The present disclosure relates to prosthetic heart valves, and in particular to prosthetic heart valves including a covering that cushions the tissue of a native heart valve in contact with the prosthetic heart valve.
In a procedure to implant a transcatheter prosthetic heart valve, the prosthetic heart valve is typically positioned in the annulus of a native heart valve and expanded or allowed to expand to its functional size. In order to retain the prosthetic heart valve at the desired location, the prosthetic heart valve may be larger than the diameter of the native valve annulus such that it applies force to the surrounding tissue in order to prevent the prosthetic heart valve from becoming dislodged. In other configurations, the prosthetic heart valve may be expanded within a support structure that is located within the native annulus and configured to retain the prosthetic heart valve at a selected position with respect to the annulus. Over time, relative motion of the prosthetic heart valve and tissue of the native heart valve (e.g., native valve leaflets, chordae tendineae, etc.) in contact with the prosthetic heart valve may cause damage to the tissue. Accordingly, there is a need for improvements to prosthetic heart valves.
Certain disclosed embodiments concern coverings for prosthetic heart valves and methods of making and using the same. In a representative embodiment, a prosthetic heart valve comprises a frame comprising a plurality of strut members, and having an inflow end and an outflow end. The prosthetic heart valve further comprises a leaflet structure situated at least partially within the frame, and a covering disposed around the frame. The covering comprises a first layer and a second layer, wherein the second layer has a plush surface. The first layer is folded over a circumferential edge portion of the second layer to form a protective portion that extends beyond the strut members in a direction along a longitudinal axis of the prosthetic heart valve.
In some embodiments, the protective portion is a first protective portion located adjacent the inflow end of the frame, and the covering further comprises a second protective portion located adjacent the outflow end of the frame.
In some embodiments, the first layer extends along an interior surface of the second layer from the inflow end of the frame to the outflow end of the frame and is folded over a circumferential edge of the second layer at the outflow end of the frame to form the second protective portion.
In some embodiments, the first layer of the first protective portion is configured as a strip member that is folded over the circumferential edge portion of the second layer at the inflow end of the frame.
In some embodiments, a first layer of the second protective portion is configured as a strip member that is folded over a circumferential edge portion of the second layer at the outflow end of the frame.
In some embodiments, the strip member of the first protective portion encapsulates respective apices of the strut members at the inflow end of the frame, and the strip member of the second protective portion encapsulates respective apices of the strut members at the outflow end of the frame.
In some embodiments, the second layer comprises a fabric having a woven layer and a plush pile layer including a plurality of pile yarns.
In some embodiments, the pile yarns are arranged to form a looped pile, or cut to form a cut pile.
In some embodiments, the first layer comprises a tissue layer.
In another representative embodiment, a method comprises securing a first layer to a first surface of a second layer such that a longitudinal edge portion of the first layer extends beyond a longitudinal edge portion of the second layer, the first surface of the second layer being a plush second surface. The method further comprises securing the attached first and second layers into a cylindrical shape to form a covering, and situating the covering about a frame of a prosthetic heart valve, the frame comprising a plurality of strut members. The method further comprises folding the longitudinal edge portion of the first layer over the longitudinal edge portion of the second layer to form a protective portion such that the protective portion extends beyond apices of the strut members in a direction along a longitudinal axis of the valve.
In some embodiments, situating the covering about the frame further comprises situating the covering about the frame such that the plush first surface of the second layer is oriented radially outward.
In some embodiments, the protective portion is an inflow protective portion adjacent an inflow end of the frame, the first layer of the inflow protective portion is configured as a first strip member, and the method further comprises folding a longitudinal edge portion of a second strip member over a longitudinal edge portion of the second layer to form an outflow protective portion adjacent an outflow end of the frame.
In some embodiments, folding the longitudinal edge portion of the first strip member further comprises folding the longitudinal edge portion of the first strip member such that the inflow protective portion encapsulates respective apices of the strut members at the inflow end of the frame, and folding the longitudinal edge portion of the second strip member further comprises folding the longitudinal edge portion of the second strip member such that the outflow protective portion encapsulates respective apices of the strut members at the outflow end of the frame.
In some embodiments, the second layer comprises a fabric having a woven layer and a plush pile layer including a plurality of pile yarns that form the second surface.
In another representative embodiment, a method comprises positioning a prosthetic heart valve in an annulus of a native heart valve. The prosthetic heart valve is in a radially compressed state, and has a frame including a plurality of strut members and having an inflow end and an outflow end. The prosthetic heart valve further comprises a leaflet structure situated at least partially within the frame, and a covering disposed around the frame. The covering comprises a first layer and a second layer. The second layer has a plush surface, and the first layer is folded over a circumferential edge portion of the second layer to form a protective portion that extends beyond the strut members in a direction along a longitudinal axis of the prosthetic heart valve. The method further comprises expanding the prosthetic heart valve in the annulus of the native heart valve such that the leaflet structure of the prosthetic heart valve regulates blood flow through the annulus.
In some embodiments, expanding the prosthetic heart valve further comprises expanding the prosthetic heart valve such that the protective portion prevents tissue of the native heart in contact with the protective portion from contacting apices of the strut members.
In some embodiments, expanding the prosthetic heart valve further comprises expanding the prosthetic heart valve such that leaflets of the native heart valve are captured between the plush surface of the second layer and an anchoring device positioned in the heart.
In some embodiments, the protective portion is a first protective portion located adjacent the inflow end of the frame, and the covering further comprises a second protective portion located adjacent the outflow end of the frame.
In some embodiments, the second layer comprises a fabric having a woven layer and a plush pile layer including a plurality of pile yarns that form the plush surface.
In some embodiments, the first layer is folded over the circumferential edge portion of the second layer such that the protective portion encapsulates respective apices of the strut members.
The foregoing and other objects, features, and advantages of the disclosed technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
The present disclosure concerns embodiments of implantable prosthetic heart valves and methods of making and using such devices. In one aspect, a prosthetic heart valve includes an outer covering having a backing layer and a main cushioning layer disposed on the backing layer such that the cushioning layer is oriented radially outward about the circumference of the valve. The cushioning layer can be soft and compliant in order to reduce damage to native tissues of the heart valve and/or of the surrounding anatomy at the implantation site due to, for example, relative movement or friction between the prosthetic valve and the tissue as the heart expands and contracts. The covering can also include an inflow protective portion and an outflow protective portion to cushion the surrounding anatomy and prevent the native tissue of the heart valve from contacting the apices of the strut members of the frame, thereby protecting the surrounding tissue. In another embodiment, the covering can include an inflow strip member and an outflow strip member secured to the cushioning layer and folded over the apices of the strut members to form the inflow and outflow protective portions.
Embodiments of the disclosed technology can be used in combination with various prosthetic heart valves configured for implantation at various locations within the heart. A representative example is a prosthetic heart valve for replacing the function of the native mitral valve.
When the left ventricle contracts, the blood pressure in the left ventricle increases substantially, which urges the mitral valve closed. Due to the large pressure differential between the left ventricle and the left atrium during this time, a possibility of prolapse, or eversion of the leaflets of the mitral valve back into the atrium, arises. A series of chordae tendineae therefore connect the leaflets of the mitral valve to papillary muscles located on the walls of the left ventricle, where both the chordae tendineae and the papillary muscles are tensioned during ventricular contraction to hold the leaflets in the closed position and to prevent them from extending back towards the left atrium. This generally prevents backflow of oxygenated blood back into the left atrium. The chordae tendineae are schematically illustrated in both the heart cross-section of
A general shape of the mitral valve and its leaflets as viewed from the left atrium is shown in
Some transcatheter heart valves are designed to be radially crimped or compressed to facilitate endovascular delivery to an implant site at a patient's heart. Once positioned at a native valve annulus, the replacement valve is then expanded to an operational state, for example, by an expansion balloon, such that a leaflet structure of the prosthetic heart valve regulates blood flow through the native valve annulus. In other cases, the prosthetic valve can be mechanically expanded or radially self-expand from a compressed delivery state to the operational state under its own resiliency when released from a delivery sheath. One embodiment of a prosthetic heart valve is illustrated in
The frame 10 can be made of any body-compatible expandable material that permits both crimping to a radially collapsed state and expansion back to the expanded functional state illustrated in
The frame 10 can comprise an annular structure having a plurality of vertically extending commissure attachment posts 11, which attach and help shape the leaflet structure 20 therein. Additional vertical posts or strut members 12, along with circumferentially extending strut members 13, help form the rest of the frame 10. The strut members 13 of the frame 10 zig-zag and form edged crown portions or apices 14 at the inflow and outflow ends 2, 3 of the valve 1. Furthermore, the attachment posts 11 can also form edges at one or both ends of the frame 10.
In prosthetic valve 1, the skirt 30 is attached to an inner surface of the valve frame 10 via one or more threads 40, which generally wrap around to the outside of various struts 11, 12, 13 of the frame 10, as needed. The skirt 30 provides a more substantive attachment surface for portions of the leaflet structure 20 positioned closer to the inflow end 2 of the valve 1.
In
The anchor 300 also includes an extension portion 308 positioned between the central region 302 and the upper region 306. In other embodiments, the extension portion 308 can instead be positioned, for example, wholly in the central region 302 (e.g., at an upper portion of the central region) or wholly in the upper region 306. The extension portion 308 includes a part of the coil that extends substantially parallel to a central axis of the anchor. In other embodiments, the extension portion 308 can be angled relative to the central axis of the anchor. The extension portion 308 can serve to space the central region 302 and the upper region 306 apart from one another in a direction along the central axis so that a gap is formed between the atrial side and the ventricular side of the anchor.
The extension portion 308 of the anchor is intended to be positioned through or near the native valve annulus, in order to reduce the amount of the anchor that passes through, pushes, or rests against the native annulus and/or the native leaflets when the anchor is implanted. This can reduce the force applied by the anchor on the native mitral valve and reduce abrasion of the native leaflets. In one arrangement, the extension portion 308 is positioned at and passes through one of the commissures of the native mitral valve. In this manner, the extension portion 308 can space the upper region 306 apart from the native leaflets of the mitral valve to prevent the upper region 306 from interacting with the native leaflets from the atrial side. The extension portion 308 also elevates the upper region 306 such that the upper region contacts the atrial wall above the native valve, which can reduce the stress on and around the native valve, as well as provide for better retention of the anchor.
In the illustrated embodiment, the anchor 300 can further include one or more openings configured as through holes 310 at or near one or both of the proximal and distal ends of the anchor. The through holes 310 can serve, for example, as suturing holes for attaching a cover layer over the coil of the anchor, or as an attachment site for delivery tools such as a pull wire for a pusher or other advancement device. In some embodiments, a width or thickness of the coil of the anchor 300 can also be varied along the length of the anchor. For example, a central portion of the anchor can be made thinner than end portions of the anchor. This can allow the central portion to exhibit greater flexibility, while the end portions can be stronger or more robust. In certain examples, making the end portions of the coil relatively thicker can also provide more surface area for suturing or otherwise attaching a cover layer to the coil of the anchor.
In certain embodiments, the helical anchor 300 can be configured for insertion through the native valve annulus in a counter-clockwise direction. For example, the anchor can be advanced through commissure A3P3, commissure A1P1, or through another part of the native mitral valve. The counter-clockwise direction of the coil of the anchor 300 can also allow for bending of the distal end of the delivery catheter in a similar counter-clockwise direction, which can be easier to achieve than to bend the delivery catheter in the clockwise direction. However, it should be understood that the anchor can be configured for either clockwise or counter-clockwise insertion through the valve, as desired.
Returning to the prosthetic valve of
The prosthetic heart valve can include an outer covering 112 configured to cushion (protect) native tissue in contact with the prosthetic valve after implantation, and to reduce damage to the tissue due to movement or friction between the tissue and surfaces of the valve. The covering 112 can also reduce paravalvular leakage. In the embodiment of
The backing layer 114 can have sufficient length in the axial direction such that a proximal end portion or flap 132 of the backing layer 114 can be folded over the proximal end portion 130 of the cushioning layer 116 in the manner of a cuff to form the outflow protective portion 122. Meanwhile, a distal end portion or flap 134 of the backing layer 114 can be folded over the distal end portion 128 of the cushioning layer 116 to form the inflow protective portion 120. The proximal and distal flaps 132, 134 of the backing layer 116 can be secured to the underlying section of the backing layer by, for example, sutures 136. In this manner, the inflow and outflow protective portions 120, 122 are constructed such that the proximal and distal end portions 130, 128 of the cushioning layer 116 are at least partially enclosed by the flaps 132, 134 of the backing layer 116. This construction provides sufficient strength and resistance to bending to the inflow and outflow protective portions 120, 122 so that they extend along the longitudinal axis 126 of the valve without bending or otherwise protruding into the inner diameter of the valve (e.g., by bending under their own weight, by blood flow, or by blood pressure). In this manner, the inflow and outflow protective portions 120, 122 minimally impact flow through the prosthetic valve and avoid interfering with the prosthetic valve leaflets, reducing flow disturbances and the risk of thrombus.
In the illustrated configuration, the inflow protective portion 120 can extend beyond the apices 124 of the strut members at the inflow end of the frame by a distance d1, and the outflow protective portion 122 can extend beyond the apices 124 of the strut members at the outflow end of the frame by a distance d2. The distances d1 and d2 can be the same or different, depending upon the type of prosthetic valve, the treatment location, etc. For example, for a 29 mm prosthetic valve, the distances d1 and d2 can be from about 0.5 mm to about 3 mm. In a representative embodiment, the distances d1 and d2 can be from about 1 mm to about 2 mm. Because the inflow and outflow protective portions 120, 122 extend beyond the apices 124 of the respective ends of the frame, the inflow and outflow protective portions can shield adjacent tissue and/or another implant adjacent the prosthetic valve from contacting the apices 124 of the frame.
For example,
As shown in
The backing layer 114 can comprise, for example, any of various woven fabrics, such as gauze, polyethylene terephthalate (PET) fabric (e.g., Dacron), polyester fabric, polyamide fabric, or any of various non-woven fabrics, such as felt. In certain embodiments, the backing layer 114 can also comprise a film including any of a variety of crystalline or semi-crystalline polymeric materials, such as polytetrafluorethylene (PTFE), PET, polypropylene, polyamide, polyetheretherketone (PEEK), etc. In this manner, the backing layer 114 can be relatively thin and yet strong enough to allow the covering 112 to be sutured to the frame, and to allow the prosthetic valve to be crimped, without tearing.
As stated above, the cushioning layer 116 can comprise at least one soft, plush surface 118. In certain examples, the cushioning layer 116 can be made from any of a variety of woven or knitted fabrics wherein the surface 116 is the surface of a plush nap or pile of the fabric. Exemplary fabrics having a pile include velour, velvet, velveteen, corduroy, terrycloth, fleece, etc.
The pile 158 can comprise pile yarns 164 woven or knitted into loops. In certain configurations, the pile yarns 164 can be the warp yarns or the weft yarns of the base layer 162 woven or knitted to form the loops. The pile yarns 164 can also be separate yarns incorporated into the base layer, depending upon the particular characteristics desired. In certain embodiments, the loops can be cut such that the pile 158 is a cut pile in the manner of, for example, a velour fabric.
In some configurations, the pile yarns 164 can be textured yarns having an increased surface area due to, for example, a wavy or undulating structure. In configurations such as the looped pile embodiment of
The cushioning layer embodiments described herein can also contribute to improved compressibility and shape memory properties of the covering 112 over known valve coverings and skirts. For example, the pile 158 can be compliant such that it compresses under load (e.g., when in contact with tissue, implants, or the like), and returns to its original size and shape when the load is relieved. This can help to improve sealing between the cushioning layer 116 and, for example, support structures or other devices such as the helical anchor 70 in which the prosthetic valve is deployed, or between the cushioning layer and the walls of the native annulus. The compressibility provided by the pile 158 of the cushioning layer 116 is also beneficial in reducing the crimp profile of the prosthetic valve. Additionally, the covering 112 can prevent the leaflets 110 or portions thereof from extending through spaces between the strut members 104 as the prosthetic valve is crimped, thereby reducing damage to the prosthetic leaflets due to pinching of the leaflets between struts.
In alternative embodiments, the cushioning layer 116 be made of non-woven fabric such as felt, or fibers such as non-woven cotton fibers. The cushioning layer 116 can also be made of porous or spongey materials such as, for example, any of a variety of compliant polymeric foam materials, or woven or knitted fabrics, such as woven or knitted PET. In further alternative embodiments, the proximal and distal end portions of the cushioning layer 116 of the embodiment of
In a representative example illustrated in
The cushioning layer 116 can be attached (e.g., by sutures, adhesive, etc.) to the backing layer 114. In
Once the cushioning layer 116 is secured to the backing layer 114, the resulting swatch can be folded and sutured into a cylindrical shape. The flaps 132, 134 of the backing layer 114 can be folded over the edges of the cushioning layer 116 and sutured to form the inflow and outflow protective portions 120, 122. The resulting covering 112 can then be secured to the frame 102 by, for example, suturing it the strut members 104.
In certain configurations, the strip members 150, 152 can be made from any of various natural materials and/or tissues, such as pericardial tissue (e.g., bovine pericardial tissue). The strip members 150, 152 can also be made of any of various synthetic materials, such as PET and/or expanded polytetrafluoroethylene (ePTFE). In some configurations, making the strip members 150, 152 from natural tissues such as pericardial tissue can provide desirable properties such as strength, durability, fatigue resistance, and compliance, and cushioning and reduced friction with materials or tissues surrounding the implant.
Referring to
The spacer layer 210 can comprise a plurality of pile yarns 214. The pile yarns 214 can be, for example, monofilament yarns arranged to form a scaffold-like structure between the first and second layers 206, 208. For example,
In certain examples, the pile yarns 214 can have a rigidity that is greater than the rigidity of the fabric of the first and second layers 206, 208 such that the pile yarns 214 can extend between the first and second layers 206, 208 without collapsing under the weight of the second layer 208. The pile yarns 214 can also be sufficiently resilient such that the pile yarns can bend or give when subjected to a load, allowing the fabric to compress, and return to their non-deflected state when the load is removed.
The spacer fabric can be warp-knitted, or weft-knitted, as desired. Some configurations of the spacer cloth can be made on a double-bar knitting machine. In a representative example, the yarns of the first and second layers 206, 208 can have a denier range of from about 10 dtex to about 70 dtex, and the yarns of the monofilament pile yarns 214 can have a denier range of from about 2 mil to about 10 mil. The pile yarns 214 can have a knitting density of from about 20 to about 100 wales per inch, and from about 30 to about 110 courses per inch. Additionally, in some configurations (e.g., warp-knitted spacer fabrics) materials with different flexibility properties may be incorporated into the spacer cloth to improve the overall flexibility of the spacer cloth.
The prosthetic valve can include an outer covering 412 situated about the frame 402. The outer covering 412 can include a main cushioning layer 414 including a plush exterior surface 432 (e.g., a first surface), similar to the cushioning layer 116 of
For example, with reference to
In the illustrated configuration, the inflow protective portion 416 can extend beyond the apices 420 of the frame, similar to the embodiments above. In particular, the inflow end portion 422 of the cushioning layer 414 can extend beyond the apices 420 of the frame and into the inflow protective portion 416 within the folded strip 424. In this manner, the inflow end portion 422 of the cushioning layer 414, together with the strip member 424, can impart a resilient, cushioning quality to the inflow protective portion 416. This can also allow the inflow protective portion 416 to resiliently deform to accommodate and protect, for example, native tissue, other implants, etc., that come in contact with the inflow protective portion.
In the illustrated embodiment, the inflow end portion 422 can extend beyond the apices 420 by a distance d1. The distance d1 can be configured such the inflow end portion 422 can extend over or cover the apices 420 when the inflow protective portion 416 comes in contact with, for example, native tissue at the treatment site. The strip member 424 can also form a dome over the edge of the of the inflow end portion 422 such that the edge of the inflow end portion 422 is spaced apart from the domed portion of the strip member 424. In other embodiments, the strip member 424 can be folded such that it contacts the edge of the inflow edge portion 422, similar to the embodiment of
The outflow protective portion 418 can include a member configured as a strip 436 of material folded such that a first circumferential edge portion 438 is adjacent (e.g., contacting) inner surfaces 440 of the strut members, and a second circumferential edge portion 442 is disposed on the exterior surface 432 of the cushioning layer 414, similar to the inflow protective portion 416. An outflow end portion 444 of the cushioning layer 414 can extend beyond the apices 420 by a distance d2, and can be encapsulated by the strip member 436 together with the apices 420 between the first and second circumferential edge portions 438, 442. The distance d2 can be the same as distance d1 or different, as desired. The strip member 436 can be secured to the strut members 404 with sutures 446, 447. The strip member 436 can also form a domed shape similar to the strip member 424.
In certain configurations, the cushioning layer 414 can be a fabric including a plush pile, such as a velour fabric, or any other type of plush knitted, woven, or non-woven material, as described above. In some embodiments, the cushioning layer 414 may also comprise a relatively low thickness woven fabric without a plush pile. In certain configurations, the strip members 424, 436 can be made of resilient natural tissue materials such as pericardium. Alternatively, the strip members can also be made from fabric or polymeric materials such as PTFE or ePTFE.
In the illustrated configuration, the cushioning layer 414 and the strip members 424, 436 can have a length dimension L corresponding to a circumference of the frame 402. In a representative example, the length dimension L can be about 93 mm. The strip members 424, 436 can also have respective width dimensions W1, W2. Referring to width dimension W1 for purposes of illustration, the width dimension W1 can be configured such that the strip member 424 extends from the interior of the valve to the exterior of the valve without contacting the apices 420 of the strut members, as shown in
Referring to
Referring to
The outflow protective portion 418 can be formed in a similar manner. For example, the strip member 426 can be aligned with the rung of strut members 404 adjacent the outflow end 408 of the frame, and the strip member 426 and/or the cushioning layer 414 can be sutured to the strut members. The strip member 436 can then be folded over the apices 420 and the cushioning layer 414 at the outflow end of the frame, and the first and second circumferential edge portions 438, 442 can be sutured together, and to the rung of strut members 404 adjacent the outflow end of the frame, to form the outflow protective portion 418. The covering 412 can also be sutured to the frame at one or more additional locations, such as at suture lines 448 and 450, as shown in
The prosthetic valve can include an outer covering 514 situated about the frame 502. The outer covering 514 can include a main cushioning layer 516 (also referred to as a main layer) having a cylindrical shape, and made from a woven, knitted, or braided fabric (e.g., a PET fabric, an ultra-high molecular weight polyethylene (UHMWPE) fabric, a PTFE fabric, etc.). In some embodiments, the fabric of the main cushioning layer 516 can include a plush pile. In some embodiments, the fabric of the main cushioning layer 516 can comprise texturized yarns in which the constituent fibers of the yarns have been bulked by, for example, being twisted, heat set, and untwisted such that the fibers retain their deformed, twisted shape and create a voluminous fabric. The volume contributed by the texturized yarns can improve the cushioning properties of the covering, as well as increase friction between the fabric and the surrounding anatomy and/or an anchoring device into which the valve is deployed.
The outer covering 514 can include an inflow protective portion 518 extending circumferentially around the inflow end 508 of the frame, and an outflow protective portion 520 extending circumferentially around the outflow end 510 of the frame. In certain embodiments, the inflow and outflow protective portions 518 and 520 can be formed on the fabric of the main cushioning layer 516 such that the outer covering 514 is a one-piece, unitary construction, as described further below.
Referring to
In the illustrated configuration, the inflow protective portion 518 can include a second or outer layer configured as a lubricious layer 530 of material disposed on an outer surface 532 of the main cushioning layer 516. The outflow protective portion 520 can also include a second or outer lubricious layer 534 of material disposed on the outer surface 532 of the main cushioning layer 516. In some embodiments, the layers 530 and 534 can be smooth, low-thickness coatings comprising a low-friction or lubricious material. For example, in certain configurations one or both of the layers 530, 534 can comprise PTFE or ePTFE.
In the illustrated configuration, the lubricious layer 530 can have a first circumferential edge 536 (
Referring to
For example, the layers 530 and 534 can be made relatively thin, which can reduce the overall crimp profile of the valve. In certain embodiments, a thickness of the layers 530 and 534 can be from about 10 μm to about 500 μm, about 100 μm to about 500 μm, about 200 μm to about 300 μm, about 200 μm, or about 300 μm. In other embodiments, the layer 530 and/or 534 can be made by dip-coating, spray-coating, or any other suitable method for applying a thin layer of lubricious material to the main cushioning layer 516. The finished outer covering 514 can then be situated about and secured to the frame 502 using, for example, sutures, ultrasonic welding, or any other suitable attachment method. In other embodiments, the main cushioning layer 516 can be situated about the frame 502 before the edges are folded, and/or before the lubricious layers 530 and 534 are applied. In yet other embodiments, one or both of the lubricious layers 530 and/or 534 can be omitted from the first and second circumferential edge portions 522 and 524. In yet other embodiments, one or both of the first and second circumferential edge portions 522, 524 need not be folded inside the frame, but may extend to the respective inflow or outflow end of the frame, or beyond the ends of the frame on the exterior of the frame, as desired.
In addition to covering the frame 502 and the apices 506, the outer covering 514 can provide a number of other significant advantages. For example, the covering 514 can be relatively thin, allowing the prosthetic valve to achieve a low crimp profile (e.g., 23 Fr or below). The one-piece, unitary construction of the outer covering 514 and the protective portions 518 and 520 can also significantly reduce the time required to produce the covering and secure it to the frame, and can increase production yield.
In some embodiments, one or both of the inflow and outflow protection portions can be configured as separate coverings that are spaced apart from the main outer covering, and may or may not be coupled to the main outer covering. For example,
Returning to
In some embodiments, the strip 626 can be relatively thick to improve the cushioning characteristics of the second covering 616. For example, in some embodiments, the strip 626 can be a PTFE strip having a thickness of from about 0.1 mm to about 0.5 mm, and a width of from about 3 mm to about 10 mm. In a representative embodiment, the strip 626 can have a thickness of about 0.25 mm, and a width of about 6 mm. The second covering 616 can also include one or multiple layers. For example, the second covering 616 can include a single layer (e.g., a single strip 626) wrapped around a row of struts of the frame. The second covering may also include two layers, three layers, or more of strips wrapped around a row of struts of the frame. In some embodiments, the second covering 616 can comprise multiple layers made of different materials. In certain configurations, the second covering 616 can also be porous, and can have a pore size and pore density configured to promote tissue ingrowth into the material of the second covering.
In some embodiments, the first covering 614 and/or the second covering 616 can be secured to the frame by, for example, suturing. In some embodiments, the first and second coverings 614, 616 can also be secured to each other. For example, with reference to
Still referring to
The main layer 702 of the outer covering 700 can comprise a woven or knitted fabric. The fabric of the main layer 702 can be resiliently stretchable between a first, natural, or relaxed configuration (
The fabric can comprise a plurality of circumferentially extending warp yarns 712 and a plurality of axially extending weft yarns 714. In some embodiments, the warp yarns 712 can have a denier of from about 1 D to about 300 D, about 10 D to about 200 D, or about 10 D to about 100 D. In some embodiments, the warp yarns 712 can have a thickness t1 (
The weft yarns 714 can be texturized yarns comprising a plurality of texturized filaments 716. For example, the filaments 716 of the weft yarns 714 can be bulked, wherein, for example, the filaments 716 are twisted, heat set, and untwisted such that the filaments retain their deformed, twisted shape in the relaxed, non-stretched configuration. The filaments 716 can also be texturized by crimping, coiling, etc. When the weft yarns 714 are in a relaxed, non-tensioned state, the filaments 716 can be loosely packed and can provide compressible volume or bulk to the fabric, as well as a plush surface. In some embodiments, the weft yarns 714 can have a denier of from about 1 D to about 500 D, about 10 D to about 400 D, about 20 D to about 350 D, about 20 D to about 300 D, or about 40 D to about 200 D. In certain embodiments, the weft yarns 714 can have a denier of about 150 D. In some embodiments, a filament count of the weft yarns 714 can be from 2 filaments per yarn to 200 filaments per yarn, 10 filaments per yarn to 100 filaments per yarn, 20 filaments per yarn to 80 filaments per yarn, or about 30 filaments per yarn to 60 filaments per yarn. Additionally, although the axially-extending textured yarns 714 are referred to as weft yarns in the illustrated configuration, the fabric may also be manufactured such that the axially-extending textured yarns are warp yarns and the circumferentially-extending yarns are weft yarns.
When the fabric is in the relaxed state, the textured filaments 716 of the weft yarns 714 can be widely dispersed such that individual weft yarns are not readily discerned, as in
Thus, for example, when fully stretched, the main layer 702 can have a second thickness t3, as shown in
Additionally, as shown in
In certain embodiments, the distance y1 can be, for example, about 1 mm to about 10 mm, about 2 mm to about 8 mm, or about 3 mm to about 5 mm. In a representative example, the distance y1 can be about 3 mm. In some embodiments, when the fabric is stretched as in
In particular embodiments, the yarn count of yarns extending in the circumferential direction (side-to-side or horizontally in
The pile layer 804 can be formed from yarns woven into the base layer 802. For example, the pile layer 804 can comprise a velour weave formed from yarns incorporated in the base layer 802. Referring to
In alternative embodiments, the base layer 802 can comprise a uniform mesh weave (the density of the weave pattern is uniform) and the pile layer 804 has a varying density.
In alternative embodiments, the density of the sealing member 800 can vary along the circumference of the sealing member. For example, the pile layer 804 can comprise a plurality of axially-extending, circumferentially-spaced, rows of pile yarns, or alternatively, alternating axially-extending rows of higher-density pile interspersed with axially-extending rows of lower-density pile. Similarly, the base layer 802 can comprise a plurality axially-extending rows of higher-density mesh interspersed with rows of lower-density mesh.
In other embodiments, the sealing member 800 can include a base layer 802 and/or a pile layer 804 that varies in density along the circumference of the sealing member and along the height of the sealing member.
Varying the density of the pile layer 804 and/or the base layer 802 along the height and/or the circumference of the sealing member 800 is advantageous in that it reduces the bulkiness of the sealing member in the radially collapsed state and therefore reduces the overall crimp profile of the prosthetic heart valve.
In certain embodiments, the outer covering 800 can include inflow and/or outflow protective portions similar to the protective portions 416 and 418 above. However, in other embodiments, the outer covering 800 need not include protective portions and can extend between the top and bottom row of strut members of a frame, or between intermediate rows of strut members, depending upon the particular application.
Although the prosthetic valve covering embodiments described herein are presented in the context of mitral valve repair, it should be understood that the disclosed coverings can be used in combination with any of various prosthetic heart valves for implantation at any of the valves in the heart. For example, the prosthetic valve coverings described herein can be used in combination with transcatheter heart valves, surgical heart valves, minimally-invasive heart valves, etc. The covering embodiments can be used in valves intended for implantation at any of the native annuluses of the heart (e.g., the aortic, pulmonary, mitral, and tricuspid annuluses), and include valves that are intended for implantation within existing prosthetics valves (so called “valve-in-valve” procedures). The covering embodiments can also be used in combination with other types of devices implantable within other body lumens outside of the heart, or heart valves that are implantable within the heart at locations other than the native valves, such as trans-atrial or trans-ventricle septum valves.
General Considerations
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatus, and systems should not be construed as being limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Although the operations of some of the disclosed embodiments are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.
As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the terms “coupled” and “associated” generally mean electrically, electromagnetically, and/or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.
In the context of the present application, the terms “lower” and “upper” are used interchangeably with the terms “inflow” and “outflow”, respectively. Thus, for example, the lower end of the valve is its inflow end and the upper end of the valve is its outflow end.
As used herein, the term “proximal” refers to a position, direction, or portion of a device that is closer to the user and further away from the implantation site. As used herein, the term “distal” refers to a position, direction, or portion of a device that is further away from the user and closer to the implantation site. Thus, for example, proximal motion of a device is motion of the device toward the user, while distal motion of the device is motion of the device away from the user. The terms “longitudinal” and “axial” refer to an axis extending in the proximal and distal directions, unless otherwise expressly defined.
In view of the many possible embodiments to which the principles of the disclosed technology may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is at least as broad as the following claims.
This application is a continuation of U.S. application Ser. No. 15/876,053, filed Jan. 19, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/535,724 filed on Jul. 21, 2017, U.S. Provisional Patent Application No. 62/520,703 filed on Jun. 16, 2017, and U.S. Provisional Patent Application No. 62/449,320 filed on Jan. 23, 2017. Each of U.S. application Ser. No. 15/876,053, U.S. Provisional Patent Application No. 62/535,724, U.S. Provisional Patent Application No. 62/520,703, and U.S. Provisional Patent Application No. 62/449,320 are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
30912 | Hancock | Dec 1860 | A |
3409013 | Berry | Nov 1968 | A |
3548417 | Kisher | Dec 1970 | A |
3587115 | Shiley | Jun 1971 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3744060 | Bellhouse | Jul 1973 | A |
3755823 | Hancock | Sep 1973 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4373216 | Klawitter | Feb 1983 | A |
4406022 | Roy | Sep 1983 | A |
4441216 | Ionescu et al. | Apr 1984 | A |
4470157 | Love | Sep 1984 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4574803 | Storz | Mar 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4643732 | Pietsch et al. | Feb 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4666442 | Arru | May 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
4705516 | Barone | Nov 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4787901 | Baykut | Nov 1988 | A |
4790843 | Carpentier et al. | Dec 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4820299 | Philippe et al. | Apr 1989 | A |
4829990 | Thuroff et al. | May 1989 | A |
4851001 | Taheri | Jul 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5080668 | Bolz et al. | Jan 1992 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5163953 | Vince | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5192297 | Hull | Mar 1993 | A |
5266073 | Wall | Nov 1993 | A |
5282847 | Trescony et al. | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411055 | Kane | May 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5480424 | Cox | Jan 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5558644 | Boyd et al. | Sep 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5607464 | Trescony et al. | Mar 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5628792 | Lentell | May 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5716417 | Girard et al. | Feb 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler | Jan 1999 | A |
5855602 | Angell | Jan 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
6027525 | Suh et al. | Feb 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6302906 | Goicoechea et al. | Oct 2001 | B1 |
6338740 | Carpentier | Jan 2002 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6352547 | Brown et al. | Mar 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6432134 | Anson et al. | Aug 2002 | B1 |
6440764 | Focht et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6482228 | Norred | Nov 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6527979 | Constantz et al. | Mar 2003 | B2 |
6569196 | Vesely | May 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6605112 | Moll et al. | Aug 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6689123 | Pinchasik | Feb 2004 | B2 |
6716244 | Klaco | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6730121 | Ortiz et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6767362 | Schreck | Jul 2004 | B2 |
6769161 | Brown et al. | Aug 2004 | B2 |
6783542 | Eidenschink | Aug 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6878162 | Bales et al. | Apr 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6936067 | Buchanan | Aug 2005 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7077861 | Spence | Jul 2006 | B2 |
7096554 | Austin et al. | Aug 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7225518 | Eidenschink et al. | Jun 2007 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7316710 | Cheng et al. | Jan 2008 | B1 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7445632 | McGuckin, Jr. et al. | Nov 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7563280 | Anderson et al. | Jul 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7618447 | Case et al. | Nov 2009 | B2 |
7637946 | Solem et al. | Dec 2009 | B2 |
7655034 | Mitchell et al. | Feb 2010 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7737060 | Strickler et al. | Jun 2010 | B2 |
7785366 | Maurer et al. | Aug 2010 | B2 |
7951195 | Antonsson et al. | May 2011 | B2 |
7959665 | Pienknagura | Jun 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8075611 | Millwee et al. | Dec 2011 | B2 |
8128686 | Paul, Jr. et al. | Mar 2012 | B2 |
8142492 | Forster et al. | Mar 2012 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
8236049 | Rowe et al. | Aug 2012 | B2 |
8291570 | Eidenschink et al. | Oct 2012 | B2 |
8323335 | Rowe et al. | Dec 2012 | B2 |
8348998 | Pintor et al. | Jan 2013 | B2 |
8377115 | Thompson | Feb 2013 | B2 |
8398708 | Meiri et al. | Mar 2013 | B2 |
8449605 | Lichtenstein et al. | May 2013 | B2 |
8449606 | Eliasen et al. | May 2013 | B2 |
8454685 | Hariton et al. | Jun 2013 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8657872 | Seguin | Feb 2014 | B2 |
8663322 | Keranen | Mar 2014 | B2 |
8672998 | Lichtenstein et al. | Mar 2014 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8734507 | Keranen | May 2014 | B2 |
8747463 | Fogarty et al. | Jun 2014 | B2 |
8801776 | House et al. | Aug 2014 | B2 |
9078747 | Conklin | Jul 2015 | B2 |
9078781 | Ryan et al. | Jul 2015 | B2 |
9095434 | Rowe | Aug 2015 | B2 |
9119718 | Keranen | Sep 2015 | B2 |
9192471 | Bolling | Nov 2015 | B2 |
9220594 | Braido | Dec 2015 | B2 |
9237886 | Seguin et al. | Jan 2016 | B2 |
9314335 | Konno | Apr 2016 | B2 |
9364326 | Yaron | Jun 2016 | B2 |
9463268 | Spence | Oct 2016 | B2 |
9474599 | Keranen | Oct 2016 | B2 |
9597205 | Tuval | Mar 2017 | B2 |
9610157 | Braido | Apr 2017 | B2 |
9622863 | Karapetian et al. | Apr 2017 | B2 |
10201416 | Backus | Feb 2019 | B2 |
10413401 | Eberhardt et al. | Sep 2019 | B2 |
10716664 | Ratz et al. | Jul 2020 | B2 |
10888420 | Bateman | Jan 2021 | B2 |
10945836 | Braido | Mar 2021 | B2 |
10980636 | Delaloye | Apr 2021 | B2 |
11439732 | Adamek-Bowers | Sep 2022 | B2 |
11534294 | Braido | Dec 2022 | B2 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20020026094 | Roth | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020107535 | Wei et al. | Aug 2002 | A1 |
20020138135 | Duerig et al. | Sep 2002 | A1 |
20020143390 | Ishii | Oct 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020173842 | Buchanan | Nov 2002 | A1 |
20030014105 | Cao | Jan 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030100939 | Yodfat et al. | May 2003 | A1 |
20030158597 | Quiachon et al. | Aug 2003 | A1 |
20030171805 | Berg | Sep 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20030225420 | Wardle | Dec 2003 | A1 |
20040024452 | Kruse et al. | Feb 2004 | A1 |
20040039436 | Spenser | Feb 2004 | A1 |
20040078074 | Anderson et al. | Apr 2004 | A1 |
20040111006 | Alferness et al. | Jun 2004 | A1 |
20040186558 | Pavcnik et al. | Sep 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050010285 | Lambrecht et al. | Jan 2005 | A1 |
20050075725 | Rowe | Apr 2005 | A1 |
20050075728 | Nguyen et al. | Apr 2005 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050119682 | Nguyen et al. | Jun 2005 | A1 |
20050119735 | Spence et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050188525 | Weber et al. | Sep 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050273155 | Bahler | Dec 2005 | A1 |
20060004469 | Sokel | Jan 2006 | A1 |
20060025857 | Bergheim | Feb 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060108090 | Ederer et al. | May 2006 | A1 |
20060149350 | Patel et al. | Jul 2006 | A1 |
20060183383 | Asmus et al. | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060229719 | Marquez et al. | Oct 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070162102 | Ryan et al. | Jul 2007 | A1 |
20070203503 | Salahieh et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070203576 | Lee et al. | Aug 2007 | A1 |
20070208550 | Cao et al. | Sep 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070233228 | Eberhardt et al. | Oct 2007 | A1 |
20070260305 | Drews et al. | Nov 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20070293808 | Williams et al. | Dec 2007 | A1 |
20080021546 | Patz et al. | Jan 2008 | A1 |
20080033542 | Antonsson et al. | Feb 2008 | A1 |
20080077235 | Kirson | Mar 2008 | A1 |
20080114442 | Mitchell et al. | May 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080183271 | Frawley et al. | Jul 2008 | A1 |
20080208327 | Rowe | Aug 2008 | A1 |
20080208330 | Keranen | Aug 2008 | A1 |
20080243245 | Thambar et al. | Oct 2008 | A1 |
20080255660 | Guyenot et al. | Oct 2008 | A1 |
20080275537 | Limon | Nov 2008 | A1 |
20080294248 | Yang et al. | Nov 2008 | A1 |
20090082845 | Chobotov | Mar 2009 | A1 |
20090118826 | Khaghani | May 2009 | A1 |
20090125118 | Gong | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090192601 | Rafiee et al. | Jul 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090287296 | Manasse | Nov 2009 | A1 |
20090287299 | Tabor et al. | Nov 2009 | A1 |
20090299452 | Eidenschink et al. | Dec 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20100036484 | Hariton et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100082094 | Quadri et al. | Apr 2010 | A1 |
20100145440 | Keranen | Jun 2010 | A1 |
20100168839 | Braido | Jul 2010 | A1 |
20100168844 | Toomes et al. | Jul 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100198347 | Zakay et al. | Aug 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100312333 | Navia et al. | Dec 2010 | A1 |
20100318184 | Spence | Dec 2010 | A1 |
20110004299 | Essinger et al. | Jan 2011 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110066224 | White | Mar 2011 | A1 |
20110098802 | Braido | Apr 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110218619 | Benichou et al. | Sep 2011 | A1 |
20110319991 | Hariton et al. | Dec 2011 | A1 |
20120059458 | Buchbinder et al. | Mar 2012 | A1 |
20120089223 | Nguyen et al. | Apr 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120259409 | Nguyen et al. | Oct 2012 | A1 |
20120283820 | Tseng et al. | Nov 2012 | A1 |
20120296418 | Bonyuet | Nov 2012 | A1 |
20130023985 | Khairkhahan et al. | Jan 2013 | A1 |
20130046373 | Cartledge et al. | Feb 2013 | A1 |
20130150956 | Yohanan et al. | Jun 2013 | A1 |
20130166017 | Cartledge et al. | Jun 2013 | A1 |
20130190857 | Mitra et al. | Jul 2013 | A1 |
20130190862 | Pintor et al. | Jul 2013 | A1 |
20130190865 | Anderson | Jul 2013 | A1 |
20130274873 | Delaloye et al. | Oct 2013 | A1 |
20130310926 | Hariton | Nov 2013 | A1 |
20130317598 | Rowe et al. | Nov 2013 | A1 |
20130331929 | Mitra et al. | Dec 2013 | A1 |
20140074299 | Endou et al. | Mar 2014 | A1 |
20140081394 | Keranen et al. | Mar 2014 | A1 |
20140172070 | Seguin | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140200661 | Pintor et al. | Jul 2014 | A1 |
20140209238 | Bonyuet et al. | Jul 2014 | A1 |
20140222136 | Geist et al. | Aug 2014 | A1 |
20140277417 | Schraut et al. | Sep 2014 | A1 |
20140277419 | Garde et al. | Sep 2014 | A1 |
20140277423 | Alkhatib | Sep 2014 | A1 |
20140277424 | Oslund | Sep 2014 | A1 |
20140277563 | White | Sep 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20140330372 | Weston et al. | Nov 2014 | A1 |
20140343670 | Bakis et al. | Nov 2014 | A1 |
20140343671 | Yohanan et al. | Nov 2014 | A1 |
20140350667 | Braido et al. | Nov 2014 | A1 |
20140358222 | Gorman, III et al. | Dec 2014 | A1 |
20140379074 | Spence et al. | Dec 2014 | A1 |
20150025623 | Granada et al. | Jan 2015 | A1 |
20150073545 | Braido | Mar 2015 | A1 |
20150073546 | Braido | Mar 2015 | A1 |
20150135506 | White | May 2015 | A1 |
20150148893 | Braido | May 2015 | A1 |
20150157455 | Hoang et al. | Jun 2015 | A1 |
20150190227 | Johnson et al. | Jul 2015 | A1 |
20150209136 | Braido | Jul 2015 | A1 |
20150209141 | Braido | Jul 2015 | A1 |
20150230921 | Chau et al. | Aug 2015 | A1 |
20150245910 | Righini et al. | Sep 2015 | A1 |
20150282931 | Brunnett et al. | Oct 2015 | A1 |
20150335428 | Keranen | Nov 2015 | A1 |
20150335430 | Loulmet et al. | Nov 2015 | A1 |
20150374493 | Yaron et al. | Dec 2015 | A1 |
20160015514 | Lashinski et al. | Jan 2016 | A1 |
20160074165 | Spence et al. | Mar 2016 | A1 |
20160095705 | Keranen et al. | Apr 2016 | A1 |
20160143732 | Glimsdale | May 2016 | A1 |
20160184095 | Spence et al. | Jun 2016 | A1 |
20160199177 | Spence et al. | Jul 2016 | A1 |
20160199183 | Braido | Jul 2016 | A1 |
20160250022 | Braido | Sep 2016 | A1 |
20160256276 | Yaron | Sep 2016 | A1 |
20160317305 | Pelled et al. | Nov 2016 | A1 |
20160338823 | Akingba | Nov 2016 | A1 |
20160346080 | Righini et al. | Dec 2016 | A1 |
20170007399 | Keranen | Jan 2017 | A1 |
20170007402 | Zerkowski et al. | Jan 2017 | A1 |
20170014229 | Nguyen-Thien-Nhon | Jan 2017 | A1 |
20170189174 | Braido | Jul 2017 | A1 |
20170217385 | Rinkleff et al. | Aug 2017 | A1 |
20170231761 | Cohen-Tzemach | Aug 2017 | A1 |
20170266005 | McGuckin, Jr. | Sep 2017 | A1 |
20170273788 | O'Carroll et al. | Sep 2017 | A1 |
20170273789 | Yaron et al. | Sep 2017 | A1 |
20170281337 | Campbell | Oct 2017 | A1 |
20180000580 | Wallace et al. | Jan 2018 | A1 |
20180028310 | Gurovich et al. | Feb 2018 | A1 |
20180085217 | Lashinski et al. | Mar 2018 | A1 |
20180153689 | Maimon et al. | Jun 2018 | A1 |
20180206074 | Tanasa et al. | Jul 2018 | A1 |
20180289481 | Dolan | Oct 2018 | A1 |
20180303606 | Rothstein et al. | Oct 2018 | A1 |
20180318073 | Tseng et al. | Nov 2018 | A1 |
20180318080 | Quill et al. | Nov 2018 | A1 |
20180325665 | Gurovich et al. | Nov 2018 | A1 |
20180344456 | Barash et al. | Dec 2018 | A1 |
20190091013 | Alkhatib | Mar 2019 | A1 |
20190105154 | Cohen-Tzemach | Apr 2019 | A1 |
20190262507 | Adamek-Bowers | Aug 2019 | A1 |
20200069415 | Bialas | Mar 2020 | A1 |
20200188098 | Alkhatib | Jun 2020 | A1 |
20210000596 | Rajagopal et al. | Jan 2021 | A1 |
20210085453 | Clague et al. | Mar 2021 | A1 |
20210353408 | Chen | Nov 2021 | A1 |
20220338981 | Alkhatib | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
0144167 | Sep 1903 | DE |
2246526 | Mar 1973 | DE |
19532846 | Mar 1997 | DE |
19546692 | Jun 1997 | DE |
19857887 | Jul 2000 | DE |
19907646 | Aug 2000 | DE |
10049812 | Apr 2002 | DE |
10049813 | Apr 2002 | DE |
10049814 | Apr 2002 | DE |
10049815 | Apr 2002 | DE |
0103546 | Mar 1984 | EP |
0592410 | Oct 1995 | EP |
0850607 | Jul 1998 | EP |
1057460 | Dec 2000 | EP |
1088529 | Apr 2001 | EP |
1432369 | Jun 2004 | EP |
1521550 | Apr 2005 | EP |
1570809 | Sep 2005 | EP |
1296618 | Jan 2008 | EP |
1753374 | Feb 2010 | EP |
1827314 | Dec 2010 | EP |
2620125 | Jul 2013 | EP |
2726018 | May 2014 | EP |
2806829 | Dec 2014 | EP |
2788217 | Jul 2000 | FR |
2815844 | May 2002 | FR |
2056023 | Mar 1981 | GB |
2003531678 | Oct 2003 | JP |
2010517638 | May 2010 | JP |
2010521226 | Jun 2010 | JP |
2014509210 | Apr 2014 | JP |
2016538949 | Dec 2016 | JP |
2017515643 | Jun 2017 | JP |
1271508 | Nov 1986 | SU |
9117720 | Nov 1991 | WO |
9217118 | Oct 1992 | WO |
9301768 | Feb 1993 | WO |
9724080 | Jul 1997 | WO |
9829057 | Jul 1998 | WO |
9930646 | Jun 1999 | WO |
9933414 | Jul 1999 | WO |
9940964 | Aug 1999 | WO |
9947075 | Sep 1999 | WO |
0018333 | Apr 2000 | WO |
0041652 | Jul 2000 | WO |
0047139 | Aug 2000 | WO |
0135878 | May 2001 | WO |
0149213 | Jul 2001 | WO |
0154624 | Aug 2001 | WO |
0154625 | Aug 2001 | WO |
0162189 | Aug 2001 | WO |
0164137 | Sep 2001 | WO |
0176510 | Oct 2001 | WO |
0222054 | Mar 2002 | WO |
0236048 | May 2002 | WO |
0241789 | May 2002 | WO |
0243620 | Jun 2002 | WO |
0247575 | Jun 2002 | WO |
0249540 | Jun 2002 | WO |
03028558 | Apr 2003 | WO |
03047468 | Jun 2003 | WO |
2005034812 | Apr 2005 | WO |
2005055883 | Jun 2005 | WO |
2005084595 | Sep 2005 | WO |
2005102015 | Nov 2005 | WO |
2006011127 | Feb 2006 | WO |
2006014233 | Feb 2006 | WO |
2006032051 | Mar 2006 | WO |
2006034008 | Mar 2006 | WO |
2006111391 | Oct 2006 | WO |
2006127089 | Nov 2006 | WO |
2006138173 | Mar 2007 | WO |
2005102015 | Apr 2007 | WO |
2007047488 | Apr 2007 | WO |
2007067942 | Jun 2007 | WO |
2007097983 | Aug 2007 | WO |
2008005405 | Jan 2008 | WO |
2008015257 | Feb 2008 | WO |
2008035337 | Mar 2008 | WO |
2008091515 | Jul 2008 | WO |
2008147964 | Dec 2008 | WO |
2008150529 | Dec 2008 | WO |
2009033469 | Mar 2009 | WO |
2009155561 | Dec 2009 | WO |
2010011699 | Jan 2010 | WO |
2010121076 | Oct 2010 | WO |
2012063228 | May 2012 | WO |
2012162228 | Nov 2012 | WO |
2013106585 | Jul 2013 | WO |
2013110722 | Aug 2013 | WO |
2013114214 | Aug 2013 | WO |
2014121275 | Aug 2014 | WO |
2014164832 | Oct 2014 | WO |
WO-2014164832 | Oct 2014 | WO |
2015023579 | Feb 2015 | WO |
2015023862 | Feb 2015 | WO |
2015085218 | Jun 2015 | WO |
2015127264 | Aug 2015 | WO |
2015175302 | Nov 2015 | WO |
2015198125 | Dec 2015 | WO |
2016038017 | Mar 2016 | WO |
2016040881 | Mar 2016 | WO |
2016130820 | Aug 2016 | WO |
2017011697 | Jan 2017 | WO |
2017103833 | Jun 2017 | WO |
2018222799 | Dec 2018 | WO |
2019032992 | Feb 2019 | WO |
Entry |
---|
Al-Khaja, et al. “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, vol. 3. pp. 305-311. 1989. |
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994. |
H.R. Andersen “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009. |
H.R. Andersen, et al. “Transluminal Implantation of Artificial Heart Valve. Description of a New Expandable Aortic Valve and Initial Results with implantation by Catheter Technique in Closed Chest Pig,” European Heart Journal, No. 13. pp. 704-708. 1992. |
Pavcnik, et al. “Development and initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology, vol. 183, No. 1. pp. 151-154. 1992. |
Ross, “Aortic Valve Surgery,” At a meeting of the Council on Aug. 4, 1966. pp. 192-197. |
Sabbah, et al. “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4. pp. 302-309. 1989. |
Uchida, “Modifications of Gianturco Expandable Wire Stents,” American Journal of Roentgenology, vol. 150. pp. 1185-1187. 1986. |
Wheatley, “Valve Prostheses,” Operalive Surgery, 4th ed. pp. 415-424. 1986. |
Number | Date | Country | |
---|---|---|---|
20220079750 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62535724 | Jul 2017 | US | |
62520703 | Jun 2017 | US | |
62449320 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15876053 | Jan 2018 | US |
Child | 17456337 | US |