, it should be understood that the disclosed coverings can be used in combination with any of various prosthetic heart valves for implantation at any of the native valves in or around the heart. For example, the prosthetic valve coverings described herein can be used in combination with transcatheter heart valves, surgical heart valves, minimally-invasive heart valves, etc. The covering embodiments herein can be used in prosthetic valves intended for implantation at any of the native valve of an animal or patient (e.g., the aortic, pulmonary, mitral, tricuspid, and Eustachian valve, etc.), and include valves that are intended for implantation within existing prosthetics valves (so called “valve-in-valve” procedures). The covering embodiments can also be used in combination with other types of devices implantable within other body lumens outside of the heart, or heart valves that are implantable within the heart at locations other than the native valves, such as trans-atrial or trans-ventricle septum valves.
General Considerations
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatus, and systems should not be construed as being limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Although the operations of some of the disclosed embodiments are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.
As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the terms “coupled” and “associated” generally mean electrically, electromagnetically, and/or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.
In the context of the present application, the terms “lower” and “upper” are used interchangeably with the terms “inflow” and “outflow”, respectively. Thus, for example, the lower end of the valve is its inflow end and the upper end of the valve is its outflow end.
As used herein, the term “proximal” refers to a position, direction, or portion of a device that is closer to the user and further away from the implantation site. As used herein, the term “distal” refers to a position, direction, or portion of a device that is further away from the user and closer to the implantation site. Thus, for example, proximal motion of a device is motion of the device toward the user, while distal motion of the device is motion of the device away from the user. The terms “longitudinal” and “axial” refer to an axis extending in the proximal and distal directions, unless otherwise expressly defined.
In view of the many possible embodiments to which the principles of the disclosed technology may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is at least as broad as the following claims.
The present application is a continuation of U.S. application Ser. No. 16/521,226, filed Jul. 24, 2019, which is a continuation-in-part of U.S. application Ser. No. 16/252,890, filed on Jan. 21, 2019, which is a continuation of PCT Application No. PCT/US2019/014338, filed on Jan. 18, 2019, which is a continuation-in-part of U.S. application Ser. No. 15/876,053, filed on Jan. 19, 2018, and which claims the benefit of U.S. Provisional Application No. 62/703,363, filed on Jul. 25, 2018. U.S. application Ser. No. 15/876,053 claims the benefit of U.S. Provisional Application No. 62/449,320 filed on Jan. 23, 2017, U.S. Provisional Application No. 62/520,703 filed on Jun. 16, 2017, and U.S. Provisional Application No. 62/535,724 filed on Jul. 21, 2017. U.S. application Ser. No. 16/521,226 also claims the benefit of U.S. Provisional Application No. 62/703,363, filed on Jul. 25, 2018. Each of the foregoing applications is incorporated by reference in its entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
30912 | Hancock | Dec 1860 | A |
3409013 | Berry | Nov 1968 | A |
3548417 | Kisher | Dec 1970 | A |
3587115 | Shiley | Jun 1971 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3744060 | Bellhouse et al. | Jul 1973 | A |
3755823 | Hancock | Sep 1973 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4373216 | Klawitter | Feb 1983 | A |
4406022 | Roy | Sep 1983 | A |
4441216 | Ionescu et al. | Apr 1984 | A |
4470157 | Love | Sep 1984 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4574803 | Storz | Mar 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4643732 | Pietsch et al. | Feb 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4666442 | Arru et al. | May 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
4705516 | Barone et al. | Nov 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4787901 | Baykut | Nov 1988 | A |
4790843 | Carpentier et al. | Dec 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4820299 | Philippe et al. | Apr 1989 | A |
4829990 | Thuroff et al. | May 1989 | A |
4851001 | Taheri | Jul 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5080668 | Bolz et al. | Jan 1992 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5163953 | Vince | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5192297 | Hull | Mar 1993 | A |
5266073 | Wall | Nov 1993 | A |
5282847 | Trescony et al. | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411055 | Kane | May 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5480424 | Cox | Jan 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5558644 | Boyd et al. | Sep 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5607464 | Trescony et al. | Mar 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5628792 | Lentell | May 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5716417 | Girard et al. | Feb 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5855602 | Angell | Jan 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
6027525 | Suh et al. | Feb 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6302906 | Goicoechea et al. | Oct 2001 | B1 |
6338740 | Carpentier | Jan 2002 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6352547 | Brown et al. | Mar 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6432134 | Anson et al. | Aug 2002 | B1 |
6440764 | Focht et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6482228 | Norred | Nov 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6527979 | Constantz et al. | Mar 2003 | B2 |
6569196 | Vesely | May 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6605112 | Moll et al. | Aug 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6689123 | Pinchasik | Feb 2004 | B2 |
6716244 | Klaco | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6730121 | Ortiz et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6767362 | Schreck | Jul 2004 | B2 |
6769161 | Brown et al. | Aug 2004 | B2 |
6783542 | Eidenschink | Aug 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6878162 | Bales et al. | Apr 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6936067 | Buchanan | Aug 2005 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7077861 | Spence | Jul 2006 | B2 |
7096554 | Austin et al. | Aug 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7225518 | Eidenschink et al. | Jun 2007 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7316710 | Cheng et al. | Jan 2008 | B1 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7445632 | McGuckin, Jr. et al. | Nov 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7563280 | Anderson et al. | Jul 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7618447 | Case et al. | Nov 2009 | B2 |
7637946 | Solem et al. | Dec 2009 | B2 |
7655034 | Mitchell et al. | Feb 2010 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7737060 | Strickler et al. | Jun 2010 | B2 |
7785366 | Maurer et al. | Aug 2010 | B2 |
7951195 | Antonsson et al. | May 2011 | B2 |
7959665 | Pienknagura | Jun 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8075611 | Millwee et al. | Dec 2011 | B2 |
8128686 | Paul, Jr. et al. | Mar 2012 | B2 |
8142492 | Forster et al. | Mar 2012 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
8236049 | Rowe et al. | Aug 2012 | B2 |
8291570 | Eidenschink et al. | Oct 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8348998 | Pintor et al. | Jan 2013 | B2 |
8377115 | Thompson | Feb 2013 | B2 |
8398708 | Meiri et al. | Mar 2013 | B2 |
8449605 | Lichtenstein et al. | May 2013 | B2 |
8449606 | Eliasen et al. | May 2013 | B2 |
8454685 | Hariton et al. | Jun 2013 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8657872 | Seguin | Feb 2014 | B2 |
8663322 | Keranen | Mar 2014 | B2 |
8672998 | Lichtenstein et al. | Mar 2014 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8734507 | Keranen | May 2014 | B2 |
8747463 | Fogarty et al. | Jun 2014 | B2 |
8801776 | House et al. | Aug 2014 | B2 |
9078747 | Conklin | Jul 2015 | B2 |
9078781 | Ryan et al. | Jul 2015 | B2 |
9095434 | Rowe | Aug 2015 | B2 |
9119718 | Keranen | Sep 2015 | B2 |
9192471 | Bolling | Nov 2015 | B2 |
9220594 | Braido et al. | Dec 2015 | B2 |
9237886 | Seguin et al. | Jan 2016 | B2 |
9314335 | Konno | Apr 2016 | B2 |
9364326 | Yaron | Jun 2016 | B2 |
9463268 | Spence | Oct 2016 | B2 |
9474599 | Keranen | Oct 2016 | B2 |
9597205 | Tuval | Mar 2017 | B2 |
9610157 | Braido et al. | Apr 2017 | B2 |
9622863 | Karapetian et al. | Apr 2017 | B2 |
10201416 | Backus et al. | Feb 2019 | B2 |
10413401 | Eberhardt et al. | Sep 2019 | B2 |
10716664 | Ratz et al. | Jul 2020 | B2 |
10888420 | Bateman et al. | Jan 2021 | B2 |
10945836 | Braido | Mar 2021 | B2 |
10980636 | Delaloye | Apr 2021 | B2 |
11013600 | Schwartz et al. | May 2021 | B2 |
11439732 | Adamek-Bowers et al. | Sep 2022 | B2 |
11534294 | Braido | Dec 2022 | B2 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20010049555 | Gabbay | Dec 2001 | A1 |
20020026094 | Roth | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020107535 | Wei et al. | Aug 2002 | A1 |
20020138135 | Duerig et al. | Sep 2002 | A1 |
20020143390 | Ishii | Oct 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020173842 | Buchanan | Nov 2002 | A1 |
20030014105 | Cao | Jan 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030100939 | Yodfat et al. | May 2003 | A1 |
20030158597 | Quiachon et al. | Aug 2003 | A1 |
20030171805 | Berg et al. | Sep 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20030225420 | Wardle | Dec 2003 | A1 |
20040024452 | Kruse et al. | Feb 2004 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040078074 | Anderson et al. | Apr 2004 | A1 |
20040111006 | Alferness et al. | Jun 2004 | A1 |
20040186558 | Pavcnik et al. | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050010285 | Lambrecht et al. | Jan 2005 | A1 |
20050075724 | Svanidze et al. | Apr 2005 | A1 |
20050075725 | Rowe | Apr 2005 | A1 |
20050075728 | Nguyen et al. | Apr 2005 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050119682 | Nguyen et al. | Jun 2005 | A1 |
20050119735 | Spence et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050188525 | Weber et al. | Sep 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240262 | White | Oct 2005 | A1 |
20050273155 | Bahler et al. | Dec 2005 | A1 |
20060004469 | Sokel | Jan 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060108090 | Ederer et al. | May 2006 | A1 |
20060149350 | Patel et al. | Jul 2006 | A1 |
20060183383 | Asmus et al. | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060229719 | Marquez et al. | Oct 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070162102 | Ryan et al. | Jul 2007 | A1 |
20070203503 | Salahieh et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070203576 | Lee et al. | Aug 2007 | A1 |
20070208550 | Cao et al. | Sep 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070233228 | Eberhardt et al. | Oct 2007 | A1 |
20070260305 | Drews et al. | Nov 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20070293808 | Williams et al. | Dec 2007 | A1 |
20080021546 | Patz et al. | Jan 2008 | A1 |
20080033542 | Antonsson et al. | Feb 2008 | A1 |
20080077235 | Kirson | Mar 2008 | A1 |
20080114442 | Mitchell et al. | May 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080183271 | Frawley et al. | Jul 2008 | A1 |
20080208327 | Rowe | Aug 2008 | A1 |
20080208330 | Keranen | Aug 2008 | A1 |
20080243245 | Thambar et al. | Oct 2008 | A1 |
20080255660 | Guyenot et al. | Oct 2008 | A1 |
20080275537 | Limon | Nov 2008 | A1 |
20080294248 | Yang et al. | Nov 2008 | A1 |
20090082845 | Chobotov | Mar 2009 | A1 |
20090118826 | Khaghani | May 2009 | A1 |
20090125118 | Gong | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090192601 | Rafiee et al. | Jul 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090287296 | Manasse | Nov 2009 | A1 |
20090287299 | Tabor et al. | Nov 2009 | A1 |
20090299452 | Eidenschink et al. | Dec 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20100036484 | Hariton et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100082094 | Quadri et al. | Apr 2010 | A1 |
20100145440 | Keranen | Jun 2010 | A1 |
20100168839 | Braido et al. | Jul 2010 | A1 |
20100168844 | Toomes et al. | Jul 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100198347 | Zakay et al. | Aug 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100312333 | Navia et al. | Dec 2010 | A1 |
20100318184 | Spence | Dec 2010 | A1 |
20110004299 | Essinger et al. | Jan 2011 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110066224 | White | Mar 2011 | A1 |
20110098802 | Braido et al. | Apr 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110218619 | Benichou et al. | Sep 2011 | A1 |
20110319991 | Hariton et al. | Dec 2011 | A1 |
20120059458 | Buchbinder et al. | Mar 2012 | A1 |
20120089223 | Nguyen et al. | Apr 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120259409 | Nguyen et al. | Oct 2012 | A1 |
20120283820 | Tseng et al. | Nov 2012 | A1 |
20120296418 | Bonyuet et al. | Nov 2012 | A1 |
20130023985 | Khairkhahan et al. | Jan 2013 | A1 |
20130046373 | Cartledge et al. | Feb 2013 | A1 |
20130150956 | Yohanan et al. | Jun 2013 | A1 |
20130166017 | Cartledge et al. | Jun 2013 | A1 |
20130190857 | Mitra et al. | Jul 2013 | A1 |
20130190862 | Pintor et al. | Jul 2013 | A1 |
20130190865 | Anderson | Jul 2013 | A1 |
20130274873 | Delaloye et al. | Oct 2013 | A1 |
20130310926 | Hariton | Nov 2013 | A1 |
20130317598 | Rowe et al. | Nov 2013 | A1 |
20130331929 | Mitra et al. | Dec 2013 | A1 |
20140074299 | Endou et al. | Mar 2014 | A1 |
20140081394 | Keranen et al. | Mar 2014 | A1 |
20140172070 | Seguin | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140200661 | Pintor et al. | Jul 2014 | A1 |
20140209238 | Bonyuet et al. | Jul 2014 | A1 |
20140222136 | Geist et al. | Aug 2014 | A1 |
20140277417 | Schraut et al. | Sep 2014 | A1 |
20140277419 | Garde et al. | Sep 2014 | A1 |
20140277423 | Alkhatib et al. | Sep 2014 | A1 |
20140277424 | Oslund | Sep 2014 | A1 |
20140277563 | White | Sep 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20140330372 | Weston et al. | Nov 2014 | A1 |
20140343670 | Bakis et al. | Nov 2014 | A1 |
20140343671 | Yohanan et al. | Nov 2014 | A1 |
20140350667 | Braido et al. | Nov 2014 | A1 |
20140358222 | Gorman, III et al. | Dec 2014 | A1 |
20140379074 | Spence et al. | Dec 2014 | A1 |
20150025623 | Granada et al. | Jan 2015 | A1 |
20150073545 | Braido | Mar 2015 | A1 |
20150073546 | Braido | Mar 2015 | A1 |
20150135506 | White | May 2015 | A1 |
20150148893 | Braido et al. | May 2015 | A1 |
20150157455 | Hoang et al. | Jun 2015 | A1 |
20150190227 | Johnson et al. | Jul 2015 | A1 |
20150209136 | Braido et al. | Jul 2015 | A1 |
20150209141 | Braido et al. | Jul 2015 | A1 |
20150230921 | Chau et al. | Aug 2015 | A1 |
20150245910 | Righini et al. | Sep 2015 | A1 |
20150282931 | Brunnett et al. | Oct 2015 | A1 |
20150335428 | Keranen | Nov 2015 | A1 |
20150335430 | Loulmet et al. | Nov 2015 | A1 |
20150374493 | Yaron et al. | Dec 2015 | A1 |
20160015514 | Lashinski et al. | Jan 2016 | A1 |
20160074165 | Spence et al. | Mar 2016 | A1 |
20160095705 | Keranen et al. | Apr 2016 | A1 |
20160143732 | Glimsdale | May 2016 | A1 |
20160184095 | Spence et al. | Jun 2016 | A1 |
20160199177 | Spence et al. | Jul 2016 | A1 |
20160199183 | Braido et al. | Jul 2016 | A1 |
20160250022 | Braido et al. | Sep 2016 | A1 |
20160256276 | Yaron | Sep 2016 | A1 |
20160317305 | Pelled et al. | Nov 2016 | A1 |
20160338823 | Akingba | Nov 2016 | A1 |
20160346080 | Righini et al. | Dec 2016 | A1 |
20170007399 | Keranen | Jan 2017 | A1 |
20170007402 | Zerkowski et al. | Jan 2017 | A1 |
20170014229 | Nguyen-Thien-Nhon et al. | Jan 2017 | A1 |
20170056163 | Tayeb et al. | Mar 2017 | A1 |
20170172736 | Chadha et al. | Jun 2017 | A1 |
20170189174 | Braido et al. | Jul 2017 | A1 |
20170217385 | Rinkleff et al. | Aug 2017 | A1 |
20170231761 | Cohen-Tzemach et al. | Aug 2017 | A1 |
20170266005 | McGuckin, Jr. | Sep 2017 | A1 |
20170273788 | O'Carroll et al. | Sep 2017 | A1 |
20170273789 | Yaron et al. | Sep 2017 | A1 |
20170281337 | Campbell | Oct 2017 | A1 |
20180000580 | Wallace et al. | Jan 2018 | A1 |
20180028310 | Gurovich et al. | Feb 2018 | A1 |
20180085217 | Lashinski et al. | Mar 2018 | A1 |
20180133003 | Levi | May 2018 | A1 |
20180153689 | Maimon et al. | Jun 2018 | A1 |
20180206074 | Tanasa et al. | Jul 2018 | A1 |
20180289481 | Dolan | Oct 2018 | A1 |
20180303606 | Rothstein et al. | Oct 2018 | A1 |
20180318073 | Tseng et al. | Nov 2018 | A1 |
20180318080 | Quill et al. | Nov 2018 | A1 |
20180325665 | Gurovich et al. | Nov 2018 | A1 |
20180344456 | Barash et al. | Dec 2018 | A1 |
20190046314 | Levi et al. | Feb 2019 | A1 |
20190091013 | Alkhatib et al. | Mar 2019 | A1 |
20190105154 | Cohen-Tzemach et al. | Apr 2019 | A1 |
20190262507 | Adamek-Bowers et al. | Aug 2019 | A1 |
20200069415 | Bialas et al. | Mar 2020 | A1 |
20200188098 | Alkhatib et al. | Jun 2020 | A1 |
20210000596 | Rajagopal et al. | Jan 2021 | A1 |
20210085453 | Clague et al. | Mar 2021 | A1 |
20210353408 | Chen et al. | Nov 2021 | A1 |
20220338981 | Alkhatib | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
103732183 | Apr 2014 | CN |
105073068 | Nov 2015 | CN |
111132634 | May 2020 | CN |
0144167 | Sep 1903 | DE |
2246526 | Mar 1973 | DE |
19532846 | Mar 1997 | DE |
19546692 | Jun 1997 | DE |
19857887 | Jul 2000 | DE |
19907646 | Aug 2000 | DE |
10049812 | Apr 2002 | DE |
10049813 | Apr 2002 | DE |
10049814 | Apr 2002 | DE |
10049815 | Apr 2002 | DE |
0103546 | Mar 1984 | EP |
0592410 | Oct 1995 | EP |
0850607 | Jul 1998 | EP |
1057460 | Dec 2000 | EP |
1088529 | Apr 2001 | EP |
1432369 | Jun 2004 | EP |
1521550 | Apr 2005 | EP |
1570809 | Sep 2005 | EP |
1296618 | Jan 2008 | EP |
1753374 | Feb 2010 | EP |
1827314 | Dec 2010 | EP |
2620125 | Jul 2013 | EP |
2726018 | May 2014 | EP |
2806829 | Dec 2014 | EP |
2788217 | Jul 2000 | FR |
2815844 | May 2002 | FR |
2056023 | Mar 1981 | GB |
2003531678 | Oct 2003 | JP |
2010517638 | May 2010 | JP |
2010521226 | Jun 2010 | JP |
2014509210 | Apr 2014 | JP |
2016538949 | Dec 2016 | JP |
2017515643 | Jun 2017 | JP |
1271508 | Nov 1986 | SU |
9117720 | Nov 1991 | WO |
9217118 | Oct 1992 | WO |
9301768 | Feb 1993 | WO |
9724080 | Jul 1997 | WO |
9829057 | Jul 1998 | WO |
9930646 | Jun 1999 | WO |
9933414 | Jul 1999 | WO |
9940964 | Aug 1999 | WO |
9947075 | Sep 1999 | WO |
0018333 | Apr 2000 | WO |
0041652 | Jul 2000 | WO |
0047139 | Aug 2000 | WO |
0135878 | May 2001 | WO |
0149213 | Jul 2001 | WO |
0154624 | Aug 2001 | WO |
0154625 | Aug 2001 | WO |
0162189 | Aug 2001 | WO |
0164137 | Sep 2001 | WO |
0176510 | Oct 2001 | WO |
0222054 | Mar 2002 | WO |
0236048 | May 2002 | WO |
0241789 | May 2002 | WO |
0243620 | Jun 2002 | WO |
0247575 | Jun 2002 | WO |
0249540 | Jun 2002 | WO |
03028558 | Apr 2003 | WO |
03047468 | Jun 2003 | WO |
2005034812 | Apr 2005 | WO |
2005055883 | Jun 2005 | WO |
2005084595 | Sep 2005 | WO |
2006011127 | Feb 2006 | WO |
2006014233 | Feb 2006 | WO |
2006032051 | Mar 2006 | WO |
2006034008 | Mar 2006 | WO |
2006111391 | Oct 2006 | WO |
2006127089 | Nov 2006 | WO |
2006138173 | Mar 2007 | WO |
2005102015 | Apr 2007 | WO |
2007047488 | Apr 2007 | WO |
2007067942 | Jun 2007 | WO |
2007097983 | Aug 2007 | WO |
2008005405 | Jan 2008 | WO |
2008015257 | Feb 2008 | WO |
2008035337 | Mar 2008 | WO |
2008091515 | Jul 2008 | WO |
2008147964 | Dec 2008 | WO |
2008150529 | Dec 2008 | WO |
2009033469 | Mar 2009 | WO |
2009155561 | Dec 2009 | WO |
2010011699 | Jan 2010 | WO |
2010121076 | Oct 2010 | WO |
2012063228 | May 2012 | WO |
2012162228 | Nov 2012 | WO |
2013106585 | Jul 2013 | WO |
2013110722 | Aug 2013 | WO |
2013114214 | Aug 2013 | WO |
2014121275 | Aug 2014 | WO |
2014164832 | Oct 2014 | WO |
2015023579 | Feb 2015 | WO |
2015023862 | Feb 2015 | WO |
2015085218 | Jun 2015 | WO |
2015127264 | Aug 2015 | WO |
2015175302 | Nov 2015 | WO |
2015198125 | Dec 2015 | WO |
2016038017 | Mar 2016 | WO |
2016040881 | Mar 2016 | WO |
2016130820 | Aug 2016 | WO |
2017011697 | Jan 2017 | WO |
2017103833 | Jun 2017 | WO |
2018222799 | Dec 2018 | WO |
2019032992 | Feb 2019 | WO |
Entry |
---|
Al-Khaja, et al. “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, vol. 3. pp. 305-311. 1989. |
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994. |
H.R. Andersen “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009. |
H.R. Andersen, et al. “Transluminal Implantation of Artificial Heart Valve. Description of a New Expandable Aortic Valve and Initial Results with implantation by Catheter Technique in Closed Chest Pig,” European Heart Journal, No. 13. pp. 704-708. 1992. |
Pavcnik, et al. “Development and initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology, vol. 183, No. 1. pp. 151-154. 1992. |
Ross, “Aortic Valve Surgery,” At a meeting of the Council on Aug. 4, 1966. pp. 192-197. |
Sabbah, et al. “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4. pp. 302-309. 1989. |
Uchida, “Modifications of Gianturco Expandable Wire Stents,” American Journal of Roentgenology, vol. 150. pp. 1185-1187. 1986. |
Wheatley, “Valve Prostheses,” Operative Surgery, 4th ed. pp. 415-424. 1986. |
Number | Date | Country | |
---|---|---|---|
20230255762 A1 | Aug 2023 | US |
Number | Date | Country | |
---|---|---|---|
62703363 | Jul 2018 | US | |
62535724 | Jul 2017 | US | |
62520703 | Jun 2017 | US | |
62449320 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16521226 | Jul 2019 | US |
Child | 18306740 | US | |
Parent | PCT/US2019/014338 | Jan 2019 | WO |
Child | 16252890 | US | |
Parent | 15876053 | Jan 2018 | US |
Child | 16252890 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16252890 | Jan 2019 | US |
Child | 16521226 | US |