This invention relates generally to thin film optical coatings for use in producing security articles and to the production of diffractive surfaces such as holograms or gratings having color shifting or optically variable backgrounds which can be used as security articles in a variety of applications. More particularly this invention relates to the field of coating and or stamping a dielectric substrate to provide a grating or hologram preferably within a vacuum roll coating chamber while in a vacuum to produce a Chromagram™ type of device or to produce a base device on which to fabricate a Chromagram™ type of device. The invention also relates to the manufacture of a covert optical device having a dielectric layer of varying thickness. By way of example a Chromagram may have a light transmissive substrate having a diffraction grating or hologram etched or embossed into the substrate and wherein patterning of some form is done on the substrate, or the hologram or diffraction grating, generally in the form of an opaque reflective coating. The remaining windows or regions absent the reflective coating can be uncoated or may have another coating covering the windows that is visually distinct from the opaque reflective patterned coating. For example color shifting coatings may be used adjacent to a highly reflective aluminum pattern.
Security devices are being used more and more to protect currency and other valuable documents such as passports, drivers' licenses, green cards, identity cards and the like. These security devices are also used to protect commercial products such as pharmaceuticals, cosmetics, cigarettes, liquor, electronic media, wearing apparel, toys and spare parts for automobiles and aircraft from counterfeiting. In fact, it is estimated that counterfeit articles now comprise between 5% and 7% of world trade. Holograms attached to such articles have been the traditional method to foil counterfeiters.
Color shifting pigments and colorants have been used in numerous applications, ranging from automobile paints to anti-counterfeiting inks for security documents and currency. Such pigments and colorants exhibit the property of changing color upon variation of the angle of incident light, or as the viewing angle of the observer is shifted. The primary method used to achieve such color shifting colorants is to disperse small flakes, which are typically composed of multiple layers of thin films having particular optical characteristics, throughout a medium such as paint or ink that may then be subsequently applied to the surface of an object.
Diffraction patterns and embossments, and the related field of holographs, have begun to find wide-ranging practical applications due to their aesthetic and utilitarian visual effects. One very desirable decorative effect is the iridescent visual effect created by a diffraction grating. This striking visual effect occurs when ambient light is diffracted into its color components by reflection from the diffraction grating. In general, diffraction gratings are essentially repetitive structures made of lines or grooves in a material to form a peak and trough structure. Desired optical effects within the visible spectrum occur when diffraction gratings have regularly spaced grooves in the range of hundreds to thousands of lines per millimeter on a reflective surface.
Diffraction grating technology has been employed in the formation of two-dimensional holographic patterns which create the illusion of a three-dimensional image to an observer. Three-dimensional holograms have also been developed based on differences in refractive indices in a polymer using crossed laser beams, including one reference beam and one object beam. Such holograms are called volume holograms or 3D holograms. Furthermore, the use of holographic images on various objects to discourage counterfeiting has found widespread application.
There currently exist several applications for surfaces embossed with holographic patterns which range from decorative packaging such as gift wrap, to security documents such as bank notes and credit cards. Two-dimensional holograms typically utilize diffraction patterns, which have been formed on a plastic surface. In some cases, a holographic image which has been embossed on such a surface can be visible without further processing; however, it is generally necessary, in order to achieve maximum optical effects, to place a reflective layer, typically a thin metal layer such as aluminum, or a high index layer, like ZnS, onto the embossed surface. The reflective layer substantially increases the visibility of the diffraction pattern embossment.
Every type of first order diffraction structure, including conventional holograms and grating images, has a major shortcoming even if encapsulated in a rigid plastic. When diffuse light sources, such as ordinary room lights or an overcast sky, are used to illuminate the holographic image, all diffraction orders expand and overlap so that the diffraction colors are lost and not much of the visual information contained in the hologram is revealed. What is typically seen is only a silver colored reflection from the embossed surface and all such devices look silvery or pastel, at best, under such viewing conditions. Thus, holographic images generally require direct specular illumination in order to be visualized. This means that for best viewing results, the illuminating light must be incident at the same angle as the viewing angle. In addition upon rotation by 90 degrees even in specular light, the standard hologram disappears and all one sees is a silver like patch since now the groves of the diffraction pattern are mainly oriented in line with the incoming light as ones eye; i.e. no diffraction occurs.
Since the use of security holograms has found widespread application, there exists a substantial incentive for counterfeiters to reproduce holograms, which are frequently used in credit cards, banknotes, and the like. Thus, a hurdle that security holograms must overcome to be truly secure, is the ease at which such holograms can be counterfeited. One step and two step optical copying, direct mechanical copying and even re-origination have been extensively discussed over the Internet. Various ways to counteract these methods have been explored but none of the countermeasures, taken alone, has been found to be an effective deterrent.
One of the methods used to reproduce holograms is to scan a laser beam across the embossed surface and optically record the reflected beam on a layer of a material such as a photo-polymerizable polymer. The original pattern can subsequently be reproduced as a counterfeit. Another method is to remove the protective covering material from the embossed metal surface by ion etching, and then when the embossed metal surface is exposed, a layer of metal such as silver (or any other easily releasable layer) can be deposited. This is followed by deposition of a layer of nickel, which is subsequently released to form a counterfeiting embossing shim.
Due to the level of sophistication of counterfeiting methods, it has become necessary to develop more advanced security measures. One approach, disclosed in U.S. Pat. Nos. 5,624,076 and 5,672,410 to Miekka et al., embossed metal particles or optical stack flakes are used to produce a holographic image pattern.
A further problem with security holograms is that it is difficult for most people to identify and recollect the respective images produced by such holograms for verification purposes. The ability of the average person to authenticate a security hologram conclusively is compromised by the complexity of its features and by confusion with decorative diffractive packaging. Thus, most people tend to confirm the presence of such a security device rather than verifying the actual image. This provides the opportunity for the use of poor counterfeits or the substitution of commercial holograms for the genuine security hologram.
In other efforts to thwart counterfeiters, the hologram industry has resorted to more complex images such as producing multiple images as the security device is tilted to the right or left. These enhanced images provide the observer with a high level of “flash” or aesthetic appeal. Unfortunately, this added complexity does not confer added security because this complex imagery is hard to communicate and recollection of such imagery is difficult, if not impossible, to remember.
U.S. Pat. No. 6,761,959 to Phillips et al, assigned to JDS Uniphase Corp. discloses a security article having Chromagram™ thereon. The chromagram provides both color shifting and holographic effects to the viewer. In the '959 patent an organic substrate stamped with a holographic grating or pattern is coated with a color shifting multilayer film.
United States patent application 2005/0128543 in the name of Phillips et al, assigned to JDS Uniphase Corp. discloses a more complex type of Chromagram™ wherein patterning is shown. In some regions, holographic effects are shown, and in other regions only color shifting effects are visible.
Another United States patent application which discloses diffraction gratings with color shifting coatings but deviates from the teaching of Phillips et al, is U.S. patent application 2003/0058491, in the name of Holmes et al. United States Patent application '491 appears to deviate from the teaching of Phillips in that a decoupling layer is taught as way in which to separate the diffraction grating effects from the color shifting effects. Holmes suggests placing a decoupling layer between the relief structure and the thin film reflection filter, which is described to be a thin film reflection filter.
In contrast to Holmes et al. prior art U.S. Pat. No. 6,987,590 teaches a different novel Chromagram™ wherein a decoupling layer is not required, but wherein separate color shifting and holographic effects are exhibited. For example in
In all of these aforementioned security structures, coating is suggested in common, known ways. That is, by first stamping a grating, and subsequently applying the coating layers required to create the desired patterns of reflective and color shifting coatings. Although these prior art fabrication methods appear to perform their intended function, of making Chromagram-like structures having both holographic and color shifting effects, it would be most advantageous, if the entire process or most of the fabrication process was performed in-situ, within the vacuum roll coating machine.
It would therefore be of substantial advantage to develop a suitable, practicable, process and apparatus that would allow a diffraction grating or hologram to be formed within a vacuum coating chamber on an organic dielectric layer (ODL) wherein coating of the hologram or grating with a reflective and or color shifting coating was performed to the ODL before or after forming the diffraction grating or hologram within the vacuum chamber without breaking the vacuum.
More particularly, it is an object of this invention to provide an in-line process for providing a hologram or grating in a roll type process within a vacuum chamber without breaking vacuum.
Another aspect of this invention which can be fabricated in an in-line system as mentioned above, or is not restricted to manufacture in an in-line system is related to providing an organic dielectric layer within a Fabry-Perot structure or a dielectric stack formed structure, wherein the organic dielectric layer has a varying thickness, and wherein the effects of the dielectric structure of varying thickness can only be seen under magnification.
The provision of a dielectric layer with a varying thickness has been disclosed in U.S. Pat. No. 5,877,895 issued in the name of Shaw et al. Mar. 2, 1999. Shaw et al disclose applying heat variably to create a dielectric layer of varying thickness. Due to the size of the apparatus necessary to provide a thickness difference, adjacent regions of varying thickness are quite large and the effects are noticeable, as is apparently desired.
There is no mention or suggestion with the Shaw et al. patent to providing covert security features.
In contrast, in an aspect of this invention, a security device is provided wherein a dielectric layer therein has a plurality of adjacent regions. At least one adjacent region of the dielectric layer has a thickness that is less than an adjacent region of the same layer. The dimensions of at least one of the regions is small enough such that a visual effect from the difference in the two adjacent regions is not visible to the human eye, however a visual color difference is visible with magnification of 10:1 or greater. Preferably the different color regions differ in their color from one another by at least a delta E value of 10.
It is a further object of the invention to provide a dot matrix grating having a dielectric spacer layer having different thicknesses throughout, so as to provide different visual colors in accordance with the different thicknesses.
Thus, it is an object of the invention to provide a security device having a dielectric layer forming a Fabry Perot cavity or within a dielectric stack of dielectric layers wherein the dielectric layer has varying thicknesses so as to form optical cavities exhibiting different colors as visible light is incident thereon; and wherein the visual effect of the different colors is not seen without magnification. In addition, these different regions each have their own color shift with viewing angle.
In accordance with an aspect of this invention, there is provided, a multilayer thin film filter having an organic dielectric layer therein, spanning a plurality of regions of the filter, wherein the dielectric layer is embossed to define the plurality of regions of different uniform thicknesses, wherein some adjacent regions of the dielectric layer have a different uniform thickness, and wherein the size of one of the embossed adjacent regions is such that the color of said one region is uniform and cannot be seen by a human eye as different in color from the uniform color of an adjacent region thereto, and wherein the color within a region can be seen with magnification of at least 10:1
In accordance with the invention, there is further provided, a multilayer thin film filter having an organic dielectric layer therein sandwiched between an absorber and reflector layer, wherein the dielectric layer is embossed to provide a covert security information only discernible with magnification.
In accordance with the invention, there is further provided, a multilayer thin film filter comprising an organic dielectric layer therein, spanning a plurality of regions of the filter, wherein the dielectric layer is embossed in at least one region to define a different thickness than in an adjacent region and wherein the embossing is of a dimension that produces an optical effect that cannot be seen by a human eye without magnification of at least 10 times; an absorber layer covering the organic dielectric layer; and, a reflector layer supporting the organic dielectric layer.
In accordance with another aspect of the invention there is provided, a multilayer thin film filter having a dielectric layer having a first region embossed with a diffraction grating and having adjacent regions that are absent a diffraction grating to provide contrast, wherein both regions provide different color shift effects when the filter is tilted with respect to the viewing angle and wherein the embossed region provides diffractive and thin film interference effects.
In accordance with another aspect of the invention, there is provided, a method of coating comprising the steps of:
disposing within a vacuum chamber roll of light transmissive substrate embossed with a diffraction grating or hologram; and,
patterning a reflector with an oil printing technique so as to evaporate a reflective material within the vacuum chamber without breaking vacuum.
In accordance with the invention there is provided a method of providing a chromagram comprising the steps of:
embossing an organic coating;
curing the organic coating;
demetallized patterning of a reflective layer upon the embossed organic coating;
curing through the substrate to fully cure the organic coating, thereby allowing a relatively soft organic dielectric into which the embossing can occur.
In accordance with the invention there is further provided a method of coating is provided comprising the steps of:
disposing a releasable substrate roll of dielectric material into a vacuum chamber;
embossing the dielectric material while within the vacuum chamber; and,
coating the dielectric material while within the vacuum chamber; wherein coating the dielectric material may be done before embossing.
In accordance with the invention a method is provided for coating a substrate comprising the steps of:
disposing the substrate within a vacuum roll coater;
embossing the substrate;
evaporating an absorber upon the substrate
depositing an organic layer upon the absorber layer;
patterning a reflector with upon the organic layer within the vacuum roll coater;
performing steps (b) through (e) without breaking vacuum.
In accordance with another aspect of the invention a filter is provided having an organic dielectric layer (ODL) which forms an active part of the filter, wherein the ODL has varying thicknesses and is sandwiched between an absorber layer and a reflector layer, or wherein the ODL forms one of a pair of dielectric layers, wherein the varying thicknesses provide different reflected colors only visible with magnification of at least 10 times.
In a preferred embodiment the color difference between two covert colors formed by a dielectric layer of different thickness as described in this document has a ΔE value of at least 10.
Exemplary embodiments of the invention will now be described in conjunction with the drawings in which:
a, is a cross sectional view similar to
b is a cross sectional view of a non-symmetric Fabry-Perot chromagram having a dielectric spacer shown with two different thickness and wherein the spacer is embossed with a grating.
Turning now to
Since the dielectric layer in regions, a, b and c are purposefully embossed with different thicknesses, using judicious selection of the embossing depths, light reflecting back to the viewer after impinging upon the reflector will be three different distinct colors. However due to the small size of the regions a, b, and c, the eye will tend to integrate and if the pixel or region defined by (a) through (d) inclusive can be seen; only a single color will be perceived. With sufficient magnification, the individual regions (a), (b), and (c) will be seen and different colors will be perceived.
It is preferred the color difference be significant enough to be clearly identifiable, and not just distinguishable between two very close colors.
In the La*b* color space system, the colors are plotted in a plane of the CIELAB-system in which a* represents red and green and b* represents yellow and blue. The lightness of the color is on an axis at right angles to the plane going from black or L*=0 to white where L*=100. Thus the color would be grey in the center of the plane with the chroma increasing from the center toward the outer perimeter of the plane. The extreme edge of the plane defines the highest chroma. For example, a red light emitting laser would have high chroma. Between the center and edge, there are various gradations of the red as for example, a pink. Thus, there are planes of these colors which move up and down the L* axis or the lightness value axis. For every illuminant-observer combination of the tristimulus value, the color coordinates can be readily calculated and also can be measured. It is well known to those skilled in the art of color, that any pigment, colored foil or any color can have a different appearance depending upon the illuminant. For example a color under fluorescent light may be quite different from the color under sunlight or under a tungsten lamp.
Thus a pigment may be irradiated with a predetermined amount of energy across the wavelength to provide a graph of power versus wavelength. The quantity of light or energy impinging or striking the pigment at a given wavelength will influence the reflectance curve. The spectral power distribution from the light source is integrated with the eye response function typically designated as x, y and z and the reflectance spectrum to yield the tristimulus values X, Y and Z.
In connection with the present invention, the L*, a*, b* (CIELAB) color space in used to describe the invention since this system is the most uniform (linear in color) known to date and is generally accepted worldwide for practical use. Thus, in the CIELAB color space, the color of any optically variable device can be characterized by the three tristimulus values, X, Y and Z. These tristimulus values take into account the spectral distribution of the light source, the reflectance of the optically variable pigment and the spectral sensitivity to the human eye. It is from these X, Y and Z values that the L*, a*, b* coordinates are calculated as are the related values of L* (lightness), C* (chroma), h (hue) and associated color differences i.e. delta L*, delta C* and delta h. Thus any color can be represented by the L, a* b*.
The difference between any two colors,
ΔE*ab=[(ΔL*)2+(Δa*)2+(Δb*)2]1/2
In effect, a covert color code not recognizable by an unaided human eye is present within the coating, wherein only a single integrated color is perceived by an unaided eye looking at the structure. The thickness of the dielectric in these covert different color regions differs and is uniform throughout a region. Preferably, these regions form a square or rectangular wave pattern, however this pattern need not be periodic.
Similarly a color shifting dielectric stack of high and low index dielectric layers can serve as a covert coating by using one or more dielectric layers wherein the thickness varies similarly, such that at least one region having a thickness distinct from other regions, is not visible by the unaided human eye, but is distinguishable with suitable magnification.
One way in which to manufacture the structure of
Referring now to
Although the cross section shown in
Turning now to
A hot-stamped structure can be made very similarly to the structure of
Referring to
An alternate structure is illustrated in
Turning now to
The processing chamber includes an unwind reel 80, Chamber 1 which has an embossing roller 82; a registration sensor 83 is provided between Chamber 1 and 2. Chamber 2 includes of an oil patterning unit that includes an oil pick-up roller 84, an oil-patterning roller 85 and a resistance source of Al 86 and an optional UV or electron beam cure station. A plasma treatment unit 97 comprising an O2 plasma source is included after the aluminum deposition but before the first front surface roll to ensure that any residual oil is burned off and does not contaminate the metallized surface or give ghosting. Chamber 3 has of an array of DC magnetron sputtering units 87 for depositing the absorber layer. Chamber 4 includes a processing unit to deposit organic acrylics followed by a UV cure station 89. Chamber 5 has a multi-pocket crucible 90 for e-beam coating by electron beam gun 91 of either an inorganic dielectric or a reflective metal. Transmittance monitors 92, 93 and 95, a reflection monitor 94 are also provided within the modular vacuum roll coater system.
A variation of this process described above allows for the production of non-demetallized (non-demet) Chromagrams™. In this process flow, the resin layer on the incoming web is embossed in Chamber 1, then coated with an absorber layer at Chamber 3 and is subsequently coated in Chamber 5 with an inorganic dielectric such as MgF2. The roll is then reversed and coated in Chamber 2 with a reflector with the patterning unit turned off so as to complete the Fabry Perot structure. Finally, the non de-met Chromagram™ is wound onto the unwind roller 80. This process flow is shown in the second flow process in
De-met Chromagrams can also be produced using color shifting ink or adhesive.
Another variation of the processes described above, wherein the same modular system can be used is where the PET release hard coat encounters Chamber 1 and 2 to produce demetallized holograms. After passing Chamber 2 the roll of PET including de-met holograms is wound directly onto the wind-up roll 86. This can then be subsequently processed off-line with color shifting ink or color shifting adhesive to make hot stamp Chromagrams.
Referring now to
Since polymers are degraded by UV light, an alternative embodiment is provided, in order to lessen the likelihood of degradation and decay of the polymer substrate due to UV absorption in accordance with Beer's Law. Therefore in this embodiment completion of the polymer is achieved by the use of an electron beam gun but positioned of the metal side of the substrate before the first front surface roller after the aluminum deposition rather than via a UV lamp. In this instance the electrons penetrate the aluminum coating. It could be expected that the aluminum thickness would be in the range 10-100 nm and penetration is sufficient using electron beam curing in air where the electrons have to penetrate a titanium foil of the order 7 microns thickness. Preferably, the electron beam source be driven at a higher voltage in order to penetrate to the full polymer depth than if there were no metal there at all but this would still be much less than an atmospheric electron beam cure system. Although not shown in the figure, plasma treatment following the polymer coating may be provided to increase the surface energy to improve the metal adhesion.
Referring now to
Furthermore, plasma treatments may be provided after metallization before further polymer coatings are applied. Some of the polymers do not adhere easily and so it is always preferable to prepare the surface using plasma treatment to make sure the surface energy is maximized to help the depositing coating wet out the surface. The plasma treatment before applying the polymer was an argon/nitrogen plasma treatment so that there was no oxygen present to inhibit the polymer cure whereas the plasma treatment of the acrylate before the metal deposition was using an argon/oxygen plasma to provide some oxygen to aid chemical bonding directly between the polymer and metal via the oxide
After the web passes from Chamber 4 it then encounters Chamber 2 where a patterned or non-patterned aluminum layer is deposited. A plasma treatment O2 source 97 is provided to clean up any residual oil and to prevent or lessen ghosting. The web then moves to Chamber 1.
Preferably, Chamber 1 uses a drum that is compliant so that the embossing is effective. The steel drum can be wrapped with a hard rubber sleeve that does not outgass. The embossing roller can be heated and the rubber on the drum cooled. Embossing can be selectively applied or over the entire surface of the web or can be applied as indicated just on the aluminum islands. The oil patterning process technology is commercially available. At this point, the roll can travel directly to the wind-up roller without the use of other process steps for the production of demetallized holograms or other types of de-met relief structures or non demetallized structures. These structures can then be subsequently coated with color shift ink in the non-aluminized areas to make ink based or OVP adhesive based Chromagrams™. This coating arrangement allows for embossing into the aluminum which eliminates the possibility of the organic layer fouling of the embossing roller.
For further processing, the web travels to Chamber 3 and 5 where it is coated with the absorber layer (Cr), a dielectric layer (MgF2) and a full reflective layer (Al) is deposited in the reverse direction. In this instance, final wind-up occurs on the un-wind roller 81. Alternatively, the web can be coated with absorber layer, reversed in the machine and sequentially coated with the organic acrylic layer followed by the reflective aluminum layer to make a Chromagram with an organic dielectric rather than an inorganic dielectric. In this case, also the final wind up occurs at the un-wind station.
Process flows include:
1) Plastic film (e.g. PET type G)embossaluminize across whole width of webhologram or diffractive label.
2) Plastic film plus release/resin)embossaluminize across whole width of webhot stamp relief reflective hologram or production of diffractive flake with/without symbols.
3) Plastic filmUV acryliccurealuminizeembosshologram or diffractive label.
4) Plastic filmUV acrylicpartial curealuminize in patternembossfull cureEvaporation of absorber layerdeposition of dielectric layerdeposition of reflector layerDe-met Label Chromagram. (Note: embossing may be in register with the aluminum or across aluminum and non-aluminum areas.
5) Plastic film with release/resinaluminize in patternembossDeposition of absorber layerDeposition of dielectric layerdeposition of reflector layerHot stamp demet Chromagram.
6) Plastic film with release/resinDeposition of absorberUV acrylicDeposition of reflectorDeposition of reflectorHot Stamp Non-Demet Chromagram.
7) Plastic filmDeposition of absorberUV acrylicDeposition of reflectorDeposition of reflectorLabel Non-Demet Chromagram.
Embossing
Embossing can be done in a variety of different ways. The shim can be pressed into the polymer with enough pressure to force the polymer to flow into the shim profile. This becomes easier if heat is used to soften the polymer. Alternatively lower melting point polymers can be used or even in the extreme case a liquid monomer can be used where the cure is done, whilst the liquid has taken up the shim profile and solidified the polymer.
When using pressure, or heat and pressure, there is a tendency for the polymer to relax slightly following easing the pressure and the polymer partly recovers the flat surface. Thus the diffraction grating or hologram can appear less bright that the shim original. Full depth embossing usually requires some heat and pressure used together; immediately following the hot nip there is a chilled roll to remove the heat as fast as possible to limit the amount of relaxation of the polymer.
The UV cure process that cures the polymer whilst still in contact with shim provides the best chance of obtaining a full depth embossing however some release difficulties can occur.
Embossing can be difficult even at atmospheric pressure, and the degree of difficulty can depend on the quality of the embossing shims and on the profile of the embossing pattern. For example sinusoidal and pyramidal patterns are easier profiles to work with compared with square wave zero order diffraction type or deep aspect ratio patterns.
The problem is for the shim to release the malleable polymer. At times the polymer may separate from the substrate and clog up the shim, which then fails to emboss on the next and subsequent revolution. To minimize the propensity for the polymer sticking an operator, in a system at atmospheric pressures, would spray the shim with a release agent.
Notwithstanding this problem is exacerbated in a vacuum system where it becomes difficult to identify when the shim needs another application of the release spray, and so a method of controlling the shim surface is an aspect of this invention. In accordance with an embodiment of this invention, and as is shown in
In
Alternatively an inert gas plasma as a source of UV can be used to sure cure the polymer in-situ whilst still in the shim. This would not work so well if the polymer coating were already metallized.
These could be combined in single plasma but the polymer surface would then also become fluorinated and so non-stick. This would make the polymer harder to add coatings to and so would really only be useful if the polymer coating were to be the final layer.
Referring now to
Turning now to
An option shown in
Polymer Deposition Process
Referring now to
Of course numerous other embodiments may be envisaged without departing from the spirit and scope of the invention.
The present invention claims priority from U.S. Patent Application No. 60/691,499 filed Jun. 17, 2005, which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3011383 | Sylvester et al. | Dec 1961 | A |
4066280 | LaCapria | Jan 1978 | A |
4126373 | Moraw | Nov 1978 | A |
4155627 | Gale et al. | May 1979 | A |
4168983 | Vittands et al. | Sep 1979 | A |
4434010 | Ash | Feb 1984 | A |
4705300 | Berning et al. | Nov 1987 | A |
4705356 | Berning et al. | Nov 1987 | A |
4721217 | Phillips et al. | Jan 1988 | A |
4756771 | Brodalla et al. | Jul 1988 | A |
4779898 | Berning et al. | Oct 1988 | A |
4838648 | Phillips et al. | Jun 1989 | A |
4930866 | Berning et al. | Jun 1990 | A |
5002312 | Phillips et al. | Mar 1991 | A |
5009486 | Dobrowolski et al. | Apr 1991 | A |
5059245 | Phillips et al. | Oct 1991 | A |
5084351 | Philips et al. | Jan 1992 | A |
5106125 | Antes | Apr 1992 | A |
5128779 | Mallik | Jul 1992 | A |
5135812 | Phillips et al. | Aug 1992 | A |
5142383 | Mallik | Aug 1992 | A |
5171363 | Phillips et al. | Dec 1992 | A |
5214530 | Coombs et al. | May 1993 | A |
5254390 | Lu | Oct 1993 | A |
5278590 | Phillips et al. | Jan 1994 | A |
5279657 | Phillips et al. | Jan 1994 | A |
5339737 | Lewis et al. | Aug 1994 | A |
5364467 | Schmid et al. | Nov 1994 | A |
5364689 | Kashiwagi et al. | Nov 1994 | A |
5411296 | Mallik | May 1995 | A |
5424119 | Phillips et al. | Jun 1995 | A |
5464710 | Yang | Nov 1995 | A |
5549774 | Miekka et al. | Aug 1996 | A |
5549953 | Li | Aug 1996 | A |
5571624 | Phillips et al. | Nov 1996 | A |
5591527 | Lu | Jan 1997 | A |
5624076 | Miekka et al. | Apr 1997 | A |
RE35512 | Nowak et al. | May 1997 | E |
5629068 | Miekka et al. | May 1997 | A |
5648165 | Phillips et al. | Jul 1997 | A |
5650248 | Miekka et al. | Jul 1997 | A |
5672410 | Miekka et al. | Sep 1997 | A |
5700550 | Uyama et al. | Dec 1997 | A |
5742411 | Walters | Apr 1998 | A |
5763086 | Schmid et al. | Jun 1998 | A |
5855895 | Andrianov et al. | Jan 1999 | A |
5856048 | Tahara et al. | Jan 1999 | A |
5858078 | Andes et al. | Jan 1999 | A |
5877895 | Shaw et al. | Mar 1999 | A |
5912767 | Lee | Jun 1999 | A |
5989626 | Coombs et al. | Nov 1999 | A |
6010751 | Shaw et al. | Jan 2000 | A |
6013370 | Coulter et al. | Jan 2000 | A |
6031457 | Bonkowski et al. | Feb 2000 | A |
6045230 | Dreyer et al. | Apr 2000 | A |
6068691 | Miekka et al. | May 2000 | A |
6112388 | Kimoto et al. | Sep 2000 | A |
6114018 | Phillips et al. | Sep 2000 | A |
6150022 | Coulter et al. | Nov 2000 | A |
6157489 | Bradley, Jr. et al. | Dec 2000 | A |
6168100 | Kato et al. | Jan 2001 | B1 |
6241858 | Phillips et al. | Jun 2001 | B1 |
6242510 | Killey | Jun 2001 | B1 |
6243204 | Bradley, Jr. et al. | Jun 2001 | B1 |
6692830 | Argoitia et al. | Feb 2004 | B2 |
6712399 | Drinkwater et al. | Mar 2004 | B1 |
6749777 | Argoitia et al. | Jun 2004 | B2 |
6761959 | Bonkowski et al. | Jul 2004 | B1 |
6838166 | Phillips et al. | Jan 2005 | B2 |
6987590 | Phillips et al. | Jan 2006 | B2 |
20030058491 | Holmes et al. | Mar 2003 | A1 |
20030087070 | Souparis | May 2003 | A1 |
20040081807 | Bonkowski et al. | Apr 2004 | A1 |
20040094850 | Bonkowski et al. | May 2004 | A1 |
20040100707 | Kay et al. | May 2004 | A1 |
20040105963 | Bonkowski et al. | Jun 2004 | A1 |
20040151827 | Argoitia et al. | Aug 2004 | A1 |
20050128543 | Phillips et al. | Jun 2005 | A1 |
20060023879 | Hoshino et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
43 43 387 | Jun 1995 | DE |
0 756 945 | Feb 1997 | EP |
1 353 197 | Oct 2003 | EP |
1 741 757 | Jan 2007 | EP |
WO 9812583 | Mar 1998 | WO |
WO 0008596 | Feb 2000 | WO |
WO 0200446 | Jan 2002 | WO |
WO 2005017048 | Feb 2005 | WO |
2005038136 | Apr 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060285184 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
60691499 | Jun 2005 | US |