The invention relates in general to identification documents and security features for identification documents. In particular, the invention relates to printing covert variable or personal information on identification documents, such that the covert variable or personal information is not identifiable in visible light but is identifiable when viewed in a predetermined non-visible light.
Identification Documents
Identification documents (hereafter “ID documents”) play a critical role in today's society. One example of an ID document is an identification card (“ID card”). ID documents are used on a daily basis—to prove identity, to verify age, to access a secure area, to evidence driving privileges, to cash a check, and so on. Airplane passengers are required to show an ID document during check in, security screening, and prior to boarding their flight. In addition, because we live in an ever-evolving cashless society, ID documents are used to make payments, access an automated teller machine (ATM), debit an account, or make a payment, etc.
Many types of identification cards and documents, such as driving licenses, national or government identification cards, bank cards, credit cards, controlled access cards and smart cards, carry thereon certain items of information which relate to the identity of the bearer. Examples of such information include name, address, birth date, signature and photographic image; the cards or documents may in addition carry other variant data (i.e., data specific to a particular card or document, for example an employee number) and invariant data (i.e., data common to a large number of cards, for example the name of an employer). All of the cards described above will hereinafter be generically referred to as “ID documents”.
Referring to
To protect the information 26a-c that is printed, an additional layer of overlaminate 24 can be coupled to the card blank 25 and printing 26a-c using, for example, 1 mil of overlaminate. The overlaminate 24 can be substantially transparent. Materials suitable for forming such protective layers are known to those skilled in the art of making identification documents and any of the conventional materials may be used provided they have sufficient transparency. Examples of usable materials for overlaminates include biaxially oriented polyester or other optically clear durable plastic film.
In the production of images useful in the field of identification documentation, it may be desirable to embody into a document (such as an ID card, drivers license, passport or the like) data or indicia representative of the document issuer (e.g., an official seal, or the name or mark of a company or educational institution) and data or indicia representative of the document bearer (e.g., a photographic likeness, name or address). Typically, a pattern, logo or other distinctive marking representative of the document issuer will serve as a means of verifying the authenticity, genuineness or valid issuance of the document. A photographic likeness or other data or indicia personal to the bearer will validate the right of access to certain facilities or the prior authorization to engage in commercial transactions and activities.
Identification documents, such as ID cards, having printed background security patterns, designs or logos and identification data personal to the card bearer have been known and are described, for example, in U.S. Pat. No. 3,758,970, issued Sep. 18, 1973 to M. Annenberg; in Great Britain Pat. No. 1,472,581, issued to G. A. O. Gesellschaft Fur Automation Und Organisation mbH, published Mar. 10, 1976; in International Patent Application PCT/GB82/00150, published Nov. 25, 1982 as Publication No. WO 82/04149; in U.S. Pat. No. 4,653,775, issued Mar. 31, 1987 to T. Raphael, et al.; in U.S. Pat. No. 4,738,949, issued Apr. 19, 1988 to G. S. Sethi, et al.; and in U.S. Pat. No. 5,261,987, issued Nov. 16, 1993 to J. W. Luening, et al. All of the aforementioned documents are hereby incorporated by reference.
Printing Information onto ID Documents
The advent of commercial apparatus (printers) for producing dye images by thermal transfer has made relatively commonplace the production of color prints from electronic data acquired by a video camera. In general, this is accomplished by the acquisition of digital image information (electronic signals) representative of the red, green and blue content of an original, using color filters or other known means. Devices such as digital cameras, optical sensors, and scanners also can provide digital image information. The digital image information is utilized to print an image onto a data carrier. For example, information can be printed using a printer having a plurality of small heating elements (e.g., pins) for imagewise heating of each of a series of donor sheets (respectively, carrying diffuseable cyan, magenta and yellow dye). The donor sheets are brought into contact with an image-receiving element (which can, for example, be a substrate) which has a layer for receiving the dyes transferred imagewise from the donor sheets. Thermal dye transfer methods as aforesaid are known and described, for example, in U.S. Pat. No. 4,621,271, issued Nov. 4, 1986 to S. Brownstein and U.S. Pat. No. 5,024,989, issued Jun. 18, 1991 to Y. H. Chiang, et al. Each of these patents is hereby incorporated by reference.
Dye diffusion thermal transfer printing (“D2T2”) and thermal transfer, (also referred to as mass transfer printing) are two printing techniques that have been used to print information on identification cards. For example, D2T2 has been used to print images and pictures, and thermal transfer has been used to print text, bar codes, and single color graphics.
D2T2 is a thermal imaging technology that allows for the production of photographic quality images. In the art, D2T2 has sometimes been referred to as “dye sub”, but D2T2 is not, in fact, really a dye sublimation process. Rather, D2T2 is a diffusion process, and use of the term “D2T2” herein is not intended to include dye sublimation processes. In D2T2 printing, one or more thermally transferable dyes (e.g., cyan, yellow, and magenta) are transferred from a donor, such as a donor dye sheet or a set of panels (or ribbons) that are coated with a dye (e.g., cyan, magenta, yellow, black, etc.) to a receiver sheet (which could, for example, be part of an ID document) by the localized application of heat or pressure, via a stylus or thermal printhead at a discrete point. When the dyes are transferred to the receiver, the dyes diffuse into the sheet (or ID card substrate), where the dyes will chemically be bound to the substrate or, if provided, to a receptor coating. Typically, printing with successive color panels across the document creates an image in or on the document's surface. D2T2 can result in a very high printing quality, especially because the energy applied to the thermal printhead can vary to vary the dye density in the image pixels formed on the receiver, to produce a continuous tone image. D2T2 can have an increased cost as compared to other methods, however, because of the special dyes needed and the cost of D2T2 ribbons. Also, the quality of a D2T2-printed image may depend at least on an ability of a mechanical printer system to accurately spatially register a printing sequence, e.g., yellow, magenta, cyan, and black.).
Another thermal imaging technology is thermal or mass transfer printing. With mass transfer printing, a material to be deposited on a receiver (such as carbon black (referred to by the symbol “K”)) is provided on a mass transfer donor medium. When localized heat is applied to the mass transfer donor medium, a portion (mass) of the material is physically transferred to the receiver, where it sits “on top of” the receiver. For example, mass transfer printing often is used to print text, bar codes, and monochrome images. Resin black mass transfer has been used to print grayscale pictures using a dithered gray scale, although the image can sometimes look coarser than an image produced using D2T2. However, mass transfer printing can sometimes be faster than D2T2, and faster printing can be desirable in some situations.
Printing of black (“K”) can be accomplished using either D2T2 or mass transfer. For example, black monochrome “K” mass transfer ribbons include Kr (which designates a thermal transfer ribbon) and Kd (which designates dye diffusion).
Both D2T2 and thermal ink have been combined in a single ribbon, which is the well-known YMCK (Yellow-Magenta-Cyan-Black) ribbon (the letter “K” is used to designate the color black in the printing industry). Another panel containing a protectant (“P”) or laminate (typically a clear panel) also can be added to the YMCK ribbon)
Many color images are formed by subtractive techniques, e.g., light is passed through absorbing dyes and the combination of dyes produce an image by sequentially subtracting cyan, magenta, and yellow components to provide the full color image. In the example of a UV fluorescing image, the UV image is formed by light emitting from fluorescing dyes or pigments as they are activated by a UV light energy source. In some implementations, a special pigments or dyes used to form a given image can fluoresce in a first color when exposed to light having a first wavelength and a second color when exposed to light having a second wavelength.
A UV image can be imparted to a document such as an ID document by methods such as thermal printing or D2T2 printing, such as with panels on printing ribbons. For example, a separate dye diffusion panel can include dye having UV properties (e.g., but which does not include a visible spectrum color) to impart an UV image to an ID document, or UV materials can be incorporated into an existing color panel (e.g., into the yellow panel). As the invention proposes herein, a UV image can also be imparted via a mass transfer panel (or thermal mass transfer) panel. Standard dye diffusion printers, such as those manufactured by Atlantek and Eltron, often incorporate both dye diffusion and mass transfer panels. A mass transfer panel typically includes a resin (e.g., a resin including black or color pigments or dyes) that can be thermally transferred to the ID document. A separate mass transfer panel can include pigments or dyes having UV properties to impart a UV image to an ID document, or UV materials can be incorporated into a specially constructed black panel, as described herein. A mass transfer process can be used to produce an image, which is invisible in ordinary light, but glows in UV light.
UV Security Features in ID Documents
One response to the ID document counterfeiting problem has involved the integration of verification features that are difficult to copy by hand or by machine. One such verification feature is the use in the card of a signature of the card's issuer or bearer. Other verification features have involved, for example, the use of watermarks, biometric information, microprinting, fluorescent materials, fine line details, validation patterns or marking, and polarizing stripes. These verification features are integrated into an identification card in various ways and they may be visible or invisible (covert) in the finished card. If invisible, they can be detected by viewing the feature under conditions which render it visible. At least some of the verification features discussed above have been employed to help prevent and/or discourage counterfeiting.
Covert security features are those features whose presence is not visible to the user without the use of special tools (e.g., UV or IR lights, digital watermark readers) or knowledge. In many instances, a covert security feature is normally invisible to a user. Some technologies that involve invisible features require the use of specialized equipment, such as a detector or a device capable of reading digital watermarks. One type of covert security feature is the printing of information (images, designs, logos, patterns, text, etc.) in a material that is not visible under normal lighting conditions, but can be viewed using a special non-visible light source, such as an ultraviolet (UV) or infrared (IR) light source. Use of UV and/or IR security features can be advantageous because although the devices (for example, UV and/or IR light sources) required to see and use such features are commonly available at a reasonable cost, the ability to manufacture and/or copy at least some implementations of such features is far less common and can be very costly. UV and IR based covert security features thus can help deter counterfeiters because the features cannot be copied by copiers or scanners and are extremely difficult to manufacture without the requisite know-how, equipment, and materials.
For example, the assignee of the present invention has developed and marketed a proprietary product called PolaPrime-UV™. PolaPrime-UV™ is a type of security feature One application of PolaPrime-UV™ is for full color photo quality printing of fixed (i.e., not variable data) fluorescent images. The artwork that can be printed using PolaPrime-UV™ includes many images that can be produced with a combination of red, green, and blue phosphors. Under the appropriate light (e.g., a light source capable of providing UV light), the effect seen when viewing an image printed with PolaPrime-UV™ is similar in appearance to a television screen in that the image is formed by emission of light rather than reflection as with ink on paper. To date, PolaPrime-UV™ has been a reliable authenticator for genuine identification documents. Because PolaPrime-UV™ is a fixed process and has no variable capability, PolaPrime-UV™ has only been used for pre-printed or non-variable data, not personalized or variable full color images.
To date, there have been no examples of printing variable images such as driver's license portraits with UV or IR materials, where the quality of the UV variable image is sufficient to enable the image to be relied upon for identification or authentication.
Because of the enhanced security provided by the use of full color UV printing, it would be advantageous to be able to print variable or personal UV information at the time of card personalization, in one, two, or three UV colors, especially images that have a high enough quality to be used for authentication and/or identification. It also would be advantageous if the same information could be printed in a visible and invisible (e.g., UV) form at substantially the same time or at substantially the same printing step. It would be an advantageous security feature and counterfeit deterrent if, in at least some instances, the visible and invisible information could be printed to appear on the same location of the ID document.
In one aspect, the present invention provides improved ID documents that include printing variable data (e.g., text, personal information, biometric data, etc.) or security features (e.g., images, photographs, codes, digital watermarks, etc.) that are imperceptible to the human eye. When illuminated with UR (or IR) light, however, the variable data or security features become readily visible. The quality of the images produced is such that they are usable for identification and/or authentication.
In another aspect, for at least the printing of UV information that comprises characters or single color images (e.g., simple logos or graphics), the inventors have discovered that using a thermal transfer approach to print full color UV images can overcome at least some of the problems that can be seen when printing UV information using D2T2 printing. In one embodiment, thermally diffusible UV dyes are used with a mass transfer medium, resulting in a UV image that is disposed both on top of and into the medium to which the UV image is printed. Having an image that is formed both on top of and into a medium can increase the security of the image that was printed, because even if the portion of the image that is on “top” of the medium is removed (e.g., in an attempt at alteration), the portion of the image that is disposed “into” the medium remains.
In one embodiment, an identification document is provided comprising first and second layers. The first layer has a first layer a first colored variable indicium formed thereon that is visible to the human eye as a substantially full color image when the first colored variable indicium is viewed using a first type of light. The second layer is operably coupled to the first layer and has a second colored variable indicium that is visible to the human eye as having the appearance of a substantially full color image when the second colored variable indicium is viewed using a second type of light. The second colored variable indicium can be printed using a thermally diffuseable non visible dye disposed in a resin panel on a thermal transfer printing ribbon.
In another aspect, the invention provides a method for printing a UV image at the same time that it prints a full color image. The UV dye is selected so to be a thermally diffusible UV fluorescent dye that diffuses with substantially the same properties as the visible dyes on the panel.
In a further aspect, the image to be printed in UV is digitally manipulated so that a UV image is printed on an identification document using only two of the three colors, printing a so-called “false two color” UV image. In one embodiment, the two colors comprise yellow and at least one of cyan and magenta. The “false two color” UV image is printed using UV dyes. We have found that one, two or three UV colors, as well as false two color, images printed in accordance with the invention can be of “identification quality” (i.e., good enough discernibility enough to be used for identification purposes).
In one embodiment, a method for manufacturing an identification document is provided. A substrate is provided that is constructed and arranged to receive printing thereon. A first variable indicium is printed on the substrate, where the first variable indicium is not visible to the human eye in ambient light but is visible to the human eye when viewed using a first type of light.
In one embodiment, the invention provides a method for manufacturing an identification document. A substrate is provided that is constructed and arranged to receive thermal transfer printing thereon. A first variable indicium is printed on the substrate using a thermal transfer ribbon, the thermal transfer ribbon comprising at least one panel, the panel comprising a thermally diffuseable dye dissolved in a resin, where the dye comprises at least one component that is not visible to the human eye in ambient light.
The foregoing and other objects, features and advantages of the present invention will be even more readily apparent from the following Detailed Description, which proceeds with reference to the accompanying drawings, and from the claims.
The advantages, features, and aspects of embodiments of the invention will be more fully understood in conjunction with the following detailed description and accompanying drawings, wherein:
a-14g are images illustrating an inventive aspect of the present invention, and in particular:
a is a photographic color image including a headshot of a human subject;
b illustrates the image of
c emphasizes the horizontal edges of the
d emphasizes the vertical edges of the
e illustrates a composite image of
f illustrates a binaryized version of
g illustrates an inverted version of
The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In addition, in the figures, like numbers refer to like elements.
Terminology
In the foregoing discussion, the use of the word “ID document” is broadly defined and intended to include all types of ID documents, including (but not limited to), documents, magnetic disks, credit cards, bank cards, phone cards, stored value cards, prepaid cards, smart cards (e.g., cards that include one more semiconductor chips, such as memory devices, microprocessors, and microcontrollers), contact cards, contactless cards, proximity cards (e.g., radio frequency (RFID) cards), passports, driver's licenses, network access cards, employee badges, debit cards, security cards, visas, immigration documentation, national ID cards, citizenship cards, social security cards, security badges, certificates, identification cards or documents, voter registration and/or identification cards, police ID cards, border crossing cards, security clearance badges and cards, legal instruments, gun permits, badges, gift certificates or cards, membership cards or badges, and tags. Also, the terms “document,” “card,” “badge” and “documentation” are used interchangeably throughout this patent application.). In at least some aspects of the invention, ID document can include any item of value (e.g., currency, bank notes, and checks) where authenticity of the item is important and/or where counterfeiting or fraud is an issue.
In addition, in the foregoing discussion, “identification” at least refers to the use of an ID document to provide identification and/or authentication of a user and/or the ID document itself. For example, in a conventional driver's license, one or more portrait images on the card are intended to show a likeness of the authorized holder of the card. For purposes of identification, at least one portrait on the card preferably shows an “identification quality” likeness of the holder such that someone viewing the card can determine with reasonable confidence whether the holder of the card actually is the person whose image is on the card. “Identification quality” images, in at least one embodiment of the invention, include covert images that, when viewed using the proper facilitator (e.g., an appropriate light source), provide a discernable image that is usable for identification or authentication purposes.
There are a number of reasons why an image or information on an ID document might not qualify as an “identification quality” image. Images that are not “identification quality” may be too faint, blurry, coarse, small, etc., to be able to be discernable enough to serve an identification purpose. An image that might not be sufficient as an “identification quality” image, at least in some environments, could, for example, be an image that consists of a mere silhouette of a person, or an outline that does not reveal what might be considered essential identification essential (e.g. hair or eye color) of an individual.
Of course, it is appreciated that certain images may be considered to be “identification quality” if the images are machine readable or recognizable, even if such images do not appear to be “identification quality” to a human eye, whether or not the human eye is assisted by a particular piece of equipment, such as a special light source. For example, in at least one embodiment of the invention, an image or data on an ID document can be considered to be “identification quality” if it has embedded in it machine-readable information (such as digital watermarks) that also facilitate identification and/or authentication.
Further, in at least some embodiments, “identification” and “authentication” are intended to include (in addition to the conventional meanings of these words), functions such as recognition, information, decoration, and any other purpose for which an indicia can be placed upon an article in the article's raw, partially prepared, or final state. Also, instead of ID documents, the inventive techniques can be employed with product tags, product packaging, business cards, bags, charts, maps, labels, etc., etc., particularly those items including marking of an laminate or over-laminate structure. The term ID document thus is broadly defined herein to include these tags, labels, packaging, cards, etc.
“Personalization”, “Personalized data” and “variable” data are used interchangeably herein, and refer at least to data, images, and information that are “personal to” or “specific to” a specific cardholder or group of cardholders. Personalized data can include data that is unique to a specific cardholder (such as biometric information, image information, serial numbers, Social Security Numbers, privileges a cardholder may have, etc.), but is not limited to unique data. Personalized data can include some data, such as birthdate, height, weight, eye color, address, etc., that are personal to a specific cardholder but not necessarily unique to that cardholder (for example, other cardholders might share the same personal data, such as birthdate). In at least some embodiments of the invention, personal/variable data can include some fixed data, as well. For example, in at least some embodiments, personalized data refers to any data that is not pre-printed onto an ID document in advance, so such personalized data can include both data that is cardholder-specific and data that is common to many cardholders. Variable data can, for example, be printed on an information-bearing layer of the ID card using thermal printing ribbons and thermal printheads.
As used herein, the term “fixed data” refers at least to data which is identical for each ID card. Fixed data can, for example, be preprinted on an overlay patch, a laminate or an information-bearing layer of the ID card. Fixed data can also be printed on each individual ID card during the process of printing and optionally laminating the ID card. The term “variable data” refers generally to data which differs for each ID card and is associated with personal information, an image of the ID card holder or a unique reference number for security purposes assigned by the issuing agency.
As used herein, an “information-bearing layer” refers at least to the parts of an ID document where pictures, images, text, bar codes, fixed and/or variable data are printed. The information-bearing layer can include a separate receiver layer adapted to accept inks, dyes, pigments and resins from thermal print ribbons. The information-bearing layer can itself be the receiver layer. Depending on the particular design of the ID document, the information bearing layer can be the substrate or core layer, but also can be a laminate applied thereto, or to another laminate layer on the card. There can be different information bearing layers in an ID document for pre-printing and for personalization.
“Laminate” and “overlaminate” include (but are not limited to) film and sheet products. Laminates usable with at least some embodiments of the invention include those which contain substantially transparent polymers and/or substantially transparent adhesives, or which have substantially transparent polymers and/or substantially transparent adhesives as a part of their structure, e.g., as an extruded feature. Examples of potentially usable laminates include at least polyester, polycarbonate, polystyrene, cellulose ester, polyolefin, polysulfone, polyvinyl chloride (PVC), polyethylene, polypropylene, and polyamide. Laminates can be made using either an amorphous or biaxially oriented polymer as well. The laminate can comprise a plurality of separate laminate layers, for example a boundary layer and/or a film layer. Other possibly usable laminates include security laminates, such as a transparent laminate material with proprietary security technology features and processes, which protects documents of value from counterfeiting, data alteration, photo substitution, duplication (including color photocopying), and simulation by use of materials and technologies that are commonly available. Laminates also can include thermosetting materials, such as epoxy. Laminates can include synthetic resin-impregnated or coated base materials composed of successive layers of material, bonded together via heat, pressure, and/or adhesive.
The material(s) from which a laminate is made may be transparent, but need not be. The degree of transparency of the laminate can, for example, be dictated by the information contained within the identification document, the particular colors and/or security features used, etc. The thickness of the laminate layers is not critical, although in some embodiments it may be preferred that the thickness of a laminate layer be about 1-20 mils. Lamination of any laminate layer(s) to any other layer of material (e.g., a core layer) can be accomplished using any conventional lamination process, and such processes are well known to those skilled in the production of articles such as identification documents. Of course, the types and structures of the laminates described herein are provided only by way of example, those skilled in the art will appreciated that many different types of laminates are usable in accordance with the invention. Various lamination processes are disclosed in assignee's U.S. Pat. Nos. 5,783,024, 6,007,660, 6,066,594, and 6,159,327. Other lamination processes are disclosed, e.g., in U.S. Pat. Nos. 6,283,188 and 6,003,581. Each of these U.S. Patents is herein incorporated by reference.
For purposes of illustration, the following description will proceed with reference to ID document structures (such as TESLIN-core, multi-layered ID documents) and fused polycarbonate structures. It should be appreciated, however, that the present invention is not so limited. Indeed, as those skilled in the art will appreciate, the inventive techniques can be applied to many other structures formed in many different ways to provide information thereon that is not identifiable and generally not visible using visible light, but which is visible or identifiable when using a non-visible light, such as an ultraviolet (UV) light or an infrared (IR) light. In another aspect, the invention also has applicability to providing information on structures that fluoresce in a given spectrum (e.g., the UV or IR spectrum) upon excitation with visible light. Generally, the invention has applicability for virtually any product which is to be printed and especially those products which need to be uniquely identified and/or protected against fraud and/or tampering. For example, at least some embodiments of the invention are usable to form non visible indicia on articles formed from paper, wood, cardboard, paperboard, glass, metal, plastic, fabric, ceramic, rubber, along with many man-made materials, such as microporous materials, single phase materials, two phase materials, coated paper, synthetic paper (e.g., TYVEC, manufactured by Dupont Corp of Wilmington, Del.), foamed polypropylene film (including calcium carbonate foamed polypropylene film), plastic, polyolefin, polyester, polyethylenetelphthalate (PET), PET-G, PET-F, and polyvinyl chloride (PVC), and combinations thereof.
In addition, for purposes of illustration, the following detailed description is provided using ultraviolet (UV) information as an example of a type of information that is generally not visible using normal light but is visible using an appropriate light source (e.g., a UV light source). It should be understood that while some of our detailed embodiments described herein use UV dyes, inks, light source, ribbon panels, etc., by way of example, the present invention is not so limited. Our inventive techniques and methods can be used in connection with infrared and other fluorescing images as well. Accordingly, those skilled in the art will appreciate that each and every reference to UV inks, dyes, light sources, panels, on ribbons, etc., is equally applicable to other types of information that is generally not visible using normal light, such as infrared (IR) information, as well as to information printed using a blend of UV and IR fluorescing compounds. Moreover, one or more of our inventive techniques can be useful in the printing of images destined for ID documents using various printing processes including, but not limited to, dye infusion, mass-transfer, laser xerography, ink jet, wax transfer, variable dot transfer, and other printing methods by which a fluorescing image can be formed.
Further, it should be appreciated that although the some of the figures illustrate a particular species of ID document—a driver's license—the present invention is not so limited. Indeed our inventive methods and techniques apply generally to all identification documents defined above. Moreover, as noted herein, our invention is applicable to non-ID documents, e.g., such as printing or forming non-visible images on physical objects, holograms, etc., etc.
It is further anticipated that the invention could have applicability in manufacturing articles which are to have a feature formed thereon (especially a feature that is intended to have the appearance of an identifiable full color feature) that is not necessarily intended to be used as a security or identification feature, but which is at least intended to be non visible to a human eye in visible light, but visible using a non-visible light such as UV or IR, or which is intended to glow or fluoresce in a non-visible spectrum upon excitation with visible light. It is anticipated that the one or more embodiments of the invention can have applicability in industries such as aerospace, defense, the military, pharmaceuticals, consumer goods, medicine and medical devices, electronics, publishing, advertising, promotion, entertainment, the production of artwork, signage, decorative items, and novelty products.
Application of the Invention to ID Documents
In one aspect, the invention provides ID documents having full-color UV “identification quality” variable information printed thereon at the time the ID document is personalized. The variable UV information is not visible in normal (e.g., ambient) light, but is visible when viewed using a non-visible light source, such as a UV light source.
The inventors of the instant application have discovered at least one reason why, until now, it has been is difficult to obtain “identification quality” full color images UV images when printing variable data in UV on an ID document such as an ID card. Recall that humans see visible images when light is shined on them and the light reflecting back creates an image visible to a human eye—a net subtractive technology. When humans (using an appropriate light source) see UV (or IR) images, however, what the human eye sees is not a reflection, but rather an emission—humans see the light that is emitted because the compounds used to form the image fluoresce when viewed using the appropriate [UV or IR] light source.
When non-visible variable information is printed on ID documents that already have pre-printed information thereon, however, the reflections of the preprinted information can interfere with the light emitting from fluorescing dyes or pigments as they are activated by an appropriate light or energy source. This interference can result in diminished quality of the non-visible image. In addition, some of the emissions from the fluorescing dyes or pigments can be absorbed back into parts of the ID document, including back into dyes that might be on the ID document. The reflections from the pre-printed information do not always affect the ability to discern some types of information (such as characters and simple graphics) printed with non-visible inks/dyes, but the reflections can make an image such as a portrait virtually unusable as an “identification quality” image. We have found that to help achieve the best quality colored UV images, it is necessary during printing and selection of the printing ribbon to take into account the reflections of pre-printed information that still occur when UV information is viewed using a UV light source. We have found that the existence of these reflections can limit the physical locations on an ID document where one can form an “identification quality” UV image using D2T2 type printing. For printing UV using D2T2, we have found that it often is necessary to have a substantially “pristine” card area (an area where there are no reflections already present from other image) in which to print a D2T2 image.
Another problem associated with printing some types of non-visible images, such as UV images, is that since the non-visible image “glows” under appropriate UV stimulation, image details are less apparent, blurred or can be completely lost. The UV glowing essentially washes out an image's perceptible crispness (e.g., similar to a situation in which a dimly lighted object is in proximity to a brightly lighted object). The following commonly assigned pending provisional patent applications provide some methods for addressing this problem:
We have found that use of the techniques and methods recited in the above applications (which we explain at a high level below) can, in combination with the techniques described herein, improve the quality of variable information printed in full color UV. In at least some embodiments, the above-cited provisional applications provide ways to enhance image details to overcome the UV washout problem. In at least some embodiments, the above-cited provisional applications disclose ways to digitally process an image prior to printing to compensate for the glowing effect.
First Aspect of the Invention
In a first aspect of the invention, we provide an ID document and method for making the ID document, where the ID document has thereon a discernable, identifying variable data image that is visible only under UV illumination. In one embodiment of the first aspect, this discernable identifying variable data image (which we call a “UV Ghost Image”) is provided on the card in addition to a visible image (which can, for example, be the same image) printed on the card. For example,
Referring to
Note that although the UV Ghost image 112 is shown as being smaller in size and in a different place than the visible bearer image 122, the invention is not limited to this implementation. It at least one embodiment, for example, the location of the UV Ghost image 112 can coincide with the respective location of the corresponding visible information (in which case, the appearance of the ID document 100 under UV light could look very similar to the way it looks in visible light in
In
In one implementation of this embodiment, the UV ghost image 112 is formed with a dye panel that contains a UV fluorescing dye. The UV dye panel is used as an additional panel to the CMY panels in a conventional D2T2 ribbon. For example,
In accordance with this embodiment of the invention, the UV ghost image 112 of
In one embodiment, another technique that we have found to compensate for the UV emission absorption problem is to use a detector device when viewing the information under UV light. The detector is used to amplify the received light signals to compensate for the emission absorption problem, and can recreate information in one, two, or three colors based on UV information that it detects. A detector usable in this embodiment can be obtained from Assuretec Systems, Inc. of Manchester, N.H.
In another embodiment, the UV ghost image 116 can be printed as a three color image with a specialized ribbon.
Image Processing Techniques for Printing Variable UV Information on Identification Documents
In still another embodiment of the first aspect, to help create a discernable fluorescing image on an ID document (useful for identification and security checks) we have found that we can enhance the digital data that is used to create the UV image. Enhancing the digital data as described herein can help to overcome possible “washout” problems that can occur when a UV image is fluoresced. These enhancements (which are also detailed in the following commonly assigned pending provisional patent applications) provide some methods for addressing the UV washout:
We have found that different image processing techniques are preferred used to preprocess an original image depending on whether the tonality of image reproduction (e.g., printing process) is bitonal (e.g., two tones such as black and white or a first color and second color) or monochromatic (e.g., shaded image, grayscale, etc.). (We also note that other optional factors to consider include the viewing methods used with the image, such as reflectance, transmissive characteristics (e.g., as discussed above with the UV glowing) and tactility.
For the methods discussed below, we assume that an image has been digitally captured, e.g., via a digital camera, optical sensor, etc., or through scanning a photograph with a scanner, etc. This captured image can be reprinted on the identification document as visible bearer image 122 in
Mass Transfer Images
Our first inventive method is particularly well suited for producing bitonal images (e.g., black and white images), such as produced through mass-transfer thermal printing and Laser Xerography. Generally, we process a captured image to bring-out or otherwise enhance relevant features found in the captured image. Relevant features of a human face may include the face outline, nose and mouth pattern, ear outline, eye shape, hairline and shape, etc. Once identified, these featured can be “thickened” or otherwise emphasized. The emphasized features can then form a digital version of UV ghost image 112, which can be transferred to an identification document.
The following discussion proceeds with reference to the accompanying flow diagrams and images (
Now, consider a specific implementation with reference to
We analyze the contrast-enhanced image to identify or detect edges and/or boundaries within the image in step 524. As noted, eyes, nose and mouth often include prominent edges. Our preferred edge detection algorithm is the Sobel algorithm, however, we note that many other conventional algorithms such as other gradient-based edge detection algorithms (e.g., Roberts, Prewitt), Laplacian (e.g., Morrs-Hildreth) and the Canny edge algorithm can be suitably interchanged with this aspect of the present invention. The results of an edge detector produce an outline-like image, which highlights the edges (or maybe just the significant edges) of the monochromatic image. If using a Sobel algorithm, or another algorithm that produces multiple planes, a horizontal edge plane (
The composite image is then smeared, thickened or otherwise emphasized in step 528 (
In some implementations, this thickened image (
We have found that our method significantly reduce the washing-out of image details experienced in conventional UV images (when fluorescing).
An alternative implementation is discussed with reference to
We analyze the contrast-enhanced image to identify or detect edges and/or boundaries within the image in step 524. As noted, eyes, nose, hair details and mouth often include prominent edges. The results of an edge detector produce an outline-like image, which highlights the edges (or in some implementations just significant edges) of the contrast-enhanced image. If using a Sobel algorithm, or another algorithm that produces multiple planes, a horizontal edge plane (
The composite image is used to guide printing. In some implementations we convert the composite image into a binaryized or bitonal image (e.g.,
Our
Monochromatic
With reference to
Second Aspect of the Invention
In a second aspect of the invention, we provide an ID document and method for making the ID document, where the ID document 100 that is provided that includes variable data (e.g., text, personal information, biometric data, etc.) that is imperceptible to the naked human eye. When illuminated with UV (or IR) light, however, the variable data or security features become readily visible. For example, with reference to
In one implementation of this aspect, at least one character and/or bar code based variable data (e.g., name, date of birth, address, tracking number, sequence number, and the like) that is printed in visible text on an ID document also is printed on the ID document in UV inks, such as by a specific panel on a D2T2 ribbon. In one embodiment, the specific panel on the D2T2 ribbon is a “resin transfer” panel, (not unlike the a K panel that is conventionally used for visible text and bar codes), where the resin transfer panel further comprises UV fluorescing dyes or pigments, the desired color(s) for printing UV characters.
In at least one embodiment of this aspect, after the UV text is applied to the ID document substrate using the D2T2 UV resin transfer ribbon 172, a laminate (such as a polyethylene terephthalate (PET)) based laminate) can be applied over the UV text. Application of this laminate can cause the UV text to fracture (split apart) upon an intrusion (e.g., counterfeiter or forger) attempt. The laminate is selected such that its adhesive strength is greater than its cohesive strength, whereby the laminate splits apart during attempted intrusions. As those skilled in the art will appreciate, the application of the laminate over the UV text can be controlled and adapted so that as the laminate splits, at least part of the UV text remains in one portion of the laminate and at least part of the UV text is on the other split portion of the laminate.
Although the variable UV character data 110 is shown in
Third Aspect of the Invention
In a third aspect of the invention, we provide an ID document and method for making the ID document, where the ID document has thereon a discernable, identifying variable data image that “glows” when illuminated by UV light. In one embodiment of the first aspect, this discernable identifying variable data image is provided on the card in addition to a visible image (which can, for example, be the same image) printed on the card. For example,
In one implementation of this aspect, variable data is D2T2 printed with a special ribbon that contains the usual visible Cyan (C), Magenta (M) and Yellow (Y) panels, but where at least one of the visible panels also contains a corresponding a heat diffuseable UV fluorescing dye. The heat diffuseable UV fluorescing dye can be the same color as the visible panel that is diffused into the ID document substantially simultaneously with the visible panel, but it need not be the same color. In fact in at least one embodiment, it is preferred that the color of the heat diffuseable UV fluorescing dye be different than the color of the panel, to enable the color of the UV to be viewed more clearly under UV light.
In this implementation, the UV image that glows in necessarily coincides exactly with the corresponding visible image (as can be seen in
Of course, instead of D2T2, other printing techniques can be used so long as UV dyes or inks are transferred to the substrate, to represent a particular color. Additional UV panels can be added to achieve additional ghost image colors. In other implementations of the invention, the UV component can be mixed with process colors CM or Y, and applied using conventional printing techniques.
This aspect of the invention also can provide forensic advantages. Because the design of the UV glowing ribbon 180 links the dye that makes the visible image to the dye that makes the fluorescent image, it can be extremely difficult to duplicate a pair of visible-UV dyes on and ID document. Thus, the use of a fraudulent dye for either the UV or the color or both can help to serve as a “fingerprint” in detecting the origin and type of fraud.
Fourth Aspect of the Invention
It generally has been difficult to have information such as black text and/or black bar codes be able to be printed with UV colorant (dyes/inks) such that the black text/bar codes can glow, because the black text/bar codes tend to absorb much of the emitted light. To help overcome at least some of this problem, in a fourth aspect of the invention, we provide an ID document and method for making the ID document, where at least some of the variable black text on the document glows in one or more of a number of available colors under UV illumination. In one embodiment, the black text is printed by a conventional K (black) panel, such as a resin transfer panel with carbon black for optical density. The ribbon containing the K panel, however, is constructed to include an optically clear layer containing an UV fluorescing dye or pigment.
A cross sectional view of the UV on black ribbon 190 is illustrated in
In at least one embodiment, the UV resin in the optically clear layer and the resin in the carbon black layer 170 of the UV on black ribbon 190 are compatible (i.e., miscible in all proportions). Compatibility between the resin in both the clear layer and the resin in the carbon black layer can help ensure intimate bonding upon a coating operation. One way to ensure that the UV resin and the carbon black resin are compatible is to prepare each resin using the same resin binder (e.g., polyvinyl chloride (PVC), acrylate, urethane, etc., and the same solvents (e.g. polyvinyl buterol, methyl ethyl ketone, toluene, toluol, etc.). Selection of the appropriate solvents and resins to work with UV and carbon black is, of course, within the skills of those familiar with the art.
Fifth Aspect of the Invention
In a fifth aspect of the invention, we provide an ID document and method for making the ID document, where the ID document has a full color UV variable image formed thereon and the full color variable UV image is printed on the ID document using a thermal transfer method. The appearance of the resultant full color UV image in this aspect can be similar to that of the full color UV images discussed in connection with the first aspect of the invention; further, all of the special digital processing of the image discussed in connection with the first aspect is similarly applicable here. However, this fifth aspect of the invention differs from the first aspect in that in this aspect prints the full color UV image via thermal transfer. This fifth aspect of the invention can be particularly advantageous for speeding the manufacture of ID documents such as driver's licenses and other photo ID cards, because thermal transfer printing tends to be quicker than D2T2 printing. In addition, this fifth aspect can of course be used to print variable image data on an ID document
To print the full color UV image on an ID document, we have developed a full color UV thermal ribbon 204, as illustrated in
Note also that, in at least one embodiment of the invention, the Z panel comprises two colored UV sub panels and is capable of producing a so-called “false two color image”, in the manner described below.
Each colored UV sub panel 208, 210, 212 comprises thermally diffuseable UV dyes dissolved in a resin. Use of thermally diffuseable UV dyes in a resin used in a conventional thermal/mass transfer ribbon improves the printing and security of a UV image formed on a substrate because the resultant image is formed both on top of and into the substrate. This is illustrated more particularly in
Security of the full color UV image printed on the card is increased as compared to known methods, because the full color UV image that is printed is actually present in two places: in the PVC 22 and on top of the PVC 22. Attempts to fraudulently alter and ID document printed in this manner can be thwarted by the fact that even if the over laminate 24 is removed, a detectable amount of full color UV printing remains within the laminate 22.
In at least one embodiment, it is preferred that the full color UV image printed using the Z panel be printed with a resolution of at least 600 dots per inch (dpi), to provide a photo quality image for identification purposes. For a 600 dpi resolution, the full color UV thermal ribbon 204 and the thermal print head (not shown, but substantially similar to the thermal print head of
In another embodiment, it is preferred that the full color UV image printed using the Z panel be printed with a resolution of at least 300 dots per inch (dpi). For a 300 dpi resolution, the full color UV thermal ribbon 204 and the thermal print head are constructed and arranged to operate to print at least 4-6 levels of color in a given pixel.
One way to achieve multiple color levels of color is through the use of so-called megapixels. A megapixel is created by dividing a given pixel into a plurality of sub-pixels, such that (using a square pixel, for example) an n-by-n megapixel is formed. Thus, instead of a given pixel being “on” or “off”, a given pixel can have 5 different levels of shading. This is illustrated for the example 2 by 2 megapixel of
Sixth Aspect of the Invention
In this aspect of the invention, any of the embodiments provided in the first through fifth aspects described above can also be utilized where the UV fluorescing compounds/colorants/inks/dyes are replaced with an IR fluorescing compounds/colorants/inks/dyes. These IR dyes then react when illuminated with IR light. Those skilled in the art will readily perceive how to adapt the first through fifth aspects of the invention for use with IR.
Seventh Aspect of the Invention
In this aspect of the invention, a blend of UV and IR compounds/colorants/inks/dyes can be used to further increase card security. As an example, for multiple invisible colors used on a given card, one color is seen under UV illumination and another color is seen in IR illumination. An example of this is shown in
In at least one embodiment of this aspect, the UV and IR components can be part of the same ribbon and printed to the ID document at the same time, using either D2T2 or mass transfer printing. The combination of UV and IR also can be printed to the same image. So, for example, a given image (e.g., a portrait on an ID card) could be printed entirely in a yellow UV color and entirely in a magenta IR color. These UV and UR images can be wholly or partially superimposed, or positioned on entirely separate parts of the ID document. Thus, a given image could show a yellow color when viewed using a UV light source and, either in the same location or a different location, a magenta version of the image can be visible when viewed using and IR source. And, neither image will be viewable using only visible light (although either or both of the UV and IR could be superimposed, wholly or partially, on one or more visible images).
Many combinations are possible in this aspect of the invention. In one combination, the photograph is augmented with UV dyes, while the text is augmented with IR dyes, or vice versa. In another combination, a “ghost image” is seen under IR illumination, while other features are visible with UV illumination: Those skilled in the art will appreciate that many implementations of this aspect are possible
One of ordinary skill in the art will appreciate that information than the types of information described herein could be similarly provided on any ID document. Similarly, one of ordinary skill in the art will appreciate, in light of the teachings provided herein, that some of the information could be printed using a reverse format. Further, one of skill in the art will appreciate that the information could be distributed among a plurality of layers that lie beneath an overlaminate layer. Thus, this disclosure is not intended to be limited to providing the information in a particular orientation or to a particular surface.
In addition to the printing methods discussed herein, information on the ID documents (especially non-UV information) can be provided on the desired surface using any known techniques. For example, affixing the information could include any process in which a marking material is applied to a substrate to generate a permanent mark. Thus, one skilled in the art will appreciate that the invention can be adapted for color and/or black and white printing techniques, such as photogravure, flexographic and lithographic printing, printing by means of ink jet printers (using solid or liquid inks), phase change printers, laser printing, laser engraving and electro photographic printing.
It also will be appreciated by those of ordinary skill in the art that several print technologies including but not limited to indigo (variable offset) laser xerography (variable printing), offset printing (fixed printing) and inkjet (variable printing) can be used to print information on the ID document. The information can be printed using dots or lines of varying colors to form text or images. The information also can comprise process colors or pantone colors. The multiple image features can include personal information in a color format.
Persons skilled in the printing art will appreciate that with some of these printing techniques, the “inks” used need not necessarily be conventional liquid inks but also could be solid phase change inks, solid colors, dyes, etc. This disclosure is intended to include any means of affixing the information to a particular desired surface.
Having described and illustrated the principles of the technology with reference to specific implementations, it will be recognized that the technology can be implemented in many other, different, forms.
Although certain words, languages, phrases, terminology, and product brands have been used herein to describe the various features of the embodiments of the invention, their use is not intended as limiting. Use of a given word, phrase, language, terminology, or product brand is intended to include all grammatical, literal, scientific, technical, and functional equivalents. The terminology used herein is for the purpose of description and not limitation.
The technology disclosed herein can be used in combination with other technologies. Examples include at least the technology detailed in the section above entitled “Related Application Data”. It is specifically contemplated that the invention disclosed herein is to be used with the following disclosures.
Instead of ID documents, the inventive techniques can be employed with product tags, product packaging, business cards, bags, charts, maps, labels, etc., particularly those items including providing a non-visible indicia, such as an image information on an over-laminate structure. The term ID document is broadly defined herein to include these tags, labels, packaging, cards, etc. In addition, while some of the examples above are disclosed with specific core components, it is noted that-laminates can be sensitized for use with other core components. For example, it is contemplated that aspects of the invention may have applicability for articles and devices such as compact disks, consumer products, knobs, keyboards, electronic components, decorative or ornamental articles, promotional items, currency, bank notes, checks, etc., or any other suitable items or articles that may record information, images, and/or other data, which may be associated with a function and/or an object or other entity to be identified.
To provide a comprehensive disclosure without unduly lengthening the specification, applicant hereby incorporates by reference each of the patents and patent applications referenced above.
The particular combinations of elements and features in the above-detailed embodiments are exemplary only; the interchanging and substitution of these teachings with other teachings in this and the incorporated-by-reference patents/applications are also expressly contemplated. As those skilled in the art will recognize, variations, modifications, and other implementations of what is described herein can occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention as claimed. Accordingly, the foregoing description is by way of example only and is not intended as limiting. The invention's scope is defined in the following claims and the equivalents thereto.
This application is a continuation of U.S. patent application Ser. No. 10/330,032, filed Dec. 24, 2002 (now U.S. Pat. No. 7,063,264), which claims the benefit of U.S. Provisional Application Nos. 60/344,686, filed Dec. 24, 2001 and 60/371,335, flied Apr. 9, 2002. Each of these above patent documents is hereby incorporated by reference. This application also is related to the following U.S. provisional patent applications, which were filed Dec. 24, 2001: Sensitizing Materials For Laser Engraving (Application No. 60/344,677, —Inventor: Brian LaBrec);Full Color Laser Engraved System For Identification Card Imaging (Application No. 60/344,674, —Inventor: Robert Jones);Reducing Cracking In Identification Documents (Application No. 60/344,710, —Inventors: Robert Jones and Lori Shah);An Inkjet Receiver On Teslin Sheet (Application No. 60/344,685, —Inventors: Daoshen Bi and Drank Dai);Laser Engraving Coating System (Application No. 60/344,675, —Inventor: Brain LaBrec);Forming Variable Information In Identification Documents By Laser Ablation (Application No. 60/344,676, —Inventor: Brian LaBrec);Laser Etched Security Feature (Application No. 60/344,716, —Inventors: George Theodossiou and Robert Jones);Manufacture Of Contact Smart Cards (Application No. 60/344,717, —Inventors: Thomas Regan and Robert Jones);Manufacture Of Contact-Less Smart Cards (Application No. 60/344,719, —Inventors: Daoshen Bi, Robert Jones and John Lincoln);Manufacture Of An All-Pet Identification Document (Application No. 60/344,673, —Inventors: Thomas Regan and Robert Jones);Tamper Evident Coating To Combat Heat Intrusion (Application No. 60/344,709, —Inventor: Brian LaBrec);Pressure Sensitive UV Curable Adhesive Composition (Application No. 60/344,753, —Inventor: William Rice);Heat Activated UV Curable Adhesive Composition (Application No. 60/344,688, —Inventor: William Rice);Security Ink With Cohesive Failure (Application No. 60/344,698, —Inventor Bentley Bloomberg);Variable Based Identification Documents With Security Features (Application No. 60/344,686, —Inventors: Robert Jones and Daoshen Bi);Multiple Image Feature For Identification Document (Application No. 60/344,718, —Inventor: Brian LaBrec);Biometric Identification System (Application No. 60/344,682,—Inventor: Thomas Lopolito);Identification Document Using Polasecure In Differing Colors (Application No. 60/344,687, —Inventors: Bentley Bloomberg and Robert Jones); andSecure Id Card With Multiple Images and Method of Making (Application No. 60/344,683, —Inventor: Brian LaBrec). The present invention is also related to the following provisional applications: Identification Document and Related Methods (Application No. 60/421,254, —Inventors: Geoff Rhoads, et al);Identification Document and Related Methods (Application No. 60/418,762, —Inventors: Geoff Rhoads, et al);Image Processing Techniques for Printing Identification Cards and Documents (Application No. 60/371,335—Inventors: Nelson T. Schneck and Charles R. Duggan);Shadow Reduction System and Related Techniques for Digital Image Capture (Application No. 60/410,544—Inventors: Scott D. Haigh and Tuan A. Hoang);Systems and Methods for Recognition of Individuals Using Combination of Biometric Techniques (Application No. 60/418,129, —Inventors James Howard and Francis Frazier, filed Oct. 11, 2002);Methods of Providing Optical Variable Device for Identification Documents (Application No. 60/429,115, —Inventors Jones et al.)Systems and Methods for Managing and Detecting Fraud in Image Databases Used with Identification Documents (Application No. 60/429,501, —Inventors James Howard and Francis Frazier, filed Nov. 26, 2002);Identification Card Printed with Jet Inks and Systems and Methods of Making Same (Application Ser. No. 10/289,962, —Inventors Robert Jones, Daoshen Bi, and Dennis Mailloux, filed Nov. 6, 2002); The present invention is also related to U.S. patent application Ser. No. 09/747,735, filed Dec. 22, 2000, and Ser. No. 09/602,313, filed Jun. 23, 2000, Ser. No. 10/094,593, filed Mar. 6, 2002, U.S. Provisional Patent Application No. 60/358,321, filed Feb. 19, 2002, as well as U.S. Pat. No. 6,066,594. This application is also related to the following United States Provisional Applications, the contents of which are incorporated herein by reference in their entirety: Variable Based Identification Documents With Security Features (Application No. 60/344,686, —Inventors: Robert Jones and Daoshen Bi, filed Dec. 24, 2001); andImage Processing Techniques for Printing Identification Cards and Documents (Application No. 60/371,335, —Inventors: Nelson Schneck and Charles Duggan, filed Apr. 9, 2002); andImage Processing Techniques for Printing Identification Cards and Documents (Application No. not yet assigned, filed Nov. 25, 2002—Inventors: Nelson T. Schneck and Charles R. Duggan).
Number | Name | Date | Kind |
---|---|---|---|
2815310 | Anderson | Dec 1957 | A |
2957830 | Goldberg | Oct 1960 | A |
3140214 | Hofe | Jul 1964 | A |
3153166 | Thorton, Jr. et al. | Oct 1964 | A |
3225457 | Schure | Dec 1965 | A |
3238595 | Schwartz | Mar 1966 | A |
3413171 | Hannon | Nov 1968 | A |
3455768 | Neimeyer | Jul 1969 | A |
3496262 | Long et al. | Feb 1970 | A |
3536550 | Hofe | Oct 1970 | A |
3565724 | Yamaguchi | Feb 1971 | A |
3569619 | Simjian | Mar 1971 | A |
3571957 | Cumming et al. | Mar 1971 | A |
3582439 | Thomas | Jun 1971 | A |
3601913 | Pollock | Aug 1971 | A |
3614430 | Berler | Oct 1971 | A |
3614839 | Thomas | Oct 1971 | A |
3625801 | Reed et al. | Dec 1971 | A |
3640009 | Komiyama | Feb 1972 | A |
3647275 | Ward | Mar 1972 | A |
3658629 | Cramer et al. | Apr 1972 | A |
3665162 | Yamamoto et al. | May 1972 | A |
3703628 | Philipson, Jr. | Nov 1972 | A |
3713948 | Kluger | Jan 1973 | A |
3758970 | Annenberg | Sep 1973 | A |
3802101 | Scantlin | Apr 1974 | A |
3805238 | Rothfjell | Apr 1974 | A |
3838444 | Loughlin et al. | Sep 1974 | A |
3845391 | Crosby | Oct 1974 | A |
3860558 | Klemchuk | Jan 1975 | A |
3914484 | Creegan et al. | Oct 1975 | A |
3914877 | Hines | Oct 1975 | A |
3922074 | Ikegami et al. | Nov 1975 | A |
3929701 | Hall et al. | Dec 1975 | A |
3932036 | Ueda et al. | Jan 1976 | A |
3949501 | Andrews et al. | Apr 1976 | A |
3953869 | Wah Lo et al. | Apr 1976 | A |
3961956 | Fukuda et al. | Jun 1976 | A |
3975291 | Claussen et al. | Aug 1976 | A |
3984624 | Waggener | Oct 1976 | A |
3987711 | Silver | Oct 1976 | A |
4021288 | Hannon et al. | May 1977 | A |
4025380 | Bernardo | May 1977 | A |
4035740 | Schafer et al. | Jul 1977 | A |
4051374 | Drexhage et al. | Sep 1977 | A |
4072911 | Walther et al. | Feb 1978 | A |
4082873 | Williams | Apr 1978 | A |
4096015 | Kawamata et al. | Jun 1978 | A |
4100509 | Walther et al. | Jul 1978 | A |
4104555 | Fleming | Aug 1978 | A |
4119361 | Greenaway | Oct 1978 | A |
4121003 | Williams | Oct 1978 | A |
4131337 | Moraw et al. | Dec 1978 | A |
4155618 | Regnault et al. | May 1979 | A |
4171766 | Ruell | Oct 1979 | A |
4181558 | Neubronner | Jan 1980 | A |
4183989 | Tooth | Jan 1980 | A |
4184701 | Franklin et al. | Jan 1980 | A |
4225967 | Miwa et al. | Sep 1980 | A |
4230990 | Lert, Jr. et al. | Oct 1980 | A |
4231113 | Blasbalg | Oct 1980 | A |
4238849 | Gassmann | Dec 1980 | A |
4252995 | Schmidt et al. | Feb 1981 | A |
4256900 | Raue | Mar 1981 | A |
4268345 | Semchuck | May 1981 | A |
4271395 | Brinkmann et al. | Jun 1981 | A |
4272311 | D'Angelo et al. | Jun 1981 | A |
4274062 | Brinkmann et al. | Jun 1981 | A |
4289957 | Neyroud et al. | Sep 1981 | A |
4301091 | Schieder et al. | Nov 1981 | A |
4304809 | Moraw et al. | Dec 1981 | A |
4313197 | Maxemchuk | Jan 1982 | A |
4313984 | Moraw et al. | Feb 1982 | A |
4317782 | Eckstein et al. | Mar 1982 | A |
4324421 | Moraw et al. | Apr 1982 | A |
4326066 | Eckstein et al. | Apr 1982 | A |
4338258 | Brinkwerth et al. | Jul 1982 | A |
4356052 | Moraw et al. | Oct 1982 | A |
4359633 | Bianco | Nov 1982 | A |
4360548 | Skees et al. | Nov 1982 | A |
4367488 | Leventer et al. | Jan 1983 | A |
4379947 | Warner | Apr 1983 | A |
4380027 | Leventer et al. | Apr 1983 | A |
4384973 | Harnisch | May 1983 | A |
4395600 | Lundy et al. | Jul 1983 | A |
4415225 | Benton et al. | Nov 1983 | A |
4417784 | Knop et al. | Nov 1983 | A |
4423415 | Goldman | Dec 1983 | A |
4425642 | Moses et al. | Jan 1984 | A |
4428997 | Shulman | Jan 1984 | A |
4443438 | Kasamatsu et al. | Apr 1984 | A |
4448631 | Eaton et al. | May 1984 | A |
4450024 | Haghiri-Tehrani et al. | May 1984 | A |
4467209 | Maurer et al. | Aug 1984 | A |
4468468 | Benninghoven et al. | Aug 1984 | A |
4476468 | Goldman | Oct 1984 | A |
4491492 | Hetherington | Jan 1985 | A |
4505772 | Renz | Mar 1985 | A |
4506148 | Berthold et al. | Mar 1985 | A |
4507346 | Maurer et al. | Mar 1985 | A |
4510311 | Eckstein | Apr 1985 | A |
4517042 | Singer | May 1985 | A |
4519865 | Bradler et al. | May 1985 | A |
4522881 | Kobayashi et al. | Jun 1985 | A |
4523777 | Holbein et al. | Jun 1985 | A |
4527059 | Benninghoven et al. | Jul 1985 | A |
4528588 | Lofberg | Jul 1985 | A |
4529992 | Ishida et al. | Jul 1985 | A |
4532508 | Ruell | Jul 1985 | A |
4544181 | Maurer et al. | Oct 1985 | A |
4547804 | Greenberg | Oct 1985 | A |
4551265 | Brinkwerth et al. | Nov 1985 | A |
4553261 | Froessl | Nov 1985 | A |
4568824 | Gareis et al. | Feb 1986 | A |
4579754 | Maurer et al. | Apr 1986 | A |
4585509 | Obayashi | Apr 1986 | A |
4590366 | Rothfjell | May 1986 | A |
4595950 | Lofberg | Jun 1986 | A |
4596409 | Holbein et al. | Jun 1986 | A |
4597592 | Maurer et al. | Jul 1986 | A |
4597593 | Maurer | Jul 1986 | A |
4599259 | Kobayashi et al. | Jul 1986 | A |
4617216 | Haghiri-Tehrani et al. | Oct 1986 | A |
4619728 | Brink | Oct 1986 | A |
4621271 | Brownstein | Nov 1986 | A |
4627997 | Ide | Dec 1986 | A |
4629215 | Maurer et al. | Dec 1986 | A |
4637051 | Clark | Jan 1987 | A |
4638289 | Zottnik | Jan 1987 | A |
4652722 | Stone et al. | Mar 1987 | A |
4653775 | Raphael et al. | Mar 1987 | A |
4653862 | Morozumi | Mar 1987 | A |
4654290 | Spanjer | Mar 1987 | A |
4654867 | Labedz et al. | Mar 1987 | A |
4656585 | Stephenson | Apr 1987 | A |
4660221 | Dlugos | Apr 1987 | A |
4663518 | Borror et al. | May 1987 | A |
4665431 | Cooper | May 1987 | A |
4670882 | Telle et al. | Jun 1987 | A |
4672605 | Hustig et al. | Jun 1987 | A |
4672891 | Maurer et al. | Jun 1987 | A |
4675746 | Tetrick et al. | Jun 1987 | A |
4677435 | Causse D'Agraives et al. | Jun 1987 | A |
4680079 | Tanaka | Jul 1987 | A |
4682794 | Margolin | Jul 1987 | A |
4687526 | Wilfert | Aug 1987 | A |
4689477 | Goldman | Aug 1987 | A |
4702789 | Ceraso | Oct 1987 | A |
4703476 | Howard | Oct 1987 | A |
4709384 | Schiller | Nov 1987 | A |
4711690 | Haghiri-Tehrani | Dec 1987 | A |
4712103 | Gotanda | Dec 1987 | A |
4717441 | Seki et al. | Jan 1988 | A |
4718106 | Weinblatt | Jan 1988 | A |
4732410 | Holbein et al. | Mar 1988 | A |
4735670 | Maurer et al. | Apr 1988 | A |
4738949 | Sethi et al. | Apr 1988 | A |
4739377 | Allen | Apr 1988 | A |
4748452 | Maurer | May 1988 | A |
4750173 | Bluthgen | Jun 1988 | A |
4751525 | Robinson | Jun 1988 | A |
4754128 | Takeda et al. | Jun 1988 | A |
4765636 | Speer | Aug 1988 | A |
4765656 | Becker et al. | Aug 1988 | A |
4766026 | Lass et al. | Aug 1988 | A |
4773677 | Plasse | Sep 1988 | A |
4775901 | Nakano | Oct 1988 | A |
4776013 | Kafri et al. | Oct 1988 | A |
4790566 | Boissier et al. | Dec 1988 | A |
4803114 | Schledorn | Feb 1989 | A |
4805020 | Greenberg | Feb 1989 | A |
4807031 | Broughton et al. | Feb 1989 | A |
4811357 | Betts et al. | Mar 1989 | A |
4811408 | Goldman | Mar 1989 | A |
4816372 | Schenk et al. | Mar 1989 | A |
4816374 | Lecomte | Mar 1989 | A |
4820912 | Samyn | Apr 1989 | A |
4822973 | Fahner et al. | Apr 1989 | A |
4832783 | Nechay et al. | May 1989 | A |
4835517 | van der Gracht et al. | May 1989 | A |
4841134 | Hida et al. | Jun 1989 | A |
4855827 | Best | Aug 1989 | A |
4859361 | Reilly et al. | Aug 1989 | A |
4861620 | Azuma et al. | Aug 1989 | A |
4864618 | Wright et al. | Sep 1989 | A |
4866025 | Byers et al. | Sep 1989 | A |
4866027 | Henzel | Sep 1989 | A |
4866771 | Bain | Sep 1989 | A |
4869946 | Clay | Sep 1989 | A |
4871714 | Byers et al. | Oct 1989 | A |
4876234 | Henzel | Oct 1989 | A |
4876237 | Byers et al. | Oct 1989 | A |
4876617 | Best et al. | Oct 1989 | A |
4878167 | Kapulka et al. | Oct 1989 | A |
4879747 | Leighton et al. | Nov 1989 | A |
4884139 | Pommier | Nov 1989 | A |
4888798 | Earnest | Dec 1989 | A |
4889749 | Ohashi et al. | Dec 1989 | A |
4891351 | Byers et al. | Jan 1990 | A |
4894110 | Lass et al. | Jan 1990 | A |
4903301 | Kondo et al. | Feb 1990 | A |
4908836 | Rushforth et al. | Mar 1990 | A |
4908873 | Philibert et al. | Mar 1990 | A |
4921278 | Shiang et al. | May 1990 | A |
4925521 | Asbury, Jr. et al. | May 1990 | A |
4931793 | Fuhrmann et al. | Jun 1990 | A |
4935335 | Fotland | Jun 1990 | A |
4939515 | Adelson | Jul 1990 | A |
4941150 | Iwasaki | Jul 1990 | A |
4943973 | Werner | Jul 1990 | A |
4943976 | Ishigaki | Jul 1990 | A |
4944036 | Hyatt | Jul 1990 | A |
4947028 | Gorog | Aug 1990 | A |
4959406 | Foltin et al. | Sep 1990 | A |
4963998 | Maufe | Oct 1990 | A |
4964066 | Yamane et al. | Oct 1990 | A |
4965827 | McDonald | Oct 1990 | A |
4966644 | Clark, Jr. et al. | Oct 1990 | A |
4967273 | Greenberg | Oct 1990 | A |
4968063 | McConville et al. | Nov 1990 | A |
4969041 | O'Grady et al. | Nov 1990 | A |
4972471 | Gross et al. | Nov 1990 | A |
4972476 | Nathans | Nov 1990 | A |
4977594 | Shear | Dec 1990 | A |
4979210 | Nagata et al. | Dec 1990 | A |
4985096 | Bekker-Madsen | Jan 1991 | A |
4990759 | Gloton et al. | Feb 1991 | A |
4992130 | Vermeulen et al. | Feb 1991 | A |
4993068 | Piosenka et al. | Feb 1991 | A |
4994831 | Marandi | Feb 1991 | A |
4996530 | Hilton | Feb 1991 | A |
4999065 | Wilfert | Mar 1991 | A |
5005872 | Lass et al. | Apr 1991 | A |
5005873 | West | Apr 1991 | A |
5006503 | Byers et al. | Apr 1991 | A |
5010405 | Schreiber et al. | Apr 1991 | A |
5011816 | Byers et al. | Apr 1991 | A |
5013900 | Hoppe | May 1991 | A |
5023907 | Johnson et al. | Jun 1991 | A |
5024989 | Chiang et al. | Jun 1991 | A |
5027401 | Soltesz | Jun 1991 | A |
5036513 | Greenblatt | Jul 1991 | A |
5051147 | Anger | Sep 1991 | A |
5053956 | Donald et al. | Oct 1991 | A |
5058926 | Drower | Oct 1991 | A |
5060981 | Fossum et al. | Oct 1991 | A |
5061341 | Kildal et al. | Oct 1991 | A |
5062341 | Reiling et al. | Nov 1991 | A |
5063446 | Gibson | Nov 1991 | A |
5066947 | Du Castel | Nov 1991 | A |
5073899 | Collier et al. | Dec 1991 | A |
5075195 | Babler et al. | Dec 1991 | A |
5079411 | Lee | Jan 1992 | A |
5079648 | Maufe | Jan 1992 | A |
5086469 | Gupta et al. | Feb 1992 | A |
5087507 | Heinzer | Feb 1992 | A |
5089350 | Talvalkar et al. | Feb 1992 | A |
5095196 | Miyata | Mar 1992 | A |
5099422 | Foresman et al. | Mar 1992 | A |
5100711 | Satake et al. | Mar 1992 | A |
5103459 | Gilhousen et al. | Apr 1992 | A |
5113445 | Wang | May 1992 | A |
5113518 | Durst, Jr. et al. | May 1992 | A |
5122813 | Lass et al. | Jun 1992 | A |
5128779 | Mallik | Jul 1992 | A |
5128859 | Carbone et al. | Jul 1992 | A |
5138070 | Berneth | Aug 1992 | A |
5138604 | Umeda et al. | Aug 1992 | A |
5138712 | Corbin | Aug 1992 | A |
5146457 | Veldhuis et al. | Sep 1992 | A |
5148498 | Resnikoff et al. | Sep 1992 | A |
5150409 | Elsner | Sep 1992 | A |
5156938 | Foley et al. | Oct 1992 | A |
5157424 | Craven et al. | Oct 1992 | A |
5161210 | Druyvesteyn et al. | Nov 1992 | A |
5166676 | Milheiser | Nov 1992 | A |
5169155 | Soules et al. | Dec 1992 | A |
5169707 | Faykish et al. | Dec 1992 | A |
5171625 | Newton | Dec 1992 | A |
5172281 | Ardis et al. | Dec 1992 | A |
5173840 | Kodai et al. | Dec 1992 | A |
5179392 | Kawaguchi | Jan 1993 | A |
5181786 | Hujink | Jan 1993 | A |
5185736 | Tyrrell et al. | Feb 1993 | A |
5191522 | Bosco et al. | Mar 1993 | A |
5199081 | Saito et al. | Mar 1993 | A |
5200822 | Bronfin et al. | Apr 1993 | A |
5201044 | Frey, Jr. et al. | Apr 1993 | A |
5208450 | Uenishi et al. | May 1993 | A |
5212030 | Figov | May 1993 | A |
5212551 | Conanan | May 1993 | A |
5213337 | Sherman | May 1993 | A |
5213648 | Vermeulen et al. | May 1993 | A |
5215864 | Laakmann | Jun 1993 | A |
5216543 | Calhoun | Jun 1993 | A |
5224173 | Kuhns et al. | Jun 1993 | A |
5228056 | Schilling | Jul 1993 | A |
5233513 | Doyle | Aug 1993 | A |
5237164 | Takada | Aug 1993 | A |
5243423 | DeJean et al. | Sep 1993 | A |
5243524 | Ishida et al. | Sep 1993 | A |
5245329 | Gokcebay | Sep 1993 | A |
5249546 | Pennelle | Oct 1993 | A |
5250492 | Dotson et al. | Oct 1993 | A |
5253078 | Balkanski et al. | Oct 1993 | A |
5258998 | Koide | Nov 1993 | A |
5259025 | Monroe et al. | Nov 1993 | A |
5261987 | Luening et al. | Nov 1993 | A |
5262860 | Fitzpatrick et al. | Nov 1993 | A |
5267334 | Normille et al. | Nov 1993 | A |
5267755 | Yamauchi et al. | Dec 1993 | A |
5270526 | Yoshihara | Dec 1993 | A |
5272039 | Yoerger | Dec 1993 | A |
5276478 | Morton | Jan 1994 | A |
5280537 | Sugiyama et al. | Jan 1994 | A |
5284364 | Jain | Feb 1994 | A |
5288976 | Citron et al. | Feb 1994 | A |
5293399 | Hefti | Mar 1994 | A |
5294774 | Stone | Mar 1994 | A |
5294944 | Takeyama et al. | Mar 1994 | A |
5295203 | Krause et al. | Mar 1994 | A |
5299019 | Pack et al. | Mar 1994 | A |
5301981 | Nesis | Apr 1994 | A |
5304513 | Haghiri-Tehrani et al. | Apr 1994 | A |
5304789 | Lob et al. | Apr 1994 | A |
5305400 | Butera | Apr 1994 | A |
5308736 | Defieuw et al. | May 1994 | A |
5315098 | Tow | May 1994 | A |
5317503 | Inoue | May 1994 | A |
5319453 | Copriviza et al. | Jun 1994 | A |
5319724 | Blonstein et al. | Jun 1994 | A |
5319735 | Preuss et al. | Jun 1994 | A |
5321751 | Ray et al. | Jun 1994 | A |
5325167 | Melen | Jun 1994 | A |
5334573 | Schild | Aug 1994 | A |
5336657 | Egashira et al. | Aug 1994 | A |
5336871 | Colgate, Jr. | Aug 1994 | A |
5337361 | Wang et al. | Aug 1994 | A |
5351302 | Leighton et al. | Sep 1994 | A |
5374675 | Plachetta et al. | Dec 1994 | A |
5379345 | Greenberg | Jan 1995 | A |
5380044 | Aitkens et al. | Jan 1995 | A |
5380695 | Chiang et al. | Jan 1995 | A |
5384846 | Berson et al. | Jan 1995 | A |
5385371 | Izawa | Jan 1995 | A |
5386566 | Hamanaka et al. | Jan 1995 | A |
5387013 | Yamauchi et al. | Feb 1995 | A |
5393099 | D'Amato | Feb 1995 | A |
5394274 | Kahn | Feb 1995 | A |
5394555 | Hunter et al. | Feb 1995 | A |
5396559 | McGrew | Mar 1995 | A |
5404377 | Moses | Apr 1995 | A |
5408542 | Callahan | Apr 1995 | A |
5409797 | Hosoi et al. | Apr 1995 | A |
5410142 | Tsuboi et al. | Apr 1995 | A |
5413651 | Otruba | May 1995 | A |
5418208 | Takeda et al. | May 1995 | A |
5421619 | Dyball | Jun 1995 | A |
5421869 | Gundjian et al. | Jun 1995 | A |
5422213 | Yu et al. | Jun 1995 | A |
5422230 | Boggs et al. | Jun 1995 | A |
5422963 | Chen et al. | Jun 1995 | A |
5422995 | Aoki et al. | Jun 1995 | A |
5424119 | Phillips et al. | Jun 1995 | A |
5428607 | Hiller et al. | Jun 1995 | A |
5428731 | Powers, III | Jun 1995 | A |
5432864 | Lu et al. | Jul 1995 | A |
5432870 | Schwartz | Jul 1995 | A |
5434994 | Shaheen et al. | Jul 1995 | A |
5435599 | Bernecker | Jul 1995 | A |
5436970 | Ray et al. | Jul 1995 | A |
5446273 | Leslie | Aug 1995 | A |
5446659 | Yamawaki | Aug 1995 | A |
5448053 | Rhoads | Sep 1995 | A |
5449200 | Andric et al. | Sep 1995 | A |
5450490 | Jensen et al. | Sep 1995 | A |
5450504 | Calia | Sep 1995 | A |
5451478 | Boggs et al. | Sep 1995 | A |
5454598 | Wicker | Oct 1995 | A |
5455947 | Suzuki et al. | Oct 1995 | A |
5458713 | Ojster | Oct 1995 | A |
5463209 | Figh et al. | Oct 1995 | A |
5463212 | Oshima et al. | Oct 1995 | A |
5466012 | Puckett et al. | Nov 1995 | A |
5466293 | Tanaka et al. | Nov 1995 | A |
5469506 | Berson et al. | Nov 1995 | A |
5471533 | Wang et al. | Nov 1995 | A |
5473631 | Moses | Dec 1995 | A |
5474875 | Loerzer et al. | Dec 1995 | A |
5479168 | Johnson et al. | Dec 1995 | A |
5483442 | Black et al. | Jan 1996 | A |
5483632 | Kuwamoto et al. | Jan 1996 | A |
5489567 | Koshizuka et al. | Feb 1996 | A |
5489639 | Faber et al. | Feb 1996 | A |
5490217 | Wang et al. | Feb 1996 | A |
5493677 | Balogh et al. | Feb 1996 | A |
5495411 | Ananda | Feb 1996 | A |
5495581 | Tsai | Feb 1996 | A |
5496071 | Walsh | Mar 1996 | A |
5499294 | Friedman | Mar 1996 | A |
5499330 | Lucas et al. | Mar 1996 | A |
5504674 | Chen et al. | Apr 1996 | A |
5505494 | Belluci et al. | Apr 1996 | A |
5509693 | Kohls | Apr 1996 | A |
5514860 | Berson | May 1996 | A |
5515081 | Vasilik | May 1996 | A |
5516362 | Gundjian et al. | May 1996 | A |
5522623 | Soules et al. | Jun 1996 | A |
5523125 | Kennedy et al. | Jun 1996 | A |
5523942 | Tyler et al. | Jun 1996 | A |
5524933 | Kunt et al. | Jun 1996 | A |
5525403 | Kawabata et al. | Jun 1996 | A |
5529345 | Kohls | Jun 1996 | A |
5530852 | Meske, Jr. et al. | Jun 1996 | A |
5532104 | Goto | Jul 1996 | A |
5534372 | Koshizuka et al. | Jul 1996 | A |
5548645 | Ananda | Aug 1996 | A |
5550346 | Andriash et al. | Aug 1996 | A |
5550976 | Henderson et al. | Aug 1996 | A |
5553143 | Ross et al. | Sep 1996 | A |
5560799 | Jacobsen | Oct 1996 | A |
5573584 | Ostertag et al. | Nov 1996 | A |
5576377 | El Sayed et al. | Nov 1996 | A |
5579479 | Plum | Nov 1996 | A |
5579694 | Mailloux | Dec 1996 | A |
5586310 | Sharman | Dec 1996 | A |
5594226 | Steger | Jan 1997 | A |
5594809 | Kopec et al. | Jan 1997 | A |
5612943 | Moses et al. | Mar 1997 | A |
5613004 | Cooperman et al. | Mar 1997 | A |
5629093 | Bischof et al. | May 1997 | A |
5629512 | Haga | May 1997 | A |
5629980 | Stefik et al. | May 1997 | A |
5633119 | Burberry et al. | May 1997 | A |
5634012 | Stefik et al. | May 1997 | A |
5635012 | Belluci et al. | Jun 1997 | A |
5636276 | Brugger | Jun 1997 | A |
5636292 | Rhoads | Jun 1997 | A |
5637174 | Field et al. | Jun 1997 | A |
5637447 | Dickerson et al. | Jun 1997 | A |
5638443 | Stefik et al. | Jun 1997 | A |
5638508 | Kanai et al. | Jun 1997 | A |
5639819 | Farkas et al. | Jun 1997 | A |
5640193 | Wellner | Jun 1997 | A |
5640647 | Hube | Jun 1997 | A |
5643389 | Kalisiak et al. | Jul 1997 | A |
5646997 | Barton | Jul 1997 | A |
5646999 | Saito | Jul 1997 | A |
5652626 | Kawakami et al. | Jul 1997 | A |
5652714 | Peterson et al. | Jul 1997 | A |
5653846 | Onodera et al. | Aug 1997 | A |
5653929 | Miele et al. | Aug 1997 | A |
5654105 | Obringer et al. | Aug 1997 | A |
5657462 | Brouwer et al. | Aug 1997 | A |
5658411 | Faykish | Aug 1997 | A |
5659164 | Schmid et al. | Aug 1997 | A |
5659726 | Sandford, II et al. | Aug 1997 | A |
5663766 | Sizer, II | Sep 1997 | A |
5665951 | Newman et al. | Sep 1997 | A |
5667716 | Ziolo et al. | Sep 1997 | A |
5668636 | Beach et al. | Sep 1997 | A |
5669995 | Hong | Sep 1997 | A |
5671005 | McNay et al. | Sep 1997 | A |
5671282 | Wolff et al. | Sep 1997 | A |
5673316 | Auerbach et al. | Sep 1997 | A |
5680223 | Cooper et al. | Oct 1997 | A |
5681356 | Barak et al. | Oct 1997 | A |
5683774 | Faykish et al. | Nov 1997 | A |
5684885 | Cass et al. | Nov 1997 | A |
5687236 | Moskowitz et al. | Nov 1997 | A |
5688738 | Lu | Nov 1997 | A |
5689620 | Kopec et al. | Nov 1997 | A |
5689706 | Rao et al. | Nov 1997 | A |
5691757 | Hayashihara et al. | Nov 1997 | A |
5694471 | Chen et al. | Dec 1997 | A |
5696705 | Zykan | Dec 1997 | A |
5697006 | Taguchi et al. | Dec 1997 | A |
5698296 | Dotson et al. | Dec 1997 | A |
5700037 | Keller | Dec 1997 | A |
5706364 | Kopec et al. | Jan 1998 | A |
5710834 | Rhoads | Jan 1998 | A |
5712731 | Drinkwater et al. | Jan 1998 | A |
5714291 | Marinello et al. | Feb 1998 | A |
5715403 | Stefik | Feb 1998 | A |
5717018 | Magerstedt et al. | Feb 1998 | A |
5717391 | Rodriguez | Feb 1998 | A |
5719667 | Miers | Feb 1998 | A |
5719948 | Liang | Feb 1998 | A |
5721781 | Deo et al. | Feb 1998 | A |
5721788 | Powell et al. | Feb 1998 | A |
5734119 | France et al. | Mar 1998 | A |
5734752 | Knox | Mar 1998 | A |
5742411 | Walters | Apr 1998 | A |
5742845 | Wagner | Apr 1998 | A |
5745308 | Spangenberg | Apr 1998 | A |
5745901 | Entner et al. | Apr 1998 | A |
5748783 | Rhoads | May 1998 | A |
5760386 | Ward | Jun 1998 | A |
5761686 | Bloomberg | Jun 1998 | A |
5763868 | Kubota et al. | Jun 1998 | A |
5764263 | Lin | Jun 1998 | A |
5765152 | Erickson | Jun 1998 | A |
5767496 | Swartz et al. | Jun 1998 | A |
5768001 | Kelley et al. | Jun 1998 | A |
5768426 | Rhoads | Jun 1998 | A |
5768505 | Gilchrist et al. | Jun 1998 | A |
5768506 | Randell | Jun 1998 | A |
5769301 | Hebert et al. | Jun 1998 | A |
5773677 | Lansink-Rotgerink et al. | Jun 1998 | A |
5774452 | Wolosewicz | Jun 1998 | A |
5776278 | Tuttle et al. | Jul 1998 | A |
5778102 | Sandford, II et al. | Jul 1998 | A |
5783024 | Forkert | Jul 1998 | A |
5786587 | Colgate, Jr. | Jul 1998 | A |
5787186 | Schroeder | Jul 1998 | A |
5787269 | Hyodo | Jul 1998 | A |
5788806 | Bradshaw et al. | Aug 1998 | A |
5790703 | Wang | Aug 1998 | A |
5795643 | Steininger et al. | Aug 1998 | A |
5798949 | Kaub | Aug 1998 | A |
5799092 | Kristol et al. | Aug 1998 | A |
5801687 | Peterson et al. | Sep 1998 | A |
5801857 | Heckenkamp et al. | Sep 1998 | A |
5804803 | Cragun et al. | Sep 1998 | A |
5808758 | Solmsdorf | Sep 1998 | A |
5809139 | Girod et al. | Sep 1998 | A |
5809317 | Kogan et al. | Sep 1998 | A |
5809633 | Mundigl et al. | Sep 1998 | A |
5815093 | Kikinis | Sep 1998 | A |
5815292 | Walters | Sep 1998 | A |
5816619 | Schaede | Oct 1998 | A |
5818441 | Throckmorton et al. | Oct 1998 | A |
5824447 | Tavernier et al. | Oct 1998 | A |
5824715 | Hayashihara et al. | Oct 1998 | A |
5825892 | Braudaway et al. | Oct 1998 | A |
5828325 | Wolosewicz et al. | Oct 1998 | A |
5832481 | Sheffield | Nov 1998 | A |
5834118 | Rånby et al. | Nov 1998 | A |
5840142 | Stevenson et al. | Nov 1998 | A |
5840791 | Magerstedt et al. | Nov 1998 | A |
5841886 | Rhoads | Nov 1998 | A |
5841978 | Rhoads | Nov 1998 | A |
5844685 | Gontin | Dec 1998 | A |
5845281 | Benson et al. | Dec 1998 | A |
5848413 | Wolff | Dec 1998 | A |
5848424 | Scheinkman et al. | Dec 1998 | A |
5852673 | Young | Dec 1998 | A |
5853955 | Towfiq | Dec 1998 | A |
5855969 | Robertson | Jan 1999 | A |
5856661 | Finkelstein et al. | Jan 1999 | A |
5857038 | Owada et al. | Jan 1999 | A |
5861662 | Candelore | Jan 1999 | A |
5862260 | Rhoads | Jan 1999 | A |
5862262 | Jacobs et al. | Jan 1999 | A |
5862500 | Goodwin | Jan 1999 | A |
5864622 | Marcus | Jan 1999 | A |
5864623 | Messina et al. | Jan 1999 | A |
5866644 | Mercx et al. | Feb 1999 | A |
5867199 | Knox et al. | Feb 1999 | A |
5867586 | Liang | Feb 1999 | A |
5869819 | Knowles et al. | Feb 1999 | A |
5870711 | Huffman | Feb 1999 | A |
5871615 | Harris | Feb 1999 | A |
5872589 | Morales | Feb 1999 | A |
5872627 | Miers | Feb 1999 | A |
5873066 | Underwood et al. | Feb 1999 | A |
5875249 | Mintzer et al. | Feb 1999 | A |
5877707 | Kowalick | Mar 1999 | A |
5879502 | Gustafson | Mar 1999 | A |
5879784 | Breen et al. | Mar 1999 | A |
5888624 | Haghiri et al. | Mar 1999 | A |
5892661 | Stafford et al. | Apr 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5893910 | Martineau et al. | Apr 1999 | A |
5895074 | Chess et al. | Apr 1999 | A |
5897938 | Shinmoto et al. | Apr 1999 | A |
5900608 | Iida | May 1999 | A |
5902353 | Reber et al. | May 1999 | A |
5903729 | Reber et al. | May 1999 | A |
5905248 | Russell et al. | May 1999 | A |
5905251 | Knowles | May 1999 | A |
5905819 | Daly | May 1999 | A |
5907149 | Marckini | May 1999 | A |
5907848 | Zaiken et al. | May 1999 | A |
5909683 | Miginiac et al. | Jun 1999 | A |
5912767 | Lee | Jun 1999 | A |
5912974 | Holloway et al. | Jun 1999 | A |
5913210 | Call | Jun 1999 | A |
5915027 | Cox et al. | Jun 1999 | A |
5917277 | Knox et al. | Jun 1999 | A |
5918213 | Bernard et al. | Jun 1999 | A |
5918214 | Perkowski | Jun 1999 | A |
5919853 | Condit et al. | Jul 1999 | A |
5920861 | Hall et al. | Jul 1999 | A |
5920878 | DeMont | Jul 1999 | A |
5925500 | Yang et al. | Jul 1999 | A |
5926822 | Garman | Jul 1999 | A |
5928989 | Ohnishi et al. | Jul 1999 | A |
5930377 | Powell et al. | Jul 1999 | A |
5930759 | Moore et al. | Jul 1999 | A |
5930767 | Reber et al. | Jul 1999 | A |
5932863 | Rathus et al. | Aug 1999 | A |
5933816 | Zeanah et al. | Aug 1999 | A |
5933829 | Durst et al. | Aug 1999 | A |
5935694 | Olmstead et al. | Aug 1999 | A |
5936986 | Cantatore et al. | Aug 1999 | A |
5937189 | Branson et al. | Aug 1999 | A |
5938726 | Reber et al. | Aug 1999 | A |
5938727 | Ikeda | Aug 1999 | A |
5939695 | Nelson | Aug 1999 | A |
5939699 | Perttunen et al. | Aug 1999 | A |
5940595 | Reber et al. | Aug 1999 | A |
5944356 | Bergmann et al. | Aug 1999 | A |
5944881 | Mehta et al. | Aug 1999 | A |
5947369 | Frommer et al. | Sep 1999 | A |
5948035 | Tomita | Sep 1999 | A |
5949055 | Fleet et al. | Sep 1999 | A |
5950169 | Borghesi et al. | Sep 1999 | A |
5950173 | Perkowski | Sep 1999 | A |
5953710 | Fleming | Sep 1999 | A |
5955021 | Tiffany, III | Sep 1999 | A |
5955961 | Wallerstein | Sep 1999 | A |
5956687 | Wamsley et al. | Sep 1999 | A |
5958528 | Bernecker | Sep 1999 | A |
5962840 | Haghiri-Tehrani et al. | Oct 1999 | A |
5963916 | Kaplan | Oct 1999 | A |
5965242 | Patton et al. | Oct 1999 | A |
5969324 | Reber et al. | Oct 1999 | A |
5973842 | Spangenberg | Oct 1999 | A |
5974141 | Saito | Oct 1999 | A |
5974548 | Adams | Oct 1999 | A |
5975583 | Cobben et al. | Nov 1999 | A |
5977514 | Feng et al. | Nov 1999 | A |
5978773 | Hudetz et al. | Nov 1999 | A |
5979757 | Tracy et al. | Nov 1999 | A |
5982912 | Fukui et al. | Nov 1999 | A |
5983218 | Syeda-Mahmood | Nov 1999 | A |
5984366 | Priddy | Nov 1999 | A |
5985078 | Suess et al. | Nov 1999 | A |
5987434 | Libman | Nov 1999 | A |
5988820 | Huang et al. | Nov 1999 | A |
5991429 | Coffin et al. | Nov 1999 | A |
5991733 | Aleia et al. | Nov 1999 | A |
5991876 | Johnson et al. | Nov 1999 | A |
6000607 | Ohki et al. | Dec 1999 | A |
6002383 | Shimada | Dec 1999 | A |
6003581 | Aihara | Dec 1999 | A |
6007660 | Forkert | Dec 1999 | A |
6007929 | Robertson et al. | Dec 1999 | A |
6009402 | Whitworth | Dec 1999 | A |
6012641 | Watada | Jan 2000 | A |
6016225 | Anderson | Jan 2000 | A |
6017972 | Harris et al. | Jan 2000 | A |
6022905 | Harris et al. | Feb 2000 | A |
6024287 | Takai et al. | Feb 2000 | A |
6025462 | Wang et al. | Feb 2000 | A |
6028134 | Zhang et al. | Feb 2000 | A |
6036099 | Leighton | Mar 2000 | A |
6036807 | Brongers | Mar 2000 | A |
6037102 | Loerzer et al. | Mar 2000 | A |
6037860 | Zander et al. | Mar 2000 | A |
6038333 | Wang | Mar 2000 | A |
6038393 | Iyengar et al. | Mar 2000 | A |
6042249 | Spangenberg | Mar 2000 | A |
6047888 | Dethloff | Apr 2000 | A |
6049055 | Fannash et al. | Apr 2000 | A |
6049463 | O'Malley et al. | Apr 2000 | A |
6049627 | Becker et al. | Apr 2000 | A |
6049665 | Branson et al. | Apr 2000 | A |
6051297 | Maier et al. | Apr 2000 | A |
6052486 | Knowlton et al. | Apr 2000 | A |
6054170 | Chess et al. | Apr 2000 | A |
6062604 | Taylor et al. | May 2000 | A |
6064414 | Kobayashi et al. | May 2000 | A |
6064764 | Bhaskaran et al. | May 2000 | A |
6064983 | Koehler | May 2000 | A |
6066437 | Kosslinger | May 2000 | A |
6066594 | Gunn et al. | May 2000 | A |
6071855 | Patton et al. | Jun 2000 | A |
6072894 | Payne | Jun 2000 | A |
6073854 | Bravenec et al. | Jun 2000 | A |
6075223 | Harrison | Jun 2000 | A |
6076026 | Jambhekar et al. | Jun 2000 | A |
6081832 | Gilchrist et al. | Jun 2000 | A |
6082778 | Solmsdorf | Jul 2000 | A |
6086971 | Haas et al. | Jul 2000 | A |
6089614 | Howland et al. | Jul 2000 | A |
6092049 | Chislenko et al. | Jul 2000 | A |
6095566 | Yamamoto et al. | Aug 2000 | A |
6097839 | Liu | Aug 2000 | A |
6100804 | Brady et al. | Aug 2000 | A |
6101602 | Fridrich | Aug 2000 | A |
6105007 | Norris | Aug 2000 | A |
6106110 | Gundjian et al. | Aug 2000 | A |
6110864 | Lu | Aug 2000 | A |
6111506 | Yap et al. | Aug 2000 | A |
6111517 | Atick et al. | Aug 2000 | A |
6115690 | Wong | Sep 2000 | A |
6120142 | Eltgen et al. | Sep 2000 | A |
6120882 | Faykish et al. | Sep 2000 | A |
6122403 | Rhoads | Sep 2000 | A |
6127475 | Vollenberg et al. | Oct 2000 | A |
6131161 | Linnartz | Oct 2000 | A |
6134582 | Kennedy | Oct 2000 | A |
6138913 | Cyr et al. | Oct 2000 | A |
6141611 | Mackey et al. | Oct 2000 | A |
6143852 | Harrison et al. | Nov 2000 | A |
6146032 | Dunham | Nov 2000 | A |
6146741 | Ogawa et al. | Nov 2000 | A |
6151403 | Luo | Nov 2000 | A |
6155168 | Sakamoto | Dec 2000 | A |
6155605 | Bratchley et al. | Dec 2000 | A |
6156032 | Lennox | Dec 2000 | A |
6157330 | Bruekers et al. | Dec 2000 | A |
6159327 | Forkert | Dec 2000 | A |
6160526 | Hirai et al. | Dec 2000 | A |
6160903 | Hamid et al. | Dec 2000 | A |
6161071 | Shuman et al. | Dec 2000 | A |
6162160 | Ohshima et al. | Dec 2000 | A |
6163770 | Gamble et al. | Dec 2000 | A |
6163842 | Barton | Dec 2000 | A |
6164548 | Curiel | Dec 2000 | A |
6165696 | Fischer | Dec 2000 | A |
6173284 | Brown | Jan 2001 | B1 |
6173901 | McCannel | Jan 2001 | B1 |
6174400 | Krutak, Sr. et al. | Jan 2001 | B1 |
6179338 | Bergmann et al. | Jan 2001 | B1 |
6183018 | Braun et al. | Feb 2001 | B1 |
6184782 | Oda et al. | Feb 2001 | B1 |
6185042 | Lomb et al. | Feb 2001 | B1 |
6185316 | Buffam | Feb 2001 | B1 |
6185490 | Ferguson | Feb 2001 | B1 |
6185540 | Schreitmueller et al. | Feb 2001 | B1 |
6186404 | Ehrhart et al. | Feb 2001 | B1 |
6199144 | Arora et al. | Mar 2001 | B1 |
6202932 | Rapeli | Mar 2001 | B1 |
6205249 | Moskowitz | Mar 2001 | B1 |
6206292 | Robertz et al. | Mar 2001 | B1 |
6207244 | Hesch | Mar 2001 | B1 |
6207344 | Ramlow et al. | Mar 2001 | B1 |
6209923 | Thaxton et al. | Apr 2001 | B1 |
6210777 | Vermeulen et al. | Apr 2001 | B1 |
6214916 | Mercx et al. | Apr 2001 | B1 |
6214917 | Linzmeier et al. | Apr 2001 | B1 |
6219639 | Bakis et al. | Apr 2001 | B1 |
6221552 | Street et al. | Apr 2001 | B1 |
6223125 | Hall | Apr 2001 | B1 |
6226623 | Schein et al. | May 2001 | B1 |
6234537 | Gutmann et al. | May 2001 | B1 |
6236975 | Boe et al. | May 2001 | B1 |
6238840 | Hirayama et al. | May 2001 | B1 |
6238847 | Axtell, III et al. | May 2001 | B1 |
6243480 | Zhao et al. | Jun 2001 | B1 |
6244514 | Otto | Jun 2001 | B1 |
6246933 | Bague | Jun 2001 | B1 |
6247644 | Horne et al. | Jun 2001 | B1 |
6250554 | Leo et al. | Jun 2001 | B1 |
6254127 | Breed et al. | Jul 2001 | B1 |
6256736 | Coppersmith et al. | Jul 2001 | B1 |
6257486 | Teicher et al. | Jul 2001 | B1 |
6258896 | Abuelyaman et al. | Jul 2001 | B1 |
6259506 | Lawandy | Jul 2001 | B1 |
6260029 | Critelli | Jul 2001 | B1 |
6264296 | Klinefelter et al. | Jul 2001 | B1 |
6268804 | Janky et al. | Jul 2001 | B1 |
6277232 | Wang et al. | Aug 2001 | B1 |
6283188 | Maynard et al. | Sep 2001 | B1 |
6284337 | Lorimor et al. | Sep 2001 | B1 |
6286036 | Rhoads | Sep 2001 | B1 |
6286761 | Wen | Sep 2001 | B1 |
6289108 | Rhoads | Sep 2001 | B1 |
6291551 | Kniess et al. | Sep 2001 | B1 |
6292092 | Chow et al. | Sep 2001 | B1 |
6292575 | Bortolussi et al. | Sep 2001 | B1 |
6301164 | Manning et al. | Oct 2001 | B1 |
6301363 | Mowry, Jr. | Oct 2001 | B1 |
6302444 | Cobben | Oct 2001 | B1 |
6308187 | DeStefano | Oct 2001 | B1 |
6311214 | Rhoads | Oct 2001 | B1 |
6312858 | Yacobucci et al. | Nov 2001 | B1 |
6313436 | Harrison | Nov 2001 | B1 |
6316538 | Anderson et al. | Nov 2001 | B1 |
6321981 | Ray et al. | Nov 2001 | B1 |
6324091 | Gryko et al. | Nov 2001 | B1 |
6324573 | Rhoads | Nov 2001 | B1 |
6326128 | Telser et al. | Dec 2001 | B1 |
6336096 | Jernberg | Jan 2002 | B1 |
6340725 | Wang et al. | Jan 2002 | B1 |
6341169 | Cadorette, Jr. et al. | Jan 2002 | B1 |
6343138 | Rhoads | Jan 2002 | B1 |
6345105 | Nitta et al. | Feb 2002 | B1 |
6351537 | Dovgodko et al. | Feb 2002 | B1 |
6351893 | St. Pierre | Mar 2002 | B1 |
6357664 | Zercher | Mar 2002 | B1 |
6363360 | Madden | Mar 2002 | B1 |
6368684 | Onishi et al. | Apr 2002 | B1 |
6372394 | Zientek | Apr 2002 | B1 |
6380131 | Griebel et al. | Apr 2002 | B2 |
6381561 | Bomar, Jr. et al. | Apr 2002 | B1 |
6389151 | Carr et al. | May 2002 | B1 |
6390375 | Kayanakis | May 2002 | B2 |
6397334 | Chainer et al. | May 2002 | B1 |
6400386 | No | Jun 2002 | B1 |
6404643 | Chung | Jun 2002 | B1 |
6408082 | Rhoads et al. | Jun 2002 | B1 |
6408304 | Kumhyr | Jun 2002 | B1 |
6413687 | Hattori et al. | Jul 2002 | B1 |
6418154 | Kneip et al. | Jul 2002 | B1 |
6421013 | Chung | Jul 2002 | B1 |
6424029 | Giesler | Jul 2002 | B1 |
6424249 | Houvener | Jul 2002 | B1 |
6427744 | Seki et al. | Aug 2002 | B2 |
6430306 | Slocum et al. | Aug 2002 | B2 |
6444068 | Koops et al. | Sep 2002 | B1 |
6444377 | Jotcham et al. | Sep 2002 | B1 |
6446086 | Bartlett et al. | Sep 2002 | B1 |
6446865 | Holt et al. | Sep 2002 | B1 |
6449377 | Rhoads | Sep 2002 | B1 |
6463416 | Messina | Oct 2002 | B1 |
6473165 | Coombs et al. | Oct 2002 | B1 |
6474695 | Schneider et al. | Nov 2002 | B1 |
6475588 | Schottland et al. | Nov 2002 | B1 |
6478228 | Ikefuji et al. | Nov 2002 | B1 |
6478229 | Epstein | Nov 2002 | B1 |
6482495 | Kohama et al. | Nov 2002 | B1 |
6485319 | Bricaud et al. | Nov 2002 | B2 |
6487301 | Zhao | Nov 2002 | B1 |
6493650 | Rodgers et al. | Dec 2002 | B1 |
6500386 | Burstein | Dec 2002 | B1 |
6503310 | Sullivan | Jan 2003 | B1 |
6525672 | Chainer et al. | Feb 2003 | B2 |
6526161 | Yan | Feb 2003 | B1 |
6532459 | Berson | Mar 2003 | B1 |
6536665 | Ray et al. | Mar 2003 | B1 |
6536672 | Outwater | Mar 2003 | B1 |
6542622 | Nelson et al. | Apr 2003 | B1 |
6546112 | Rhoads | Apr 2003 | B1 |
6555213 | Koneripalli et al. | Apr 2003 | B1 |
6570609 | Heien | May 2003 | B1 |
6580819 | Rhoads | Jun 2003 | B1 |
6580835 | Gallagher et al. | Jun 2003 | B1 |
6581839 | Lasch et al. | Jun 2003 | B1 |
6583813 | Enright et al. | Jun 2003 | B1 |
6606420 | Loce et al. | Aug 2003 | B1 |
6608911 | Lofgren et al. | Aug 2003 | B2 |
6614914 | Rhoads et al. | Sep 2003 | B1 |
6616993 | Usuki et al. | Sep 2003 | B2 |
6638635 | Hattori et al. | Oct 2003 | B2 |
6641874 | Kuntz et al. | Nov 2003 | B2 |
6650761 | Rodriguez et al. | Nov 2003 | B1 |
6667815 | Nagao | Dec 2003 | B1 |
6675074 | Hathout et al. | Jan 2004 | B2 |
6681028 | Rodriguez et al. | Jan 2004 | B2 |
6681032 | Bortolussi et al. | Jan 2004 | B2 |
6685312 | Klinefelter et al. | Feb 2004 | B2 |
6702282 | Pribula et al. | Mar 2004 | B2 |
6712397 | Mayer et al. | Mar 2004 | B1 |
6715797 | Curiel | Apr 2004 | B2 |
6719469 | Yasui et al. | Apr 2004 | B2 |
6723479 | Van De Witte et al. | Apr 2004 | B2 |
6725383 | Kyle | Apr 2004 | B2 |
6729719 | Klinefelter et al. | May 2004 | B2 |
6731409 | Wang | May 2004 | B2 |
6751336 | Zhao | Jun 2004 | B2 |
6752432 | Richardson | Jun 2004 | B1 |
6758616 | Pribula et al. | Jul 2004 | B2 |
6764014 | Lasch et al. | Jul 2004 | B2 |
6765704 | Drinkwater | Jul 2004 | B2 |
6769061 | Ahern | Jul 2004 | B1 |
6782115 | Decker et al. | Aug 2004 | B2 |
6782116 | Zhao et al. | Aug 2004 | B1 |
6794115 | Telser et al. | Sep 2004 | B2 |
6803114 | Vere et al. | Oct 2004 | B1 |
6817530 | Labrec et al. | Nov 2004 | B2 |
6818699 | Kajimaru et al. | Nov 2004 | B2 |
6825265 | Daga et al. | Nov 2004 | B2 |
6827277 | Bloomberg et al. | Dec 2004 | B2 |
6827283 | Kappe et al. | Dec 2004 | B2 |
6832205 | Aragones et al. | Dec 2004 | B1 |
6834124 | Lin et al. | Dec 2004 | B1 |
6842268 | van Strijp et al. | Jan 2005 | B1 |
6843422 | Jones et al. | Jan 2005 | B2 |
6853739 | Kyle | Feb 2005 | B2 |
6865011 | Whitehead et al. | Mar 2005 | B2 |
6882737 | Lofgren et al. | Apr 2005 | B2 |
6900767 | Hattori | May 2005 | B2 |
6903850 | Kay et al. | Jun 2005 | B2 |
6923378 | Jones et al. | Aug 2005 | B2 |
6925468 | Bobbitt et al. | Aug 2005 | B1 |
6938029 | Tien | Aug 2005 | B1 |
6942331 | Guillen et al. | Sep 2005 | B2 |
6947571 | Rhoads et al. | Sep 2005 | B1 |
6952741 | Bartlett et al. | Oct 2005 | B1 |
6954293 | Heckenkamp et al. | Oct 2005 | B2 |
6959098 | Alattar | Oct 2005 | B1 |
6961708 | Bierenbaum | Nov 2005 | B1 |
6963659 | Tumey et al. | Nov 2005 | B2 |
6970844 | Bierenbaum | Nov 2005 | B1 |
7013284 | Guyan et al. | Mar 2006 | B2 |
7016516 | Rhoads | Mar 2006 | B2 |
7024418 | Childress | Apr 2006 | B1 |
7036944 | Budd et al. | May 2006 | B2 |
7043052 | Rhoads | May 2006 | B2 |
7063264 | Bi et al. | Jun 2006 | B2 |
7081282 | Kuntz et al. | Jul 2006 | B2 |
7086666 | Richardson | Aug 2006 | B2 |
7095426 | Childress | Aug 2006 | B1 |
7143950 | Jones et al. | Dec 2006 | B2 |
7183361 | Toman | Feb 2007 | B2 |
7185201 | Rhoads et al. | Feb 2007 | B2 |
7196813 | Matsumoto | Mar 2007 | B2 |
7197444 | Bomar, Jr. et al. | Mar 2007 | B2 |
7199456 | Krappe et al. | Apr 2007 | B2 |
7202970 | Maher et al. | Apr 2007 | B1 |
7206820 | Rhoads et al. | Apr 2007 | B1 |
7207494 | Theodossiou et al. | Apr 2007 | B2 |
7277891 | Howard et al. | Oct 2007 | B2 |
7278580 | Jones et al. | Oct 2007 | B2 |
7289643 | Brunk et al. | Oct 2007 | B2 |
7343307 | Childress | Mar 2008 | B1 |
7344325 | Meier et al. | Mar 2008 | B2 |
7353196 | Bobbitt et al. | Apr 2008 | B1 |
7356541 | Doughty | Apr 2008 | B1 |
7359863 | Evenshaug et al. | Apr 2008 | B1 |
7363264 | Doughty et al. | Apr 2008 | B1 |
7398219 | Wolfe | Jul 2008 | B1 |
7418400 | Lorenz | Aug 2008 | B1 |
7430514 | Childress et al. | Sep 2008 | B1 |
7430515 | Wolfe et al. | Sep 2008 | B1 |
7498075 | Bloomberg et al. | Mar 2009 | B2 |
7526487 | Bobbitt et al. | Apr 2009 | B1 |
20010002035 | Kayanakis | May 2001 | A1 |
20010013395 | Pourmand et al. | Aug 2001 | A1 |
20010037223 | Beery et al. | Nov 2001 | A1 |
20010037455 | Lawandy et al. | Nov 2001 | A1 |
20020007289 | Malin et al. | Jan 2002 | A1 |
20020018430 | Heckenkamp et al. | Feb 2002 | A1 |
20020020832 | Oka et al. | Feb 2002 | A1 |
20020021001 | Stratford et al. | Feb 2002 | A1 |
20020023218 | Lawandy et al. | Feb 2002 | A1 |
20020027359 | Cobben et al. | Mar 2002 | A1 |
20020030587 | Jackson | Mar 2002 | A1 |
20020034319 | Tumey et al. | Mar 2002 | A1 |
20020035488 | Aquila et al. | Mar 2002 | A1 |
20020049619 | Wahlbin et al. | Apr 2002 | A1 |
20020051569 | Kita | May 2002 | A1 |
20020055860 | Wahlbin et al. | May 2002 | A1 |
20020055861 | King et al. | May 2002 | A1 |
20020059083 | Wahlbin et al. | May 2002 | A1 |
20020059084 | Wahlbin et al. | May 2002 | A1 |
20020059085 | Wahlbin et al. | May 2002 | A1 |
20020059086 | Wahlbin et al. | May 2002 | A1 |
20020059087 | Wahlbin et al. | May 2002 | A1 |
20020059097 | Wahlbin et al. | May 2002 | A1 |
20020062232 | Wahlbin et al. | May 2002 | A1 |
20020062233 | Wahlbin et al. | May 2002 | A1 |
20020062234 | Wahlbin et al. | May 2002 | A1 |
20020062235 | Wahlbin et al. | May 2002 | A1 |
20020069091 | Wahlbin et al. | Jun 2002 | A1 |
20020069092 | Wahlbin et al. | Jun 2002 | A1 |
20020070280 | Ikefuji et al. | Jun 2002 | A1 |
20020077380 | Wessels et al. | Jun 2002 | A1 |
20020080992 | Decker et al. | Jun 2002 | A1 |
20020080994 | Lofgren et al. | Jun 2002 | A1 |
20020082873 | Wahlbin et al. | Jun 2002 | A1 |
20020087363 | Wahlbin et al. | Jul 2002 | A1 |
20020106494 | Roth et al. | Aug 2002 | A1 |
20020116330 | Hed et al. | Aug 2002 | A1 |
20020128881 | Wahlbin et al. | Sep 2002 | A1 |
20020136448 | Bortolussi et al. | Sep 2002 | A1 |
20020145652 | Lawrence et al. | Oct 2002 | A1 |
20020146549 | Kranenburg-Van Dijk et al. | Oct 2002 | A1 |
20020170966 | Hannigan et al. | Nov 2002 | A1 |
20020187215 | Trapani et al. | Dec 2002 | A1 |
20020194476 | Lewis et al. | Dec 2002 | A1 |
20030002710 | Rhoads | Jan 2003 | A1 |
20030031340 | Alattar et al. | Feb 2003 | A1 |
20030031348 | Kuepper et al. | Feb 2003 | A1 |
20030034319 | Meherin et al. | Feb 2003 | A1 |
20030038174 | Jones | Feb 2003 | A1 |
20030052680 | Konijn | Mar 2003 | A1 |
20030055638 | Burns et al. | Mar 2003 | A1 |
20030056499 | Binder et al. | Mar 2003 | A1 |
20030056500 | Huynh et al. | Mar 2003 | A1 |
20030059124 | Center | Mar 2003 | A1 |
20030062421 | Bloomberg et al. | Apr 2003 | A1 |
20030099379 | Monk et al. | May 2003 | A1 |
20030114972 | Takafuji et al. | Jun 2003 | A1 |
20030115459 | Monk | Jun 2003 | A1 |
20030117262 | Anderegg et al. | Jun 2003 | A1 |
20030126121 | Khan et al. | Jul 2003 | A1 |
20030128862 | Decker et al. | Jul 2003 | A1 |
20030141358 | Hudson et al. | Jul 2003 | A1 |
20030161507 | Lawandy | Aug 2003 | A1 |
20030173406 | Bi et al. | Sep 2003 | A1 |
20030178487 | Rogers | Sep 2003 | A1 |
20030178495 | Jones et al. | Sep 2003 | A1 |
20030183695 | Labrec et al. | Oct 2003 | A1 |
20030188659 | Merry et al. | Oct 2003 | A1 |
20030200123 | Burge et al. | Oct 2003 | A1 |
20030211296 | Jones et al. | Nov 2003 | A1 |
20030226897 | Jones et al. | Dec 2003 | A1 |
20030234286 | Labrec et al. | Dec 2003 | A1 |
20030234292 | Jones | Dec 2003 | A1 |
20040011874 | Theodossiou et al. | Jan 2004 | A1 |
20040024694 | Lawrence et al. | Feb 2004 | A1 |
20040030587 | Danico et al. | Feb 2004 | A1 |
20040036574 | Bostrom | Feb 2004 | A1 |
20040049401 | Carr et al. | Mar 2004 | A1 |
20040049409 | Wahlbin et al. | Mar 2004 | A1 |
20040054556 | Wahlbin et al. | Mar 2004 | A1 |
20040054557 | Wahlbin et al. | Mar 2004 | A1 |
20040054558 | Wahlbin et al. | Mar 2004 | A1 |
20040054559 | Wahlbin et al. | Mar 2004 | A1 |
20040066441 | Jones et al. | Apr 2004 | A1 |
20040074973 | Schneck et al. | Apr 2004 | A1 |
20040076310 | Hersch et al. | Apr 2004 | A1 |
20040093349 | Buinevicius et al. | May 2004 | A1 |
20040102984 | Wahlbin et al. | May 2004 | A1 |
20040102985 | Wahlbin et al. | May 2004 | A1 |
20040103004 | Wahlbin et al. | May 2004 | A1 |
20040103005 | Wahlbin et al. | May 2004 | A1 |
20040103006 | Wahlbin et al. | May 2004 | A1 |
20040103007 | Wahlbin et al. | May 2004 | A1 |
20040103008 | Wahlbin et al. | May 2004 | A1 |
20040103009 | Wahlbin et al. | May 2004 | A1 |
20040103010 | Wahlbin et al. | May 2004 | A1 |
20040111301 | Wahlbin et al. | Jun 2004 | A1 |
20040133582 | Howard et al. | Jul 2004 | A1 |
20040140459 | Haigh et al. | Jul 2004 | A1 |
20040158724 | Carr et al. | Aug 2004 | A1 |
20040181671 | Brundage et al. | Sep 2004 | A1 |
20040198858 | Labrec | Oct 2004 | A1 |
20040213437 | Howard et al. | Oct 2004 | A1 |
20040243567 | Levy | Dec 2004 | A1 |
20040245346 | Haddock | Dec 2004 | A1 |
20050001419 | Levy et al. | Jan 2005 | A1 |
20050003297 | Labrec | Jan 2005 | A1 |
20050010776 | Kenen et al. | Jan 2005 | A1 |
20050035589 | Richardson | Feb 2005 | A1 |
20050040243 | Bi et al. | Feb 2005 | A1 |
20050042396 | Jones et al. | Feb 2005 | A1 |
20050060205 | Woods et al. | Mar 2005 | A1 |
20050072849 | Jones | Apr 2005 | A1 |
20050095408 | LaBrec et al. | May 2005 | A1 |
20050160294 | LaBrec et al. | Jul 2005 | A1 |
20050161512 | Jones et al. | Jul 2005 | A1 |
20050192850 | Lorenz | Sep 2005 | A1 |
20060027667 | Jones et al. | Feb 2006 | A1 |
20060039581 | Decker et al. | Feb 2006 | A1 |
20070016790 | Brundage et al. | Jan 2007 | A1 |
20070152067 | Bi et al. | Jul 2007 | A1 |
20070158939 | Jones et al. | Jul 2007 | A1 |
20070187515 | Theodossiou et al. | Aug 2007 | A1 |
20090174526 | Howard et al. | Jul 2009 | A1 |
20090187435 | Carr et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
2235002 | Dec 1998 | CA |
2470094 | Jun 2003 | CA |
2469956 | Jul 2003 | CA |
1628318 | Jun 2005 | CN |
2943436 | May 1981 | DE |
3334009 | May 1985 | DE |
3738636 | Jun 1988 | DE |
3806411 | Sep 1989 | DE |
9315294 | Mar 1994 | DE |
69406213 | Mar 1998 | DE |
19099 | Nov 1980 | EP |
058482 | Aug 1982 | EP |
111075 | Jun 1984 | EP |
153547 | Sep 1985 | EP |
0157568 | Oct 1985 | EP |
222446 | May 1987 | EP |
0233296 | Aug 1987 | EP |
0279104 | Aug 1988 | EP |
0280773 | Sep 1988 | EP |
0356980 | Mar 1990 | EP |
0356981 | Mar 1990 | EP |
0356982 | Mar 1990 | EP |
0362640 | Apr 1990 | EP |
0366075 | May 1990 | EP |
0366923 | May 1990 | EP |
372601 | Jun 1990 | EP |
0373572 | Jun 1990 | EP |
0374835 | Jun 1990 | EP |
411232 | Feb 1991 | EP |
0420613 | Apr 1991 | EP |
441702 | Aug 1991 | EP |
0446834 | Sep 1991 | EP |
0446846 | Sep 1991 | EP |
0464268 | Jan 1992 | EP |
0465018 | Jan 1992 | EP |
0479265 | Apr 1992 | EP |
493091 | Jul 1992 | EP |
0523304 | Jan 1993 | EP |
0539001 | Apr 1993 | EP |
581317 | Feb 1994 | EP |
629972 | Dec 1994 | EP |
0636495 | Feb 1995 | EP |
0637514 | Feb 1995 | EP |
642060 | Mar 1995 | EP |
0649754 | Apr 1995 | EP |
650146 | Apr 1995 | EP |
0696518 | Feb 1996 | EP |
0697433 | Feb 1996 | EP |
705025 | Apr 1996 | EP |
0734870 | Oct 1996 | EP |
0736860 | Oct 1996 | EP |
0739748 | Oct 1996 | EP |
788085 | Aug 1997 | EP |
835739 | Apr 1998 | EP |
0926608 | Jun 1999 | EP |
0982149 | Mar 2000 | EP |
0991014 | Apr 2000 | EP |
1013463 | Jun 2000 | EP |
1017016 | Jul 2000 | EP |
1035503 | Sep 2000 | EP |
1046515 | Oct 2000 | EP |
1410315 | Apr 2004 | EP |
1909971 | Apr 2008 | EP |
1088318 | Oct 1967 | GB |
1213193 | Nov 1970 | GB |
1472581 | May 1977 | GB |
2063018 | May 1981 | GB |
2067871 | Jul 1981 | GB |
2132136 | Jul 1984 | GB |
2196167 | Apr 1988 | GB |
2204984 | Nov 1988 | GB |
2227570 | Aug 1990 | GB |
2240948 | Aug 1991 | GB |
2325765 | Dec 1998 | GB |
52119681 | Oct 1977 | JP |
63146909 | Jun 1988 | JP |
03126589 | May 1991 | JP |
3185585 | Aug 1991 | JP |
4248771 | Sep 1992 | JP |
4267149 | Sep 1992 | JP |
5242217 | Sep 1993 | JP |
624611 | Feb 1994 | JP |
06234289 | Aug 1994 | JP |
6234289 | Aug 1994 | JP |
07088974 | Apr 1995 | JP |
7088974 | Apr 1995 | JP |
7115474 | May 1995 | JP |
09064545 | Mar 1997 | JP |
10171758 | Jun 1998 | JP |
10177613 | Jun 1998 | JP |
10197285 | Jul 1998 | JP |
10214283 | Aug 1998 | JP |
11161711 | Jun 1999 | JP |
11259620 | Sep 1999 | JP |
11301121 | Nov 1999 | JP |
11321166 | Nov 1999 | JP |
2004355659 | Dec 2004 | JP |
2005525254 | Aug 2005 | JP |
2005525949 | Sep 2005 | JP |
2005276238 | Oct 2005 | JP |
2006190331 | Jul 2006 | JP |
WO-8204149 | Nov 1982 | WO |
WO-8900319 | Jan 1989 | WO |
WO-8907517 | Aug 1989 | WO |
WO-8908915 | Sep 1989 | WO |
WO-9116722 | Oct 1991 | WO |
WO-9427228 | Nov 1994 | WO |
WO-9510835 | Apr 1995 | WO |
WO-9513597 | May 1995 | WO |
WO-9514289 | May 1995 | WO |
WO-9520291 | Jul 1995 | WO |
WO-9603286 | Feb 1996 | WO |
WO-9627259 | Sep 1996 | WO |
WO-9636163 | Nov 1996 | WO |
WO-9701446 | Jan 1997 | WO |
WO-9718092 | May 1997 | WO |
WO-9732733 | Sep 1997 | WO |
WO-9743736 | Nov 1997 | WO |
WO-9814887 | Apr 1998 | WO |
WO-9819869 | May 1998 | WO |
WO-9820642 | May 1998 | WO |
WO-9824050 | Jun 1998 | WO |
WO-9830224 | Jul 1998 | WO |
WO-9840823 | Sep 1998 | WO |
WO-9849813 | Nov 1998 | WO |
WO-9924934 | May 1999 | WO |
WO-9934277 | Jul 1999 | WO |
WO-0010116 | Feb 2000 | WO |
WO-0043214 | Jul 2000 | WO |
WO-0043215 | Jul 2000 | WO |
WO-0043216 | Jul 2000 | WO |
WO-0045344 | Aug 2000 | WO |
WO-0078554 | Dec 2000 | WO |
WO-0100719 | Jan 2001 | WO |
WO-0129764 | Apr 2001 | WO |
WO-0143080 | Jun 2001 | WO |
WO-0145559 | Jun 2001 | WO |
WO-0156805 | Aug 2001 | WO |
WO-0195249 | Dec 2001 | WO |
WO-0226507 | Apr 2002 | WO |
WO-0227647 | Apr 2002 | WO |
WO-0242371 | May 2002 | WO |
WO-0245969 | Jun 2002 | WO |
WO-02052499 | Jul 2002 | WO |
WO-0253499 | Jul 2002 | WO |
WO-02078965 | Oct 2002 | WO |
WO-02096666 | Dec 2002 | WO |
WO-03005291 | Jan 2003 | WO |
WO-03030079 | Apr 2003 | WO |
WO-03056500 | Jul 2003 | WO |
WO-03056507 | Jul 2003 | WO |
WO-03055684 | Jul 2003 | WO |
WO-03095210 | Nov 2003 | WO |
WO-03096258 | Nov 2003 | WO |
WO-2004034236 | Apr 2004 | WO |
WO-2004049242 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070152067 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
60344686 | Dec 2001 | US | |
60371335 | Apr 2002 | US | |
60429115 | Nov 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10330032 | Dec 2002 | US |
Child | 11472507 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10411354 | Apr 2003 | US |
Child | 10330032 | US |