The accompanying drawings illustrate implementations of the concepts conveyed in the present document. Features of the illustrated implementations can be more readily understood by reference to the following description taken in conjunction with the accompanying drawings. Like reference numbers in the various drawings are used wherever feasible to indicate like elements. Further, the left-most numeral of each reference number conveys the FIG. and associated discussion where the reference number is first introduced.
The present concepts relate to computing devices employing multi-axis or multi-pivot hinges to rotatably secure portions of the computing device. The present concepts can provide articulating hinge cover portions over the multi-pivot hinges to protect the hinges from foreign objects and/or protect a user of the computing device from being pinched by the multi-pivot hinges during rotation.
Introductory
Armadillo hinge assembly 106 can be secured to the first and second portions 102 and 104 to allow rotation therebetween. The armadillo hinge assembly 106 can be secured to the first and second portions in a relatively permanent manner (e.g., in a manner that is not intended to be readily separable by an end use consumer), such as illustrated in
Computing device 100 can also include an input element or device 308. In this case the input device 308 is manifest as a keyboard 310. Other implementations can employ other input devices. In this example, the computing device can also include a display screen 312, such as a touch sensitive display screen. The computing device can also include a processor 314, memory/storage 316, and/or a battery 318, among other components. These elements can be positioned in the first portion 102 and/or second portion 104. (These elements (308-318) are shown only in
In this particular implementation, the individual hinge cover portions 306 can approximate a portion of a cylinder (e.g., extending parallel to the y reference axis). Other example hinge cover shapes are described below relative to
During assembly, the multi-pivot hinge units 302 can be inserted into the second portion 104 as indicated by arrow 410. The multi-pivot hinge units 302 can be secured with hinge clamp 304(2) as indicated by arrow 412. The hinge cover portions 306 can define ports or slots 414 (in this configuration two slots 414(1) and 414(2)) for receiving the multi-pivot hinge units 302. Stated another way, the dimensions of the slots 414 are as large as, or larger than, the outside dimensions of the multi-pivot hinge units 302 to allow the multi-pivot hinge units to pass through the slots in the hinge cover portions 306 and into the second portion 104 as indicated by arrow 410.
Hinge cover portion 306(4) can be positioned against the convex terminus 408 of the second portion 104 as indicated by arrow 416. The hinge cover portion 306(4) can be secured by a pin 418(1) as indicated by arrow 420. The pin 418(1) can retain the hinge cover portion 306(4) relative to the second portion 104 while allowing the hinge cover portion 306(4) to rotate around the pin.
Hinge cover portion 306(3) can be aligned with hinge cover portion 306(4) as indicated by arrow 422. Pin 418(2) can retain the hinge cover portion 306(3) as indicated by arrow 424. This process can be repeated until concave terminus 406 of the first portion is secured to hinge cover portion 306(1).
Note that as indicated by reference line 426, the above described implementation can provide a configuration where the axis of rotation of an individual hinge cover portion 306 is parallel to an axis of rotation (e.g., pivot or pivot axis) of the multi-pivot hinge unit 302. In the illustrated configuration the axis of rotation is parallel to, and coextensive with, an individual axis of rotation of the multi-pivot hinge unit. Note further that in this implementation, the number of hinge axes and the number of hinge cover portions generally corresponds in a one-to-one manner. However, such need not be the case. For instance, another implementation might have twice as many hinge cover portions as axes of rotation.
Also note that in this implementation, the multi-pivot hinge units 302 include rotation limiters 428 that can define or limit the degree of rotation of each axis of rotation of the multi-pivot hinge unit. For example, this particular implementation can limit the rotation of each axis of rotation to about 36 degrees for each of the five axes of rotation to provide total rotation of the first and second portions from zero degrees to one hundred eighty degrees. Other implementations may omit the rotation limiters and/or limit the rotation to different angles. Further, in some implementations the hinge cover portions 306 may contribute to and/or provide the rotation limitation for the armadillo hinge assembly 106.
Note further, that this configuration can allow the hinge cover portions 306 to rotate relative to one another to accommodate differences on inner surface 502 and outer surface 504 of the armadillo hinge assembly 106. At Instance Three, the inner surface 502 and the outer surface 504 are generally equal lengths. As the first portion 102 is rotated toward the second portion 104 in Instance Two, the length of the inner surface 502 decreases (e.g., gets shorter) while the length of the outer surface 504 increases (e.g. gets longer). This process gets even more pronounced in Instance One. Thus, since the neutral axis (NA) remains between the inner and outer surface during rotation, the overlapping, articulating nature of the hinge cover portions allows these changing surface dimensions to be accommodated. Stated another way, the overlapping articulated nature of the hinge cover portions allows these changes in surface length to be accommodated while still covering the underlying hinge elements. In this example the changes in surface length can be accommodated by the overlapping concave and convex surfaces sliding past one another.
In the illustrated implementation, multi-pivot hinge unit 302 may include at least first and second adjacent offset stacks 702. The illustrated configuration includes five stacks 702(1)-702(5), however, more or less stacks may be employed. The number of stacks can be increased to add additional resistance to the multi-pivot hinge unit 302 as may be desired for a particular application. As may be most readily appreciated in the exploded view of
In the illustrated configuration of
The timed link elements 706 can have generally opposing first and second ends 714 and 716 and a first hole 718 formed through the first end 714 and a second hole 720 formed through the second end 716. These elements are labeled without specificity in a callout 722 relative to
Multi-pivot hinge unit 302 may include a generally elongate axis pin 724(1) that passes through the second hole 720 of the timed link element 706(1) of the first stack 702(1). The axis pin 724(1) can also pass through the first hole 718 of the timed link element 706(2) of the second stack 702(2) to secure the second stack 702(2) in an offset manner relative to the first stack 702(1). In this case, the offset manner can be defined by a pitch diameter of the timed link elements.
The multi-pivot hinge unit 302 may include a second axis pin 724(2) and a third axis pin 724(3) that are generally parallel to the first axis pin 724(1). The second axis pin 724(2) can pass through a hole 726 in the second portion element 708(2) of the second stack 702(2) and the hole 718 in the first end of the timed link element 706(1) of the first stack 702(1). The third axis pin 724(3) can pass through the hole 720 in the second end 716 of the timed link element 706(2) of the second stack 702(2) and a hole 728 in the first portion element 704(1) of the first stack 702(1).
In the present configuration, the second axis pin 724(2) and the third axis pin 724(3) are on opposite sides of the (first) axis pin 724(1). This configuration may include a fourth axis pin 724(4) that is adjacent to the second axis pin 724(2) and distal to the axis pin 724(1) and a fifth axis pin 724(5) that is adjacent to the third access pin 724(3) and distal to the axis pin 724(1). The fourth axis pin 724(4) can pass through a second hole 730 in the second portion element 708(2) of the second stack 702(2) and a hole 731 in the second portion element 708(1) of the first stack 702(1). The fifth axis pin 724(5) can pass through a hole 732 in the second portion element 704(2) of the second stack 702(2) and a second hole 734 of the first portion element 704(1) of the first stack 702(1).
In this implementation, the axis pins 724 can be manifest as threaded bolts. The bolts can pass through link covers 736 (not all of which are designated with specificity) through the stacks 702(1)-702(5) and through another set of link covers 738 and a set of threaded nuts 740. In the implementation illustrated in
In the present configuration the second axis pin 724(2) and the fourth axis pin 724(4) share common link covers on each side of the first and fifth stacks and the axis pin 724(1) and the third axis pin 724(3) share other common link covers on each side of the first and fifth stacks. The threaded bolts, link covers 738, and the nuts 740 may provide a compressive force to squeeze the stacks against one another to create friction between the adjacent elements. In some implementations, an axial load may be applied between elements through the use of a spring washer between the nuts 740 and the link covers 738 to create and maintain the desired friction interface between the stacks. The spring washer can help to maintain the axial load even as elements wear. At some point if the spring washer cannot maintain the load, these implementations can be readily adjusted by tightening the bolt/nuts to increase the friction.
The illustrated configuration may be viewed as employing axial friction to control hinge stiffness. Other types of axial friction configurations can be employed. An alternative configuration can utilize oversize axis pins 724 (relative to the holes). The oversize axis pins can be force fit through the holes in the stacks 702 to create a friction fit between the axis pin and the elements defining the holes. This configuration may be viewed as employing radial friction to control hinge stiffness and other configurations are contemplated.
In this implementation relative to the first stack 702(1), the first end 714 of the timed link element 706(1) does not engage the second portion element 708(1). The second end 716 can engage the first portion element 704(1) in a no-slip one-to-one rotational engagement. Relative to the second stack 702(2), the first end 714 of the timed link element 706(2) can engage the second portion element 708(2) in a no-slip one-to-one rotational engagement and the second end 716 does not engage the first portion element 704(2). In this case, the no-slip one-to-one rotational engagement is accomplished by intermeshing gears that cause the multi-pivot hinge unit 302 to rotate around axis pins 724(1), 724(2), and 724(3) simultaneously. Other implementations can utilize other gear profiles and/or types of gears and/or can utilize non-geared solutions such as smooth but high friction radial surfaces. Characterized from one perspective, the multi-pivot hinge implementation illustrated in
In one example, element 1406 can be manifest as a latch and element 1408 can be manifest as a receiver. The latch can engage the receiver to removeably couple the first portion 102C with the armadillo hinge assembly 106C. In another example, the elements 1406 and 1408 may magnetically couple to one another in a manner that can be overcome by the user to separate the first portion from the armadillo hinge assembly. Other quick attach/detach assemblies 1404 are contemplated. Note further that alternatively or additionally to mechanically coupling the armadillo hinge assembly 106C to the first and/or second portions, the quick attach/detach assembly 1404 can detachably electrically couple electronic components of the first and second portions. For instance, the quick attach/detach assembly 1404 may electrically couple processor 314, storage/memory 316, and/or battery 318 from the first portion 102C to a video processor 1410 in the second portion 104C.
Thus, the quick attach/detach assembly 1404 can allow the user to be able to detach first portion 102C or second portion 104C to use either portion independent of the other. For example, first portion 102C may be operated as a stand-alone tablet device, and then may be attached to second portion 104C via armadillo hinge assembly 106C to form a device more akin to a laptop device. A user may also be able to exchange first portion 102C or second portion 104C for application-specific devices. For example, an individual second portion may include a keyboard and/or a touchscreen. In certain scenarios, the user may attach a first touchscreen as the first portion and a second touchscreen as second portion, and utilize the device like a book. In other scenarios, a user may attach a touchscreen as the first portion and an input device, comprising a keyboard and trackpad, as the second portion, and utilize the device like a laptop. Other configurations and implementations are contemplated.
Individual elements of the multi-pivot hinge unit and/or the hinge cover portions can be made from various materials, such as sheet metals, die cast metals, and/or molded plastics, among others, or any combination of these materials.
Armadillo hinge assemblies can be utilized with any type of computing device, such as but not limited to notebook computers, smart phones, wearable smart devices, and/or other types of existing, developing, and/or yet to be developed computing devices.
Various methods of manufacture, assembly, and use for armadillo hinge assemblies are contemplated beyond those shown above relative to
Various examples are described above. Additional examples are described below. One example is manifest as a device that has a first portion that includes a display screen and a second portion that includes an input device. The example can also include a multi-pivot hinge unit rotatably securing the first portion and the second portion and configured to rotate around multiple hinge axes to provide rotation between the first and second portions. The example can further include multiple hinge cover portions that collectively cover the multi-pivot hinge unit between the first portion and the second portion. An individual hinge cover portion can rotate around an axis of rotation that is parallel to a corresponding individual hinge axis.
Any combination of the above and/or below examples where the axis of rotation of the individual hinge cover portion is co-extensive to the corresponding individual hinge axis.
Any combination of the above and/or below examples where the multi-pivot hinge unit further comprises a rotation limiter to limit a degree of rotation of the first portion relative to the second portion.
Any combination of the above and/or below examples where the rotation limiter comprises multiple rotation limiters with individual rotation limiters associated with individual hinge axes.
Any combination of the above and/or below examples where the multiple rotation limiters are secured to the multi-pivot hinge unit.
Any combination of the above and/or below examples where the multiple hinge cover portions function as the multiple rotation limiters.
Any combination of the above and/or below examples where the multi-pivot hinge unit comprises first and second multi-pivot hinge units and wherein the multiple hinge cover portions include first and second parallel slots through which the respective first and second multi-pivot hinge units extend.
Any combination of the above and/or below examples where the multiple hinge cover portions are fastened to one another, but are not fastened to the multi-pivot hinge units.
Any combination of the above and/or below examples where the multiple hinge cover portions are pivotably fastened to one another.
Any combination of the above and/or below examples where the multiple hinge cover portions are fastened to either of the first portion or the second portion or wherein the multiple hinge cover portions are fastened to both of the first portion and the second portion.
Any combination of the above and/or below examples where the multiple hinge cover portions are articulated so that a first region of a first individual hinge cover portion can slide past a second region of a second adjacent individual hinge cover portion during rotation so that an underlying portion of the multi-pivot hinge unit is not exposed.
Any combination of the above and/or below examples where the first region comprises a convex region of the first individual hinge cover portion and the second region comprises a concave region of the second adjacent individual hinge cover portion.
Any combination of the above and/or below examples where the multi-pivot hinge unit comprises a radius hinge unit.
Any combination of the above and/or below examples where the individual hinge cover portion approximates a portion of a cylinder.
Another example is manifest as a first portion and a second portion. The example can include a multi-pivot hinge unit rotatably securing the first and second portions. The example can further include a set of rigid hinge cover portions that are configured to be able to rotate relative to one another while collectively covering the multi-pivot hinge unit.
Any combination of the above and/or below examples where a number of the rigid hinge cover portions in the set of rigid hinge cover portions equals a number of rotational axes in the multi-pivot hinge unit.
Any combination of the above and/or below examples where a number of the rigid hinge cover portions in the set of rigid hinge cover portions is greater than a number of rotational axes in the multi-pivot hinge unit.
Another example is manifest as a first portion and a second portion. The example can include an armadillo hinge assembly rotatably securing the first and second portions.
Any combination of the above and/or below examples where the armadillo hinge assembly comprises a multi-pivot hinge unit covered with overlapping, articulating, rigid hinge covers.
Any combination of the above and/or below examples where individual hinge covers extend along a long axis.
Any combination of the above and/or below examples where individual hinge covers approximate a portion of cylinder and include a concave region and a convex region and wherein the overlapping is achieved between the concave region of an individual hinge cover and the convex region of an adjacent individual hinge cover.
Any combination of the above and/or below examples where the armadillo hinge assembly is configured to be quickly attached and detached from either or both of the first and second portions.
Although techniques, methods, devices, systems, etc., pertaining to armadillo hinge assemblies are described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary forms of implementing the claimed methods, devices, systems, etc.
Number | Name | Date | Kind |
---|---|---|---|
4355666 | Torii | Oct 1982 | A |
4611710 | Mitsufuji | Sep 1986 | A |
4711046 | Herrgord | Dec 1987 | A |
5056192 | Grass | Oct 1991 | A |
5229921 | Bohmer | Jul 1993 | A |
5456195 | Ozaku et al. | Oct 1995 | A |
5509590 | Medeiros, Jr. | Apr 1996 | A |
5796575 | Podwalny et al. | Aug 1998 | A |
5845366 | Kuroda | Dec 1998 | A |
5987704 | Tang | Nov 1999 | A |
6223393 | Knopf | May 2001 | B1 |
6421235 | Ditzik | Jul 2002 | B2 |
6470532 | Rude | Oct 2002 | B2 |
6505382 | Lam et al. | Jan 2003 | B1 |
6527036 | Welsh | Mar 2003 | B1 |
6754081 | Rude et al. | Jun 2004 | B2 |
6757160 | Moore et al. | Jun 2004 | B2 |
6831229 | Maatta et al. | Dec 2004 | B1 |
6952861 | Ynosencio | Oct 2005 | B2 |
6966435 | Weiser et al. | Nov 2005 | B2 |
7140074 | Han et al. | Nov 2006 | B2 |
7227741 | Garel et al. | Jun 2007 | B2 |
7251129 | Lee et al. | Jul 2007 | B2 |
7293380 | Repecki | Nov 2007 | B2 |
7418766 | Nelson et al. | Sep 2008 | B2 |
7520025 | Hung | Apr 2009 | B2 |
7584524 | Hung | Sep 2009 | B2 |
7636985 | Greenbank | Dec 2009 | B2 |
8024843 | Endo et al. | Sep 2011 | B2 |
8122970 | Palen | Feb 2012 | B2 |
8441791 | Bohn et al. | May 2013 | B2 |
8467838 | Griffin et al. | Jun 2013 | B2 |
8590857 | Chen et al. | Nov 2013 | B2 |
8624844 | Behar et al. | Jan 2014 | B2 |
8649166 | Wu | Feb 2014 | B2 |
8687359 | Theobald et al. | Apr 2014 | B2 |
8713759 | Cai | May 2014 | B2 |
8743538 | Ashcraft et al. | Jun 2014 | B2 |
8796524 | Deck | Aug 2014 | B1 |
8797727 | Ashcraft et al. | Aug 2014 | B2 |
8804324 | Bohn et al. | Aug 2014 | B2 |
8843183 | Griffin et al. | Sep 2014 | B2 |
8854834 | O'Connor et al. | Oct 2014 | B2 |
9047055 | Song | Jun 2015 | B2 |
9243432 | Lee | Jan 2016 | B2 |
9411365 | Tanner et al. | Aug 2016 | B1 |
9625947 | Lee et al. | Apr 2017 | B2 |
9625953 | Bitz et al. | Apr 2017 | B2 |
9625954 | Campbell et al. | Apr 2017 | B2 |
20040091101 | Park et al. | May 2004 | A1 |
20050122671 | Homer | Jun 2005 | A1 |
20060079277 | Ditzik | Apr 2006 | A1 |
20070039132 | Jung et al. | Feb 2007 | A1 |
20070049376 | Cho et al. | Mar 2007 | A1 |
20070107163 | Barnett | May 2007 | A1 |
20070117600 | Robertson | May 2007 | A1 |
20070247799 | Nie et al. | Oct 2007 | A1 |
20080174089 | Ekberg | Jul 2008 | A1 |
20090147458 | Wang et al. | Jun 2009 | A1 |
20100154171 | Lombardi et al. | Jun 2010 | A1 |
20100232100 | Fukuma | Sep 2010 | A1 |
20110000136 | Brun | Jan 2011 | A1 |
20110177850 | Griffin et al. | Jul 2011 | A1 |
20110292605 | Chen | Dec 2011 | A1 |
20120147542 | Kim | Jun 2012 | A1 |
20120272481 | Ahn et al. | Nov 2012 | A1 |
20120279014 | Carlsson | Nov 2012 | A1 |
20130014346 | Ahn et al. | Jan 2013 | A1 |
20130081229 | Hirano | Apr 2013 | A1 |
20130135809 | Uchiyama et al. | May 2013 | A1 |
20130139355 | Lee et al. | Jun 2013 | A1 |
20130152342 | Ahn | Jun 2013 | A1 |
20130216740 | Russell-Clarke | Aug 2013 | A1 |
20130219663 | Cai | Aug 2013 | A1 |
20140084772 | Zhang et al. | Mar 2014 | A1 |
20140111954 | Lee et al. | Apr 2014 | A1 |
20140160055 | Margolis et al. | Jun 2014 | A1 |
20140174227 | Hsu | Jun 2014 | A1 |
20140196253 | Song | Jul 2014 | A1 |
20140196254 | Song | Jul 2014 | A1 |
20140217875 | Park | Aug 2014 | A1 |
20140226275 | Ko et al. | Aug 2014 | A1 |
20140239065 | Zhou et al. | Aug 2014 | A1 |
20140245569 | Cho | Sep 2014 | A1 |
20140352757 | Ramirez | Dec 2014 | A1 |
20150092331 | Kinoshita et al. | Apr 2015 | A1 |
20150138103 | Nishi | May 2015 | A1 |
20150138712 | Solland | May 2015 | A1 |
20150176317 | Lee | Jun 2015 | A1 |
20150277506 | Cheah | Oct 2015 | A1 |
20150361696 | Tazbaz | Dec 2015 | A1 |
20150362956 | Tazbaz | Dec 2015 | A1 |
20150370287 | Ko et al. | Dec 2015 | A1 |
20160132076 | Bitz et al. | May 2016 | A1 |
20160139639 | Dash | May 2016 | A1 |
20160147267 | Campbell et al. | May 2016 | A1 |
20160187935 | Tazbaz et al. | Jun 2016 | A1 |
20160215541 | Tazbaz et al. | Jul 2016 | A1 |
20160357226 | Campbell et al. | Dec 2016 | A1 |
20170090523 | Tazbaz et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
203669484 | Jun 2014 | CN |
204553530 | Aug 2015 | CN |
0844357 | May 1998 | EP |
1340879 | Sep 2003 | EP |
1464784 | Oct 2004 | EP |
2765478 | Aug 2014 | EP |
2765479 | Aug 2014 | EP |
20140049911 | Apr 2014 | KR |
2016077254 | May 2016 | WO |
Entry |
---|
“Laptop Back Covers Shell for Dell 15R 5520 7520 M521R 5525 PN T87MC Laptop Hinge Cover”, Retrieved on: Sep. 4, 2014; Available at: <<http://www.alibaba.com/product-detail/Laptop-back-covers-shell-For-Dell—1628979107.html>>. |
Non-Final Office Action dated Mar. 29, 2016 from U.S. Appl. No. 14/588,138, 34 pages. |
International Search Report and Written Opinion dated Feb. 22, 2016 from PCT Patent Application No. PCT/US2015/064173, 13 pages. |
Response filed Mar. 3, 2016 to the Non-Final Office Action dated Dec. 10, 2015 from U.S. Appl. No. 14/606,979, 16 pages. |
Non-Final Office Action dated Mar. 31, 2016 from U.S. Appl. No. 14/538,786, 16 pages. |
Response filed Aug. 26, 2016 to the Final Office Action dated Jun. 1, 2016 from U.S. Appl. No. 14/606,979, 15 pages. |
Applicant-Initiated Interview Summary mailed Aug. 29, 2016 from U.S. Appl. No. 14/606,979, 3 pages. |
“Bi-Fold Hinges”, Published on: May 9, 2012, Retrieved at: <<http://catalog.monroehinge.com/category/bi-fold-hinges>>, 1 page. |
“Finger Protecta”, Jul. 3, 2011, retrieved from <<http://shop.stormflame.com/finger-protecta-142-p.asp>> on Sep. 9, 2014, 2 pages. |
“Fingersafe”, May 26, 2013, retrieved from <<http://fingersafe.com/>> on Sep. 9, 2014, 2 pages. |
“Moving Point Hinge-Multipivot Hinge”, Retrieved on: Oct. 9, 2014, Available at: <<http://websystem.gismo.se/Gismo/files/1029/2.mph%2001%20introduktion.pdf>>, 6 pages. |
“Multi-function stainless steel hydraulic shower door pivot hinge”, retrieved on Sep. 10, 2015, at <<http://www.alibaba.com/product-detail/Multi-function-stainless-steel-hydraulic-shower—60153561047.html>> 10 pages. |
“Plastic Slatband Chains”, retrieved on Sep. 10, 2015, at <<http://www.irp.co.za/wp-content/assets/LFC002-7.5-Straight-Running-Double-Hinge-Chain.pdf>>, 1 page. |
“Polyprop Boxes Accessories”, Jun. 28, 2013 retrieved from <<http://www.presentingbinders.co.uk/Polyprop—Boxes—Accessories.html>> on Sep. 10, 2014, 6 pages. |
“Samet SoftCover hinge wins the Innovation Award 2013”, Feb. 8, 2013, retrieved from <<http://www.kozsusanidesign.com/samet-softcover-hinge-wins-the-innovation-award-2013/>> on Sep. 9, 2014, 2 pages. |
“Single and double hinge type LBP (820 & 821 LBP)” retrieved on Sep. 10, 2015, at <<http://www.papadopoulos-bros.gr/en/proionta/erpystries-metaforikes-tainies/erpystries/plastikes/eutheias/monou-kai-diplou-mentese-typou-lbp-820-821-lbp/>>, 1 page. |
Straight Running Chains, published Jul. 15, 2013, retrieved at <<http://www.ultraplastindia.com/stainless-steel-slat-chains.html>>, 2 pages. |
“System Plast LF 820 K400 Acetal Straight Running Chain, 4 Width, 120″ Length, Single Hinge”, retrieved on Sep. 10, 2015, at <<http://www.amazon.com/System-Plast-Acetal-Straight-Running/dp/B00MJXUDIA>>, 3 pages. |
Elliott, Amy-Mae, “9 Nifty Laptop Feet to Keep Your PC Running Cool”, published on Jul. 30, 2012, retrieved at <<http://mashable.com/2012/07/30/laptop-feet/>>, 26 pages. |
International Search Report dated Jan. 4, 2016 from PCT Patent Application No. PCT/US2015/059798, 13 pages. |
Non-Final Office Action dated Dec. 10, 2015 from U.S. Appl. No. 14/606,979, 20 pages. |
International Search Report dated Jan. 25, 2016 from PCT Patent Application No. PCT/US2015/060959, 11 pages. |
International Search Report dated Jan. 4, 2016 from PCT Patent Application No. PCT/US2015/059799, 13 pages. |
Notice of Allowance dated Jul. 14, 2016 from U.S. Appl. No. 14/555,184, 15 pages. |
Final Office Action dated Jul. 29, 2016 from U.S. Appl. No. 14/588,138, 31 pages. |
Corrected Notice of Allowability dated Aug. 4, 2016 from U.S. Appl. No. 14/555,184, 16 pages. |
Response filed Jun. 29, 2016 to the Non-Final Office Action dated Mar. 29, 2016 from U.S. Appl. No. 14/588,138, 10 pages. |
Response and Demand filed Jun. 15, 2016 from PCT Patent Application No. PCT/US2015/064173, 13 pages. |
Response filed Jun. 29, 2016 to the Non-Final Office Action dated Apr. 12, 2016 from U.S. Appl. No. 14/555,184, 10 pages. |
Response filed Jun. 30, 2016 to the Non-Final Office Action dated Mar. 31, 2016 from U.S. Appl. No. 14/538,786, 12 pages. |
International Search Report and Written Opinion dated Apr. 12, 2016 from PCT Patent Application No. PCT/US2016/013815, 19 pages. |
Non-Final Office Action dated Apr. 12, 2016 from U.S. Appl. No. 14/555,184, 32 pages. |
Article 34 Demand mailed May 4, 2016 from PCT Patent Application No. PCT/US2015/059798, 17 pages. |
Final Office Action dated Jun. 1, 2016 from U.S. Appl. No. 14/606,979, 48 pages. |
Article 34 Demand mailed Jun. 8, 2016 from PCT Patent Application No. PCT/US2015/060959, 14 pages. |
Response filed Oct. 31, 2016 to the Final Office Action dated Jul. 29, 2016 from U.S. Appl. No. 14/588,138, 10 pages. |
Notice of Allowability dated Oct. 24, 2016 from U.S. Appl. No. 14/555,184, 11 pages. |
Corrected Notice of Allowability dated Oct. 31, 2016 from U.S. Appl. No. 14/555,184, 6 pages. |
Second Written Opinion dated Oct. 31, 2016 from PCT Patent Application No. PCT/US2015/059799, 8 pages. |
Response filed Nov. 28, 2016 to the Written Opinion dated Apr. 12, 2016 from PCT Patent Application No. PCT/US2016/013815, 10 pages. |
Corrected Notice of Allowability dated Nov. 21, 2016 from U.S. Appl. No. 14/555,184, 6 pages. |
Response filed Dec. 8, 2016 to the Second Written Opinion dated Oct. 31, 2016 from PCT Patent Application No. PCT/US2015/059799, 12 pages. |
International Search Report and Written Opinion dated Nov. 14, 2016 from PCT Patent Application No. PCT/US2016/048898, 16 pages. |
International Preliminary Report on Patentability dated Nov. 29, 2016 from PCT Patent Application No. PCT/US2015/064173, 6 pages. |
Response filed Dec. 7, 2016 to the Second Written Opinion dated Oct. 10, 2016 from PCT Patent Application No. PCT/US2015/060959, 8 pages. |
Response filed Dec. 13, 2016 to the Non-Final Office Action dated Sep. 22, 2016 from U.S. Appl. No. 14/606,979, 22 pages. |
Supplemental Response filed Dec. 8, 2016 to the Response filed Jun. 30, 2016 from U.S. Appl. No. 14/538,786, 8 pages. |
Corrected Notice of Allowability dated Dec. 14, 2016 from U.S. Appl. No. 14/555,184, 6 pages. |
Amended claims filed Dec. 22, 2016 from PCT Patent Application No. PCT/US2015/059798, 6 pages. |
Notice of Allowance dated Dec. 27, 2016 from U.S. Appl. No. 14/538,786, 54 pages. |
Non-Final Office Action dated Jan. 6, 2017 from U.S. Appl. No. 14/866,697, 72 pages. |
Second Written Opinion dated Jan. 2, 2017 from PCT Patent Application No. PCT/US2016/013815, 6 pages. |
Non-Final Office Action and Examiner Initiated Interview Summary dated Sep. 22, 2016 from U.S. Appl. No. 14/606,979, 27 pages. |
Preliminary Amendment filed Sep. 26, 2016 from U.S. Appl. No. 15/239,417, 7 pages. |
Response and Demand filed Apr. 6, 2016 from PCT Patent Application No. PCT/US2015/059799, 20 pages. |
Interview Summary filed Oct. 11, 2016 from U.S. Appl. No. 14/606,979, 2 pages. |
Second Written Opinion dated Oct. 10, 2016 from PCT Patent Application No. PCT/US2015/060959, 7 pages. |
Notice of Allowance dated May 18, 2017 from U.S. Appl. No. 14/588,138, 41 pages. |
International Preliminary Report on Patentability dated Apr. 4, 2017 from PCT Patent Application No. PCT/US2016/013815, 9 pages. |
Non-Final Office Action dated May 25, 2017 from U.S. Appl. No. 15/239,417, 71 pages. |
Corrected Notice of Allowability dated Jan. 13, 2017 from U.S. Appl. No. 14/538,786, 26 pages. |
Non-Final Office Action dated Jan. 20, 2017 from U.S. Appl. No. 14/588,138, 12 pages. |
Notice of Allowance dated Feb. 3, 2017 from U.S. Appl. No. 14/555,184, 18 pages. |
International Preliminary Report on Patentability dated Jan. 24, 2017 from PCT Patent Application No. PCT/US2015/059799, 8 pages. |
International Preliminary Report on Patentability dated Jan. 30, 2017 from PCT Patent Application No. PCT/US2015/059798, 6 pages. |
Corrected Notice of Allowability dated Jan. 25, 2017 from U.S. Appl. No. 14/538,786, 6 pages. |
Final Office Action and Examiner-Initiated Interview Summary dated Mar. 15, 2017 from U.S. Appl. No. 14/606,979, 56 pages. |
International Preliminary Report on Patentability dated Mar. 3, 2017 from PCT Patent Application No. PCT/US2015/060959, 7 pages. |
Corrected Notice of Allowability dated Mar. 16, 2017 from U.S. Appl. No. 14/555,184, 8 pages. |
Response filed Apr. 10, 2017 to the Non-Final Office Action dated Jan. 20, 2017 from U.S. Appl. No. 14/588,138, 8 pages. |
Corrected Notice of Allowability dated Mar. 21, 2017 from U.S. Appl. No. 14/538,786, 10 pages. |
Response filed Mar. 29, 2017 to the Non-Final Office Action dated Jan. 6, 2017 from U.S. Appl. No. 14/866,697, 10 pages. |
“Laptop Back Covers Shell for Dell 15R 5520 7520 M521R 5525 PN T87MC Laptop Hinge Cover”, Retrieved on: Sep. 4, 2014; Available at: <<http://www.alibaba.com/product-detail/Laptop-back-covers-shell-For-Dell_1628979107.html>>. |
Communication pursuant to Rules 161(1) and 162 EPC dated Jun. 21, 2017 from European Patent Application No. 5797752.1, 2 pages. |
Response filed Jul. 20, 2017 to the Communication pursuant to Rules 161(1) and 162 EPC dated Jun. 21, 2017 from European Patent Application No. 15797752.1, 6 pages. |
Supplemental Notice of Allowability dated Jul. 10, 2017 from U.S. Appl. No. 14/588,138, 6 pages. |
Applicant Initiated Interview Summary dated Sep. 18, 2017 from U.S. Appl. No. 14/866,697, 3 pages. |
Response filed Aug. 15, 2017 to the Final Office Action dated Mar. 15, 2017 from U.S. Appl. No. 14/606,979, 12 pages. |
Applicant-Initiated Interview Summary dated Aug. 15, 2017 from U.S. Appl. No. 15/239,417, 9 pages. |
Response filed Aug. 23, 2017 to the Non-Final Office Action dated May 25, 2017 from U.S. Appl. No. 15/239,417, 71 pages. |
Communication pursuant to Rules 161(1) and 162 EPC dated Jul. 4, 2017 from European Patent Application No. 15801625.3, 2 pages. |
Communication pursuant to Rules 161(1) and 162 EPC dated Jun. 21, 2017 from European Patent Application No. 15797753.9, 2 pages. |
Notice of Allowance dated Sep. 26, 2017 from U.S. Appl. No. 14/866,697, 13 pages. |
Final Office Action dated Jul. 19, 2017 from U.S. Appl. No. 14/866,697, 56 pages. |
Demand filed Jun. 7, 2017 with Response to the International Search Report and Written Opinion from PCT Patent Application No. PCT/US2016/048898, 14 pages. |
Second Written Opinion dated Aug. 1, 2017 from PCT Patent Application No. PCT/US2016/048898, 9 pages. |
Communication pursuant to Rules 161(1) and 162 EPC dated Aug. 8, 2017 from European Patent Application No. 15816331.1, 2 pages. |
Notice of Allowance dated Sep. 1, 2017 from U.S. Appl. No. 14/588,138, 16 pages. |
Notice of Allowance dated Sep. 12, 2017 from U.S. Appl. No. 15/239,417, 20 pages. |
Corrected Notice of Allowability dated Sep. 26, 2017 from U.S. Appl. No. 15/239,417, 12 pages. |
Response filed Sep. 13, 2017 to the Final Office Action dated Jul. 19, 2017 from U.S. Appl. No. 14/866,697, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20160132075 A1 | May 2016 | US |