The present application claims priority to German Utility Model Application No. 20 2022 104 291.8, entitled “COVERING FOR A COMPONENT OF AN ELECTRICAL DRIVE SYSTEM” and filed Jul. 28, 2022. The entire contents of the above-listed application is hereby incorporated by reference for all purposes.
The present disclosure relates to a covering, such as a casing, for a component of an electrical drive system. Components of this kind are, for example, the electric motor or the inverter of an electric motor. Both the inverter and the electric motor itself generate noise at high frequencies, for instance between 6 kHz and 12 kHz, due to the switch elements used in them. These noises escape to the exterior and are disruptive in terms of both frequency and volume. Usually, these noises are kept away from the passenger compartment by equipping the engine compartment with noise-reducing insulation or by designing the passenger compartment so that it is sufficiently shielded from external noises. Both measures require a large amount of noise-reduction effort and are very costly.
The aim therefore has to be to reduce the costs of the insulation measures. Against this background, the object of the present disclosure is to provide cost-effective measures for reducing noises from an electric motor or its components.
This object is achieved by the covering according to the disclosure herein.
According to the present disclosure, the covering has a first layer that can enclose or does enclose the component at least in some portions. According to the present disclosure, a sound absorption layer is arranged on the inside of the first layer, which faces the component when in the installed state, and extends over the internal surface on the inside of the first layer in some regions, substantially or entirely. By means of a sound absorption layer of this kind, the sound emanating from the component can be absorbed directly at the source of the noise, and so the propagation of this noise into the surroundings can be reduced or prevented. For instance, not only are the driver and passengers of a vehicle equipped with the electric motor as the drive shielded from the noise, but so too are passers-by.
The solution according to the present disclosure for preventing the propagation of noises from an electric motor or inverter may allow large sound absorbers in the engine compartment of a vehicle to be omitted since the sound is already reduced directly at the source. This significantly lowers the work and costs required for minimising the noise.
The sound absorption layer according to the present disclosure need not necessarily be formed in a manner connected in one piece, but rather it can also have a plurality of separate regions. These regions can either directly adjoin one another or be arranged so as to be spaced apart from one another. For example, the sound absorption layer is arranged directly on the first layer, which may be formed as a metal layer. Alternatively, the sound absorption layer can also be arranged so as to be spaced apart from the first layer, e.g. by means of spacers. A distance of between 2 and 15 mm, or 4 mm, has proven favourable. When the sound absorption layer is arranged on the first layer so as to be spaced apart therefrom, it may be possible for the sound also to reach behind the sound absorption layer into the gap between the sound absorption layer and the first layer and for the sound also to be absorbed on the sound absorption layer surface that is arranged therein facing the first layer.
Thicknesses of between 2 mm and 30 mm, for example from 3 mm to 15 mm, and/or from 3 mm to 12 mm, are suitable thicknesses of the sound absorption layer. A thickness of 5 mm may be favorable in terms of the sound absorption properties and the associated costs.
The sound absorption layer can have a multiplicity of plies, such as a first ply made of a porous material having a thickness of between 2 mm and 30 mm and may be of a density of between 10 kg and 300 kg per m 3.
In addition, the sound absorption layer can have a second ply that contains or consists of a microperforated material. Said microperforated material can have a thickness of between 0.1 mm and 3 mm, such as from 0.15 mm to 4 mm, and/or of 0.2 mm. The openings/holes in the microperforated material may have a diameter of 0.1 mm to 2 mm. In the process, 5 to 20 holes per cm2 are particularly advantageous. The values stated above are values at which good sound absorption occurs in the respective frequency range of the sound emitted by the electric motor or the inverter, such as between 6 kHz and 12 kHz.
The microperforated material can, for example, consist of or comprise a steel, such as a stainless steel, for example a 1.4301 steel. In this case for instance, the microperforated material can thus be a tanged sheet or a perforated sheet.
On one side or on both sides of the sound absorption layer, a further third ply can also be provided, which contains or consists of a woven fabric, for example a fine-meshed woven fabric. In this respect, a woven fabric made of stainless steel is expedient as a woven fabric of this kind. The mesh size of a woven fabric of this kind may be 0.1 to 2 mm. Such a woven fabric firstly prevents the fibres of the first ply from slipping through the holes in the second ply. Secondly, the woven fabric provides a further contribution to sound absorption.
It is also possible to have a further fourth ply, which can be arranged on one side of the first ply, which may consists of a metal material, for example stainless-steel sheet or, for instance in this case, 1.4301 steel or an aluminum sheet. This fourth ply may be located on the opposite side of the first ply to the microperforated layer.
Hereinafter, a number of examples of coverings, such as casings, according to the present disclosure and drive components according to the present disclosure will be set out. In this context, identical and similar elements are provided with identical and similar reference numerals without the description thereof being repeated. In the examples below, a multiplicity of optional features are combined to form the essential features according to the present disclosure. These optional features can also be used individually or in any combination with other optional features of the same example or a different example, in order to further develop the present disclosure.
The inside 11 of the sound absorption layer 20 can be found on the inside 6 of the first layer 10, and the outside 7 of the first layer 10 can be found on the outside 12 of the sound absorption layer 20.
In
By way of example, the layer 10 can consist of sheet steel, stainless-steel sheet, aluminium, sandwich sheet, or be die-cast. Dimensions may be a thickness of 0.1 to 6 mm, or 0.3 to 0.6 mm. The layer 10 can be smooth or structured, for example provided with knobs. In the present case, the layer 10 has a thickness of 0.4 mm.
Possible materials for the layer 20 are fibre mats such as fibreglass mats, basalt rock wool, cotton and natural fibres, or also foams such as PU foam or melamine foam. The thickness of the layer 20 can vary between 2 and 30 mm; for example a material having a thickness of 3-6 mm is used. In the present case, the layer 20 is a fibreglass mat having a thickness of 4 mm.
The sound absorption layer 20 has a first ply 22 made of a porous material. A second ply 23 of microperforated material, for example a stainless-steel tanged sheet, is arranged in the direction of the surrounded component, e.g. facing away from the first layer (not shown in
Since the sound absorption layer consists of a total of four plies made of porous material, microperforated material, woven fabric and a sheet metal, it has very good sound absorption properties.
The ply 22 of porous material can consist of a fleece-like material such as fibreglass mats, basalt rock wool, cotton or natural fibres, or also foams such as PU foam or melamine foam; in the present example it is a PU foam.
A tanged or perforated sheet made of stainless steel, steel or aluminium and having a thickness between 0.1 and 4 mm and a hole size of 0.1 to 4 mm, 0.3 to 2 mm, and/or 0.75 to 1.25 mm, may be used as the microperforated ply 23; in the present case it is a stainless-steel tanged sheet having a thickness of 2 mm and a hole size of 1 mm.
The woven fabric 24 can be a stainless-steel woven fabric, a glass woven fabric or a carbon woven fabric. By way of example, the stainless-steel woven fabric has a flow resistance of 1,430 Pas/m2 in the present example. Where a Thermo-E glass woven fabric is used, it has a warp/weft thread count of 12/11.5 threads per cm, for example.
For instance, the fourth ply 25 consists of a further microperforated metal sheet made of aluminium, stainless steel or, as in the present example, steel having a hole size of 1 mm, especially if the construction of the covering corresponds to that in
In this case, the sound absorption layer 20 consists of a fibreglass mat and a microperforated sheet and is arranged so as to be spaced apart from the electric motor 2 by means of spacers 13. Unlike the spacer in
Number | Date | Country | Kind |
---|---|---|---|
20 2022 104 291.8 | Jul 2022 | DE | national |