The application relates to the technical field of construction machinery, and in particular, to a crane and a control method therefor.
The boom of transporter crane is segmented and needs to be installed or removed section by section when in use. In the course of disassembly and assembly of the boom, the luffing mechanism will be connected to the boom heel section of the boom. As shown in
The embodiment of the application provides a crane and a control method therefor. The aim is to avoid the problem that the boom and the luffing mechanism are damaged due to too long arm length.
The embodiment of the application provides a crane, including: a body, a boom, a luffing mechanism, a tension sensor and a controller; one end of the boom is rotationally connected with the body; the luffing mechanism is respectively connected with the body and the boom; the tension sensor is disposed on the luffing mechanism, and the tension sensor is used for detecting the tension value of the luffing mechanism to the boom; the controller is electrically connected with the tension sensor and the luffing mechanism, and the controller is configured to determine that the arm length of the boom exceeds the arm length threshold if the tension value is greater than the tension threshold.
The crane according to one embodiment of the application further includes an angle sensor, where the angle sensor is disposed on the boom, and the angle sensor is used for detecting the horizontal inclination angle value of the boom;
The controller is electrically connected with the angle sensor, and the controller is configured to determine that the arm length of the boom exceeds the arm length threshold if the horizontal inclination angle value is less than the angle threshold and the tension value is greater than the tension threshold.
The crane according to one embodiment of the application, the boom includes a boom heel section rotationally connected with the body, and the angle sensor is disposed on the boom heel section.
The crane according to one embodiment of the application, the angle sensor is disposed at one end of the boom heel section near the body.
The crane according to one embodiment of the application further includes an in-place detecting sensor, where the in-place detecting sensor is disposed at the joint between the boom and the luffing mechanism, and the in-place detecting sensor is used for generating a trigger signal when the boom is being connected with the luffing mechanism;
The controller is electrically connected with the in-place detecting sensor, and the controller is configured to determine that the arm length of the boom exceeds the arm length threshold when the trigger signal is received and the tension value is greater than the tension threshold.
The crane according to one embodiment of the application, the in-place detecting sensor is disposed on the boom.
The crane according to one embodiment of the application, the in-place detecting sensor is a proximity switch or a travel switch.
The crane according to one embodiment of the application, the controller is disposed on the body.
The crane according to one embodiment of the application, the luffing mechanism is connected with the boom through a boom pull plate and a luffing rope, and the tension sensor is disposed on the boom pull plate or the luffing rope.
The crane according to one embodiment of the application, the luffing mechanism includes a fixed pulley block, a movable pulley block and a luffing rope, where the movable pulley block is connected with the fixed pulley block through the luffing rope, and the fixed pulley block is rotationally connected with the boom.
The embodiment of the application also provides a control method of crane, which includes:
The embodiment of the application also provides a control device of crane, which includes: a tension value obtaining unit and a determining unit, the tension value obtaining unit is used for obtaining the tension value of the luffing mechanism to the boom; The determining unit is used for determining the arm length of the boom exceeds the arm length threshold if the tension value is greater than the tension threshold.
The embodiment of the application also provides a crane control device, which includes a memory, a processor and a computer program stored in the memory and running on the processor, when the processor executes the program, it implements the steps of the control method of the crane described above.
The embodiment of the application also provides a non-transient computer-readable storage medium on which a computer program is stored, when the computer program is executed by the processor, it implements the steps of the control method of the crane described above.
The crane and the control method therefor provided by the embodiment of the application detect the tension value of the luffing mechanism to the boom through the tension sensor, and determine whether the arm length of the boom exceeds the arm length threshold according to the tension value, thereby avoid the problem of overload damage to the boom.
To illustrate more clearly the embodiment of the application or the technical proposal in the prior art, a brief description of the accompanying drawings required for use in the description of the embodiment or the existing technology is provided below, Obviously, the attached drawings described below are some embodiments of this application, from which other drawings may be obtained without creative effort by those of ordinary skill in the art.
In order to make the purpose, technical scheme and advantages of the embodiment of the present application clearer, the technical scheme in the embodiment of the present application will be clearly and completely described below with reference to the drawings in the embodiment of the present application. Obviously, the described embodiment is a part of the embodiment of the present application, but not the whole embodiment. Based on the embodiments in this application, all other embodiments obtained by ordinary technicians in this field without creative labor belong to the scope of protection in this application.
The crane according to the embodiment of the present application will be described below with reference to
As shown in
As shown in
As shown in
As shown in
An angle sensor 6 is provided on the boom 2, as shown in
As shown in
The in-place detecting sensor 7 is disposed at the joint between the boom 2 and the luffing mechanism 3, and may be disposed at the boom 2 or the luffing mechanism 3, for example, as shown in
The control method of the crane according to the embodiment of the present application will be described below with reference to
Step S710: obtaining the tension value of the luffing mechanism to the boom.
Specifically, the crane can detect the tension value of the luffing mechanism to the boom through the tension sensor, and transmit the detected tension value to the controller. Optionally, the tension sensor can detect the tension value of the luffing mechanism to the boom in real time or periodically.
Step S720: determining the arm length of the boom exceeds the arm length threshold if the tension value is greater than the force threshold.
Specifically, after obtaining the tension value of the luffing mechanism to the boom, the controller can determine the arm length of the boom according to the tension value of the luffing mechanism, and the controller determines that the arm length of the boom exceeds the arm length threshold when the tension value is greater than the tension threshold; the controller determines that the arm length of the boom does not exceed the arm length threshold when the tension value is less than the tension threshold; the judgment result of the controller can be set according to the actual situation when the tension value is equal to the tension threshold. In one case, the controller determines that the arm length of the boom exceeds the arm length threshold when the tension value is equal to the tension threshold; In another case, the controller determines that the arm length of the boom does not exceed the arm length threshold when the tension value is equal to the tension threshold.
Optionally, after determining whether the arm length of the boom exceeds the arm length threshold according to the tension value, the control method of the crane further includes: generating a protection signal if it is determined that the arm length of the boom exceeds the arm length threshold; and there is no protection signal is generated if it is determined that the arm length of the boom does not exceed the arm length threshold.
Specifically, the protection signal is used to prohibit the luffing mechanism from performing the boom lifting. When no protection signal is generated by the controller, no subsequent protection will be performed, and the luffing mechanism is allowed to perform the boom lifting; when the controller generates the protection signal, prohibiting the luffing mechanism from performing the boom lifting, so as to achieving the effect of avoiding overload damage to the boom 2.
In addition to determining whether the arm length of the boom exceeds the arm length threshold according to the tension value, the controller can also determine whether the arm length of the boom exceeds the arm length threshold according to the tension value and the horizontal inclination value of the boom. Optionally, the controller may determine whether the arm length of the boom exceeds the arm length threshold according to the tension value and the horizontal inclination value through the following steps.
First, before performing step S720, obtaining the horizontal inclination value of the boom.
Specifically, the crane can detect the horizontal inclination value of the boom through an angle sensor, and transmit the detected horizontal inclination value to the controller. Optionally, the angle sensor can detect the horizontal inclination value of the boom in real time or periodically.
Then, determining the arm length of the boom exceeds the arm length threshold if the horizontal inclination value is less than an angle threshold and the tension value is greater than the tension threshold.
Specifically, the controller determines that the boom is in the self-loading and unloading state when the horizontal inclination value is greater than the angle threshold, and will not perform the step of determining whether the arm length of the boom exceeds the arm length threshold according to the tension value. the controller determines that the boom is in the cantilevering state when the horizontal inclination value is less than the angle threshold, and performs the step of determining whether the arm length exceeds the arm length threshold according to the tension value, that is, the controller determines that the arm length exceeds the arm length threshold when the horizontal inclination value is less than the angle threshold and the tension value is greater than the tension threshold; and the controller determines that the arm length does not exceed the arm length threshold when the horizontal inclination value is less than the angle threshold and the tension value is less than the tension threshold. When the horizontal inclination angle is equal to the angle threshold, the judgment result of the controller 5 can be set according to the actual situation. In one case, the controller 5 determines that the boom 2 is in a self-loading and unloading state when the horizontal inclination angle is equal to the angle threshold; in another case, the controller 5 determines that the boom 2 is in a cantilevering state when the horizontal inclination angle is equal to the angle threshold.
The controller can also determine whether the arm length of the boom exceeds the arm length threshold according to the tension value and the trigger signal. Optionally, the controller can determine whether the arm length of the boom exceeds the arm length threshold according to the tension value and the trigger signal through the following steps.
Specifically, step S720: determining the arm length of the boom exceeds the arm length threshold if the trigger signal is received and the tension value is greater than the tension threshold.
Specifically, the crane can detect whether the boom is connected with the luffing mechanism through the in-place detecting sensor. When the in-place detecting sensor detects that the boom is connected with the luffing mechanism, the in-place detecting sensor will generate a trigger signal and transmit it to the controller. When the controller does not receive the trigger signal, the step of determining whether the arm length of the boom exceeds the arm length threshold according to the tension value will not be performed; and when the controller receives the trigger signal, it performs the step of determining whether the arm length of the boom exceeds the arm length threshold according to the tension value. The in-place detecting sensor can detect whether the boom is connected with the luffing mechanism in real time or periodically.
The controller can also determine whether the arm length of the boom exceeds the arm length threshold according to the tension value, the horizontal inclination value and the trigger signal. Optionally, the controller can determine whether the arm length of the boom exceeds the arm length threshold according to the tension value, the horizontal inclination value and the trigger signal through the following steps.
First, determining whether the trigger signal is received.
Then, when the trigger signal is received, the controller executes the step of determining whether the arm length of the boom exceeds the arm length threshold according to the tension value and the horizontal inclination value, and when the trigger signal is not received, the controller does not execute the step of determining whether the arm length of the boom exceeds the arm length threshold according to the tension value and the horizontal inclination value.
The control device of the crane provided by the embodiment of this application is described below, the control device of the crane described below can correspondingly refer to the control method of the crane described above.
As shown in
A tension value obtaining unit 810 is configured to obtain a tension value of the luffing mechanism to the boom; the determination unit 820 is configured to determine that the arm length of the boom exceeds the arm length threshold if the tension value is greater than the tension threshold.
In addition, the above-mentioned logic instructions in the memory 930 can be implemented in the form of software functional units, and can be stored in a computer-readable storage medium when sold or used as an independent product. With this understanding, the essential technical scheme of this application, or the part of the technical scheme of this application that contributes to the prior art, or the part of this technical solution, can be embodied in the form of a software product, which is stored in a storage medium and includes a number of instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) perform all or part of the steps of the methods described in various embodiments of this application. The aforementioned storage media include: USB Disk, mobile hard disk, Read-Only Memory (ROM), Random Access Memory (RAM), magnetic disk or laser disc and other media that can store program codes.
On the other hand, the embodiment of the present application also provides a computer program product, which includes a computer program stored on a non-transient computer readable storage medium, and the computer program includes program instructions, and when the program instructions are executed by a computer, the computer can execute the control methods of cranes provided by the above method embodiments. The control method includes the following steps: obtaining the tension value of the luffing mechanism to the boom; determining the arm length of the boom exceeds the arm length threshold if the tension value is greater than the tension threshold.
On the other hand, the embodiment of the present application also provides a non-transient computer readable storage medium, on which a computer program is stored, and the computer program is implemented when executed by a processor to execute the control method of the crane provided by the above embodiments, and the control method includes: obtaining the tension value of the luffing mechanism to the boom; determining the arm length of the boom exceeds the arm length threshold if the tension value is greater than the tension threshold.
According to the crane and the control method therefor provided by the embodiment of the application, the tension sensor detects the tension value of the luffing mechanism to the boom, and according to the tension value, it can be determined whether the arm length exceeds the arm length threshold, thus avoiding the problem of overload damage to the boom.
Finally, it should be explained that the above embodiments are only used to illustrate the technical scheme of this application, but not to limit it; Although the application has been described in detail with reference to the foregoing embodiments, it should be understood by those skilled in the art that it is still possible to modify the technical solutions described in the foregoing embodiments, or equivalently replace some technical features thereof; These modifications or substitutions do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical scheme of the embodiments of this application.
Number | Date | Country | Kind |
---|---|---|---|
202011242474.9 | Nov 2020 | CN | national |
This application is a continuation of International Application No. PCT/CN2021/102329, filed on Jun. 25, 2021, which claims priority to Chinese Patent Application No. 202011242474.9, filed on Nov. 9, 2020, entitled “Crane and Control Method Therefor”. All of the aforementioned applications are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2021/102329 | Jun 2021 | US |
Child | 18155276 | US |