The present invention relates to a cradle assembly that is attachable to a vehicle.
Many vehicles include a cradle or sub-frame mounted to the underbody of the vehicle. The cradle is often located beneath the powertrain at the front end of the vehicle. The cradle serves to absorb energy, including vibrations and shocks, when a load is applied to the vehicle.
A cradle assembly for a vehicle having an underbody is provided. The cradle assembly includes a cradle body that is attachable to the underbody of the vehicle by at least one fastener. The cradle body is configured to move with respect to the at least one fastener when an applied load on the vehicle is at or above a threshold magnitude. This enables the cradle body to be separated from the underbody of the vehicle.
In one embodiment, the cradle body may define at least one pathway that has a first pathway portion and a second pathway portion. The at least one fastener may be movable between the first pathway portion and the second pathway portion. The at least one fastener may be positioned within the first pathway portion to enable the cradle body to be secured to the underbody of the vehicle, and may be positioned within the second pathway portion to enable the cradle body to be separated from the underbody of the vehicle. The cradle body is configured to move to enable the at least one fastener to move from the first pathway portion to the second pathway portion with respect to the cradle body when the applied load is at or above the threshold magnitude.
In another embodiment, the cradle body may define at least one pathway in which the at least one fastener may be positioned to secure the cradle body to the underbody of the vehicle. The cradle body is configured to move along the at least one fastener when the applied load is at or above the threshold magnitude to enable the cradle body to be separated from the underbody of the vehicle.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Those having ordinary skill in the art will recognize that terms such as “above,” “below,” “upward,” “downward,” et cetera, are used descriptively of the figures, and do not represent limitations on the scope of the invention, as defined by the appended claims. Any numerical designations, such as “first” or “second” are illustrative only and are not intended to limit the scope of the invention in any way.
Referring to the drawings, wherein like reference numbers correspond to like or similar components wherever possible throughout the several figures, a vehicle 10 having an underbody 12 is shown in
The fastener 44 may be, but is not limited to, a bolt. The fastener 44 interacts with the underbody 12 of the vehicle 10 to generate a load on or tension in the fastener 44 to hold the cradle body 22 in a secured position, as seen in
When an applied load on the vehicle 10, a portion of which transfers to the cradle body 22, is at or above a threshold magnitude, the cradle body 22 is configured to move from the secured position to a released position such that the cradle body 22 may be separated from the vehicle 10, as described in more detail below.
Referring now to
When the fastener 44 is positioned in the first pathway portion 40, the fastener 44 generally is in contact with the cradle body 22, for example, the underside of the head of the fastener 44 to the bottom sheet 30. The load on the fastener 44 creates a resistance between the fastener 44 and the cradle body 22 that holds the cradle body 22 in the secured position. The resistance may depend upon a coefficient of friction between the fastener 44 and the cradle body 22. When the applied load on the vehicle 10 is at or above the threshold magnitude, the resistance between the fastener 44 and the cradle body 22 may be overcome such that the cradle body 22 may be separated from the secured position. It may then move with respect to the fastener 44, as indicated by the arrow 43 in
The cradle assembly 20 also may include a release mechanism 46 configured to maintain the cradle body 22 in the secured position when the resistance between the fastener 44 and the cradle body 22 is overcome, but the applied load on the vehicle 12 is below the threshold magnitude. To accomplish this, the release mechanism 46 may provide a barrier between the first pathway portion 40 and the second pathway portion 41 such that the cradle body 22 is blocked from moving longitudinally (or laterally) with respect to the fastener 44, as seen in
The threshold magnitude at which the cradle body 22 moves from the secured position to the released position may vary depending upon various factors. These factors may include, but are not limited to, the material of the cradle body 22, the material of the release mechanism 46, the size and shape of the cradle body 22, the size and type of the vehicle 10, the load securing the fastener 44 to the underbody 12 of the vehicle 10, the coefficient of friction between the fastener 44 and the cradle body 22, and the like.
The cradle assembly 20 further may include a first sleeve 48 around at least a portion of the first pathway portion 40, and a second sleeve 50 around at least a portion of the second pathway portion 41. The first sleeve 48 is initially attached to the cradle body 22 when in the secured position, and when the fastener 44 is within the first pathway portion 40. The first sleeve 48 may be attached to the cradle body 22 via a tack weld with, for example, the bottom sheet 30. When the fastener 44 is within the second pathway portion 41, the second sleeve 50 guides the cradle body 22 to slide vertically along the fastener 44, effectively extracting the fastener 44 from the cradle body 22 to separate the cradle body 22 from the vehicle 10, as explained above. The second sleeve 50 may be angled to further guide the cradle body along the fastener 44.
In one embodiment seen in
In another embodiment seen in
Referring now to
The cradle assembly 20 may include a first sleeve 150 and a second sleeve 148. The first sleeve 150 encloses the fastener 44 within the pathway 134. The second sleeve 148 encloses the first sleeve 150 such that there is an interference fit between them. The second sleeve 148 also is attached to the cradle body 22, for example, via welding to the top sheet 28 and/or the bottom sheet 30.
As explained above, the fastener 44 interacts with the underbody 12 of the vehicle 10 such that a load on or tension in the fastener 44 is generated. The load is transferred to the first sleeve 150, which in turn exerts a force on the second sleeve 148 as a result of the interference fit between them, thereby holding the cradle body 22 in the secured position. When the applied load on the vehicle 10, a portion of which transfers to the cradle body 22, is at or above the threshold magnitude, the force exerted on the second sleeve 148 from the first sleeve 150 may be overcome such that the cradle body 22 may be separated from the secured position. This allows the cradle body 22 to then move vertically along the fastener 44, as indicated by the arrow 145 in
The cradle assembly 20 also may include a washer 152 that has tabs 154, as seen in
The threshold magnitude at which the cradle body 22 separates from the secured position and/or the tabs 154 deform and/or separate may be set based on various factors. These may include, but are not limited to, the amount of surface contact area between the first sleeve 150 and the second sleeve 148, and the like. For example, the second sleeve 148 may include a step 156 that divides the second sleeve 148 into an upper portion 160 and a lower portion 158. The cross-sectional area of the upper portion 160 generally is smaller than the lower portion 158. The step 156 may be angled. The angle of the step 156 and/or the ratio of the height of the upper portion 160 to the lower portion 158 may be tuned to set the threshold magnitude at which the tabs 154 deform and/or separate from the washer 152.
The detailed description and the drawings or figures are supportive and descriptive of the invention, but the scope of the invention is defined solely by the claims. While some of the best modes and other embodiments for carrying out the claimed invention have been described in detail, various alternative designs and embodiments exist for practicing the invention defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5605353 | Moss et al. | Feb 1997 | A |
6367869 | Baccouche et al. | Apr 2002 | B1 |
7066047 | Amano et al. | Jun 2006 | B2 |
7992926 | Tamakoshi | Aug 2011 | B2 |
8246105 | Mildner | Aug 2012 | B2 |
8267429 | Takeshita et al. | Sep 2012 | B2 |
8500191 | Baccouche et al. | Aug 2013 | B1 |
20140203543 | Onishi et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
2004130827 | Apr 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20150021891 A1 | Jan 2015 | US |