This invention relates to combustion chamber liners for turbine engines and specifically to a crack resistant combustion chamber louver assembly.
Turbine engine combustion chamber liners may be made of multiple, axially successive louvers circumscribing a combustion chamber centerline. A typical louver has a forward panel, an aft panel and a short bulkhead that projects radially to connect the forward and aft panels to each other. A louver assembly comprises a forward louver and an aft louver arranged so that the aft panel of the forward louver nests radially inside the forward panel of the aft louver. The aft panel of the forward louver also extends axially past the connecting bulkhead of the aft louver to define a lip. A weld joint extends circumferentially to join the forward panel of the aft louver to the aft panel of the forward louver. The lips of certain louvers, particularly louvers that are not near the axially forward end of the liner, may include a series of circumferentially distributed slots. These lip slots help relieve thermal stresses that could cause cracks in the lips of those louvers. Experience shows that such lip slots are unnecessary in the louvers residing closer to the forward end of the liner.
Turbine engine manufacturers strive to minimize undesirable exhaust emissions arising from combustion of a fuel and air mixture in the combustion chamber. U.S. Pat. Nos. 6,101,814 and 6,715,292 (the contents of both of which are incorporated herein by reference) describe a combustor liner and associated fuel injector that produce considerably reduced emissions in comparison to early generation combustion liners. Throughout this specification the low emissions liner described in the aforementioned patents will be referred to as an intermediate generation liner; the predecessor to the intermediate generation liner will be referred to as an early generation liner. Experience reveals that a louver near the forward end of the early generation liner, specifically the second louver L2, does not require lip slots in order to resist cracking of the lip. Similarly, no lip slots are required in the second louver L2 of the intermediate generation liner to resist cracking of the lip. However in the intermediate generation liner, the forward panel of the axially adjacent aft louver (louver L3) exhibits susceptibility to cracking in the immediate vicinity of the weld joint that secures the louvers to each other. The cracking is believed to arise because a portion of forward louver L2 that is relatively hot during engine operation nests radially inside of a portion of aft louver L3 that is relatively cool during engine operation. The relatively cool portion of aft louver L3 is unable to withstand the cyclic, thermally induced radial expansion (and contraction) of the relatively hot portion of forward louver L2. The cracking is undesirable because it requires more frequent inspections than would otherwise be necessary and may also require replacement or reconditioning of an otherwise serviceable liner or its louvers.
What is needed is a combustor liner louver assembly whose louvers exhibit improved forward panel crack resistance.
One embodiment of the louver assembly described herein includes an aft louver having a forward panel that extends axially from a louver leading edge to a corner, and a forward louver joined to the forward panel of the aft louver. A lip defined by a portion of the forward louver that extends axially past the corner to a louver trailing edge includes circumferentially distributed trailing edge slots extending forwardly from the trailing edge a nominal distance equal to about 88% to 95% of the length of the lip.
The foregoing and other features of the various embodiments of the louver assembly will become more apparent from the following description of the preferred embodiment and the accompanying drawings.
This invention is predicated in part on the recognition that crack susceptibility in the forward panel of a louver is related to differences in thermal expansion of that louver relative to an adjacent louver. Moreover, the remedy for mitigating the crack susceptibility involves modifying the adjacent louver at a location offset from the crack initiation site of the crack susceptible louver.
Referring additionally to
As seen best in
A weld joint 52 joins the forward louver to the forward panel of the aft louver. As seen best in
Referring to
In early generation liners, the dilution hole pattern differs from that of the intermediate generation liners, and the lip of louver L2 is devoid of slots analogous to slots 58. Experience has shown that the lip of louver L2 in these early generation liners is not susceptible to cracking related to thermal stress. The intermediate generation liners employ the dilution hole pattern described in the patents incorporated herein by reference, but, like the early generation liners, also do not employ slots analogous to slots 58 in louver L2. These intermediate generation liners also are not known to be susceptible to cracking in the lip of louver L2. However the intermediate generation liners exhibit a susceptibility to cracking in the relatively cool forward panel 24 of aft louver L3. The crack initiation site is aft of the weld runout 56 immediately aft of the weld nugget 54. This cracking of the forward panel of aft louver L3 is believed to arise from thermally induced radial expansion of the relatively hot portion of louver L2 (which is the forward louver from the perspective of louver L3) in the vicinity of the forward panel 24 of louver L3. The cracking of the forward panel is believed to occur in the intermediate generation liner, but not in the early generation liner, because of a modified gas temperature distribution arising from interactions attributable to the dilution hole pattern and the innovative fuel injector described in the patents incorporated by reference.
Louver L2 includes circumferentially distributed trailing edge slots 60 axially offset from the forward panel of louver L3. The slots are: keyhole slots comprising a linear portion 62 and a circular or otherwise rounded terminus 64. Each trailing edge slot 60 is circumferentially aligned with one of the twenty four flexure slots 42 in louver L2. However the trailing edge slots of louver L2 are circumferentially offset from the flexure slots of louver L3 by 7.5 degrees. The slots 60 extend forwardly from the trailing edge 36 of louver L2 a nominal distance L95 equal to about 88% to 95% of the length L of the lip and preferably about 95% of the length L of the lip. The nominal distance is the distance from the trailing edge 36 to the center of the circular terminus 64. The length L of the lip on louver L2 is about 0.425 inches (1.08 centimeters). Accordingly, the preferred length of the slot is about 0.405 inches (1.03 centimeters).
Intermediate generation combustion liners can be upgraded by cutting through louver L1 at the approximate location 68 (
Combustor liners can also be upgraded, albeit less cost effectively and less time efficiently, by installing the trailing edge slots 60 in an unslotted louver (e.g. louver L2) of those liners. The upgrade involves removing the unslotted louver from the liner, and securing a slotted louver having trailing edge slots measuring about 88% to 95% and preferably 95% of the length L of the louver lip to the liner in place of the unslotted louver. The slotted louver may be the same louver as the previously unslotted louver upgraded to include the slots 60, or may be a newly manufactured replacement louver or may be a used, previously unslotted louver taken from a pool of louvers that have been upgraded by installing the slots 60 therein.
The foregoing discussion describes the liner and associated method of upgrade in the context of a combustor can for a can-annular combustor. However as seen in
Although this disclosure refers to specific embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the subject matter set forth in the accompanying claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/09218 | 3/14/2006 | WO | 00 | 7/8/2008 |