Crane controller with division of a kinematically constrained quantity of the hoisting gear

Information

  • Patent Grant
  • 9790061
  • Patent Number
    9,790,061
  • Date Filed
    Thursday, March 7, 2013
    11 years ago
  • Date Issued
    Tuesday, October 17, 2017
    7 years ago
Abstract
The present disclosure relates to a crane controller for a crane which includes a hoisting gear for lifting a load hanging on a cable, with an active heave compensation which by actuating the hoisting gear at least partly compensates the movement of the cable suspension point and/or of a load deposition point due to the heave, and an operator control which actuates the hoisting gear with reference to specifications of the operator, wherein the division of at least one kinematically constrained quantity of the hoisting gear is adjustable between heave compensation and operator control.
Description
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to German Patent Application No. 10 2012 004 802.5, entitled “Crane Controller with Division of a Kinematically Constrained Quantity of the Hoisting Gear,” filed Mar. 9, 2012, which is hereby incorporated by reference in its entirety for all purposes.


TECHNICAL FIELD

The present disclosure relates to a crane controller for a crane which includes a hoisting gear for lifting a load hanging on a cable. According to the present disclosure, the crane controller includes an active heave compensation which by actuating the hoisting gear at least partly compensates the movement of the cable suspension point and/or a load deposition point due to the heave. The crane controller furthermore includes an operator control which actuates the hoisting gear with reference to specifications of the operator.


BACKGROUND AND SUMMARY

Such crane controller is known for example from DE 10 2008 024513 A1. There is provided a prediction device which predicts a future movement of the cable suspension point with reference to the determined current heave movement and a model of the heave movement, wherein the path controller takes account of the predicted movement when actuating the hoisting gear.


The known crane controller however is not sufficiently flexible for some requirements. In addition, problems may arise in the case of a failure of the heave compensation.


Therefore, it is the object of the present disclosure to provide an improved crane controller with an active heave compensation and an operator control.


According to the present disclosure, this object is solved in a first aspect according to claim 1 and in a second aspect according to claim 4.


In a first aspect, the present disclosure shows a crane controller for a crane which includes a hoisting gear for lifting a load hanging on a cable. There is provided an active heave compensation which by actuating the hoisting gear at least partly compensates a movement of the cable suspension point and/or a load deposition point due to the heave. Furthermore an operator control is provided, which actuates the hoisting gear with reference to specifications of the operator. According to the present disclosure, a division of at least one kinematically constrained quantity of the hoisting gear is adjustable between heave compensation and operator control. In this way, the crane operator himself can split up the at least one kinematically constrained quantity of the hoisting gear and thereby determine which part of it is available for the compensation of the heave and which part of it is available for the operator control.


The at least one kinematically constrained quantity of the hoisting gear for example can be the maximum available power and/or maximum available velocity and/or maximum available acceleration of the hoisting gear.


The division of the at least one kinematically constrained quantity of the hoisting gear therefore can comprise a division of the maximum available power and/or maximum available velocity and/or maximum available acceleration of the hoisting gear.


Advantageously, the division of the at least one kinematically constrained quantity is effected by at least one weighting factor, by which the maximum available power and/or velocity and/or acceleration of the hoisting gear is split up between the heave compensation and the operator control. In particular, the maximum available velocity and/or the maximum available acceleration of the hoisting gear can be split up by the crane operator between heave compensation and operator control.


Advantageously, the division is steplessly adjustable at least in a partial region. It thus becomes possible for the crane operator to sensitively split up the at least one kinematically constrained quantity of the hoisting gear.


According to the present disclosure, it can furthermore be possible to switch off the heave compensation by assigning the entire at least one kinematically constrained quantity of the hoisting gear to the operator control. It thus becomes possible to at the same time completely switch off the active heave compensation via the adjustment of the division.


Advantageously, a stepless adjustment of the division of the at least one kinematically constrained quantity of the hoisting gear is possible proceeding from and/or towards an operator control completely switched off. This enables a steady transition between a pure operator control and an active heave compensation.


In a second aspect, the present disclosure comprises a crane controller for a crane which includes a hoisting gear for lifting a load hanging on a cable. The crane controller comprises an active heave compensation which by actuating the hoisting gear at least partly compensates the movement of the cable suspension point and/or a load deposition point due to the heave. Furthermore an operator control is provided, which actuates the hoisting gear with reference to specifications of the operator. According to the present disclosure, the controller includes two separate path planning modules via which trajectories for the heave compensation and for the operator control are calculated separate from each other. In the case of a failure of the heave compensation, the crane thereby can still be actuated via the operator control, without a separate control unit having to be used for this purpose and without this resulting in a different operating behavior. Advantageously, in the two separate path planning modules desired trajectories of the position and/or velocity and/or acceleration of the hoisting gear each are calculated.


Furthermore advantageously, the trajectories specified by the two separate path planning modules are added up and used as setpoint values for the control and/or regulation of the hoisting gear.


Furthermore, it can be provided that the control of the hoisting gear feeds back measured values to the position and/or velocity of the hoisting winch and thus compares the setpoint values with actual values. Furthermore, the actuation of the hoisting gear can take account of the dynamics of the drive of the hoisting winch. In particular, a corresponding pilot control can be provided for this purpose. Advantageously, the same is based on the inversion of a physical model of the dynamics of the drive of the hoisting winch.


Advantageously, the two separate path planning modules each separately take account of at least one constraint of the drive and thereby generate target trajectories which can actually be approached by the hoisting gear.


Advantageously, the crane controller splits up at least one kinematically constrained quantity between heave compensation and operator control. In particular, the maximum available power and/or the maximum available velocity and/or the maximum available acceleration of the hoisting gear is split up between the heave compensation and the operator control.


Advantageously, the trajectories in the two separate path planning modules then are calculated taking into account the respectively assigned at least one kinematically constrained quantity, in particular the maximum available power and/or velocity and/or the maximum available acceleration which is accounted for the heave compensation and the operator control, respectively.


By this division of the at least one kinematically constrained quantity, the control variable constraint possibly is not utilized completely. The division of the at least one kinematically constrained quantity however provides for using two completely separate path planning modules, which each independently take account of the drive constraint.


The first and the second aspect according to the present disclosure each are claimed separately and can be implemented independently. Particularly advantageously, however, the two aspects according to the present disclosure are combined with each other.


In particular, the use of two separate path planning modules according to the second aspect of the present disclosure provides for a particularly easy adjustability of the division of the at least one kinematically constrained quantity. In particular, it can be specified by the crane operator how much of the at least one kinematically constrained quantity is available for the operator control and the heave compensation, with this division then being taken into account as constraint by the two path planning modules when calculating the target trajectories for actuating the hoisting gear.


In a crane controller according to one of the above-described aspects, the heave compensation according to the present disclosure can include an optimization function which calculates a trajectory with reference to a predicted movement of the cable suspension point and/or a load deposition point and taking into account the power available for the heave compensation. In particular, there is calculated a trajectory for actuating the hoisting gear, which taking into account the power available for the heave compensation compensates the predicted movement of the cable suspension point and/or a load deposition point as well as possible. In particular, the trajectory can minimize the residual movement of the load due to the movement of the cable suspension point and/or a differential movement between load and load deposition point, which occurs due to the heave.


The crane controller according to the present disclosure advantageously comprises a prediction device which predicts a future movement of the cable suspension point and/or a load deposition point with reference to the determined current heave movement and a model of the heave movement, wherein a measuring device is provided, which determines the current heave movement with reference to sensor data. In particular, the prediction device predicts the future movement of the cable suspension point and/or a load deposition point in vertical direction. The movement in vertical direction on the other hand can be neglected.


The prediction device and/or the measuring device can be configured such as is described in DE 10 2008 024513 A1.


The operator control furthermore can calculate a trajectory with reference to specifications of the operator and taking into account the at least one kinematically constrained quantity available for the operator control. Advantageously, the operator control thus also takes account of the at least one kinematically constrained quantity maximally available for the operator control and thus calculates a trajectory for actuating the hoisting gear from specifications of the operator.


By taking into account the respectively available at least one kinematically constrained quantity, it is ensured that the hoisting gear actually can follow the specified trajectories. Advantageously, the determination of the trajectories each is effected in the above-described path planning modules.


Advantageously, the crane controller includes at least one control element via which the crane operator can adjust the division of the available at least one kinematically constrained quantity and in particular can specify the weighting factor.


In the crane controller according to the present disclosure, the division of the available at least one kinematically constrained quantity advantageously can be varied during the lift. The crane operator thereby is able for example to provide more power for the operator control, when faster lifting is desired. On the other hand, more power can be supplied to the heave compensation when the crane operator has the feeling that the heave is not compensated sufficiently. For example, the crane operator thus is able to flexible react to changes of the weather and the heave.


Advantageously, the change of the division of the available at least one kinematically constrained quantity is effected as described above by varying the weighting factor.


Advantageously, the crane controller according to the present disclosure includes a calculation function which calculates the currently available at least one kinematically constrained quantity. In particular, the maximum available power and/or velocity and/or acceleration of the hoisting gear can be calculated. Since the maximum available power and the maximum available velocity and/or acceleration of the hoisting gear can change during the lift, the same thus can be adapted to the current circumstances of the lift via the calculation function.


Advantageously, the calculation function takes account of the length of the unwound cable and/or the cable force and/or the power available for driving the hoisting gear. For example, depending on the length of the unwound cable the maximum available velocity and/or acceleration of the hoisting gear can be different, since especially during lifts with very long cables the weight of the unwound cable exerts a load on the hoisting gear. In addition, the maximum available velocity and/or acceleration of the hoisting gear can fluctuate depending on the mass of the lifted load. Furthermore, in particular when a hybrid drive with an accumulator is used, the power available for driving the hoisting gear can fluctuate depending on the accumulator condition. Advantageously, this will also be taken into account.


According to the present disclosure, the currently available at least one kinematically constrained quantity each advantageously is split up between heave compensation and operator control according to the specification of the crane operator, in particular with reference to the weighting factor specified by the crane operator.


Advantageously, the optimization function of the heave compensation initially can include a change in the division of the available at least one kinematically constrained quantity and/or a change of the available at least one kinematically constrained quantity during a lift only at the end of the prediction horizon. This provides for a stable optimization function over the entire prediction horizon. Advantageously, with progressing time the changed available at least one kinematically constrained quantity will then be pushed through to the beginning of the prediction horizon.


Advantageously, the optimization function of the heave compensation according to the present disclosure determines a target trajectory which is included in the control and/or regulation of the hoisting gear. In particular, the target trajectory is meant to specify a target movement of the hoisting gear. The optimization can be effected via a discretization.


According to the present disclosure, the optimization can be effected at each time step on the basis of an updated prediction of the movement of the load lifting point.


According to the present disclosure, the first value of the target trajectory each can be used for controlling the hoisting gear. When an updated target trajectory then is available, only the first value thereof will in turn be used for the control.


According to the present disclosure, the optimization function can operate with a greater scan time than the control. This provides for choosing greater scan times for the calculation-intensive optimization function, for the less calculation-intensive control, on the other hand, a greater accuracy due to lower scan times.


Furthermore, it can be provided that the optimization function makes use of an emergency trajectory planning when no valid solution can be found. In this way, a proper operation also is ensured when a valid solution cannot be found.


Advantageously, the operator control calculates the velocity of the hoisting winch desired by the operator with reference to a signal specified by an operator through an input device. In particular, a hand lever can be provided.


The desired velocity can be calculated for the operator control as the part of the maximum available velocity specified by the position of the input device.


Advantageously, the target trajectory is generated by integration of the maximum admissible positive jerk, until the maximum acceleration is achieved. It thereby is ensured that the hoisting gear is not overloaded by the operator control. Advantageously, the maximum acceleration corresponds to the part of the maximum available acceleration of the hoisting gear which is assigned to the operator control.


Furthermore advantageously, the velocity thereupon is increased by integration of the maximum acceleration, until the desired velocity can be achieved by adding the maximum negative jerk.


It thereby is ensured that on achieving the target velocity, the acceleration again has decreased to zero, so that unnecessary loads by an acceleration jump on reaching the target velocity are avoided.


The present disclosure furthermore comprises a crane with a crane controller as it has been described above.


In particular, the crane can be arranged on a pontoon. In particular, the crane can be a deck crane. Alternatively, it can also be an offshore crane, a harbor crane or a cable excavator.


The present disclosure furthermore comprises a pontoon with a crane according to the present disclosure, in particular a ship with a crane according to the present disclosure.


Furthermore, the present disclosure comprises the use of a crane according to the present disclosure and a crane controller according to the present disclosure for lifting and/or lowering a load located in water and/or the use of a crane according to the present disclosure and a crane controller according to the present disclosure for lifting and/or lowering a load from and/or to a load deposition position located in water, for example on a ship. In particular, the present disclosure comprises the use of the crane according to the present disclosure and the crane controller according to the present disclosure for deep-sea lifts and/or for loading and/or unloading ships.


The present disclosure furthermore comprises a method for controlling a crane which includes a hoisting gear for lifting a load hanging on a cable. Advantageously, a heave compensation at least partly compensates the movement of the cable suspension point and/or load deposition point due to the heave by an automatic actuation of the hoisting gear. Furthermore, the hoisting gear is actuated with reference to specifications of the operator via an operator control. In accordance with the present disclosure it is provided according to a first aspect that at least one kinematically constrained quantity of the hoisting gear is variably split up between the heave compensation and the operator control. According to a second aspect it is provided that trajectories for the heave compensation and for the operator control are calculated separate from each other. The method according to the present disclosure hence provides the same advantages which have already been described above with regard to the crane controller. Again, the two aspects may be combined with each other.


The method is carried out such as has already been set forth in detail in accordance with the present disclosure with regard to the crane controller and its function. Furthermore advantageously, the method according to the present disclosure serves the use which likewise has already been set forth above.


In particular, the method according to the present disclosure can be carried out by means of a crane controller as it has been set forth above and/or by means of a crane as it has been set forth above.


The present disclosure furthermore comprises software with code for carrying out a method according to the present disclosure. In particular, the software can be stored on a machine-readable data carrier. Advantageously, a crane controller according to the present disclosure can be implemented by installing the software according to the present disclosure on a crane controller.


The present disclosure will now be explained in detail with reference to an exemplary embodiment and drawings.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a crane according to the present disclosure arranged on a pontoon.



FIG. 2 shows the structure of a separate trajectory planning for the heave compensation and the operator control.



FIG. 3 shows a fourth order integrator chain for planning trajectories with steady jerk.



FIG. 4 shows a non-equidistant discretization for trajectory planning, which towards the end of the time horizon uses larger distances than at the beginning of the time horizon.



FIG. 5 shows how changing constraints first are taken into account at the end of the time horizon using the example of velocity.



FIG. 6 shows the third order integrator chain used for the trajectory planning of the operator control, which works with reference to a jerk addition.



FIG. 7 shows the structure of the path planning of the operator control, which takes account of constraints of the drive.



FIG. 8 shows an exemplary jerk profile with associated switching times, from which a trajectory for the position and/or velocity and/or acceleration of the hoisting gear is calculated with reference to the path planning.



FIG. 9 shows a course of a velocity and acceleration trajectory generated with the jerk addition.



FIG. 10 shows an overview of the actuation concept with an active heave compensation and a target force mode, here referred to as constant tension mode.



FIG. 11 shows a block circuit diagram of the actuation for the active heave compensation.



FIG. 12 shows a block circuit diagram of the actuation for the target force mode.





DETAILED DESCRIPTION


FIG. 1 shows an exemplary embodiment of a crane 1 with a crane controller according to the present disclosure for actuating the hoisting gear 5. The hoisting gear 5 includes a hoisting winch which moves the cable 4. The cable 4 is guided over a cable suspension point 2, in the exemplary embodiment a deflection pulley at the end of the crane boom, at the crane. By moving the cable 4, a load 3 hanging on the cable can be lifted or lowered.


There can be provided at least one sensor which measures the position and/or velocity of the hoisting gear and transmits corresponding signals to the crane controller.


Furthermore, at least one sensor can be provided, which measures the cable force and transmits corresponding signals to the crane controller. The sensor can be arranged in the region of the crane body, in particular in a mount of the winch 5 and/or in a mount of the cable pulley 2.


In the exemplary embodiment, the crane 1 is arranged on a pontoon 6, here a ship. As is likewise shown in FIG. 1, the pontoon 6 moves about its six degrees of freedom due to the heave, the heaving including heaving motion. The crane 1 arranged on the pontoon 6 as well as the cable suspension point 2 also are moved thereby.


The crane controller may be a microcomputer including: a microprocessor unit, input/output ports, read-only memory, random access memory, keep alive memory, and a data bus. As noted above, software with code for carrying out the methods according to the present disclosure may be stored on a machine-readable data carrier in the controller. Advantageously, a crane controller according to the present disclosure can be implemented by installing the software according to the present disclosure on a crane controller. The crane controller may receive various signals from sensors coupled to the crane and/or pontoon. In one example, the software may include various programs (including control and estimation routines, operating in real-time), such as heave compensation, as described herein. The specific routines described herein may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. Thus, the described methods may represent code to be programmed into the computer readable storage medium in the crane control system.


In one example, the crane controller according to the present disclosure can include an active heave compensation which by actuating the hoisting gear at least partly compensates the movement of the cable suspension point 2 due to the heave. In particular, the vertical movement of the cable suspension point due to the heave is at least partly compensated.


The heave compensation can comprise a measuring device which determines a current heave movement from sensor data. The measuring device can comprise sensors which are arranged at the crane foundation. In particular, this can be gyroscopes and/or tilt angle sensors. Particularly, three gyroscopes and three tilt angle sensors are provided.


Furthermore a prediction device can be provided, which predicts a future movement of the cable suspension point 2 with reference to the determined heave movement and a model of the heave movement. In particular, the prediction device solely predicts the vertical movement of the cable suspension point. In connection with the measuring and/or prediction device, a movement of the ship at the point of the sensors of the measuring device possibly can be converted into a movement of the cable suspension point.


The prediction device and the measuring device advantageously are configured such as is described in more detail in DE 10 2008 024513 A1.


Alternatively, the crane according to the present disclosure also might be a crane which is used for lifting and/or lowering a load from or to a load deposition point arranged on a pontoon, which therefore moves with the heave. In this case, the prediction device must predict the future movement of the load deposition point. This can be effected analogous to the procedure described above, wherein the sensors of the measuring device are arranged on the pontoon of the load deposition point. The crane for example can be a harbor crane, an offshore crane or a cable excavator.


In the exemplary embodiment, the hoisting winch of the hoisting gear 5 is driven hydraulically. In particular, a hydraulic circuit of hydraulic pump and hydraulic motor is provided, via which the hoisting winch is driven. In one example, a hydraulic accumulator can be provided, via which energy is stored on lowering the load, so that this energy is available when lifting the load.


Alternatively, an electric drive might be used. The same might also be connected with an energy accumulator.


In the following, an exemplary embodiment of the present disclosure will now be shown, in which a multitude of aspects of the present disclosure are jointly realized. The individual aspects can, however, also each be used separately for developing the embodiment of the present disclosure as described in the general part of the present application.


1 Planning of Reference Trajectories


For implementing the required predictive behavior of the active heave compensation, a sequential control comprising a pilot control and a feedback in the form of a structure of two degrees of freedom is employed. The pilot control is calculated by a differential parameterization and requires reference trajectories steadily differentiable two times.


For planning it is decisive that the drive can follow the specified trajectories. Thus, constraints of the hoisting gear are also taken into account. Starting point for the consideration are the vertical position and/or velocity of the cable suspension point {tilde over (z)}ah and {tilde over (ż)}ah, which are predicted e.g. by the algorithm described in DE 10 2008 024 513 over a fixed time horizon. In addition, the hand lever signal of the crane operator, by which he moves the load in the inertial coordinate system, also is included in the trajectory planning.


For safety reasons it is necessary that the winch also can still be moved via the hand lever signal in the case of a failure of the active heave compensation. With the used concept for trajectory planning, a separation between the planning of the reference trajectories for the compensation movement and those as a result of a hand lever signal therefore is effected, as is shown in FIG. 1.


In the Figure, ya*, {dot over (y)}a* and ÿa* designate the position, velocity and acceleration planned for the compensation, and yl*, {dot over (y)}l* and ÿl* the position, velocity and acceleration for the superimposed unwinding or winding of the cable as planned on the basis of the hand lever signal. In the further course of the execution, planned reference trajectories for the movement of the hoisting winch always are designated with y*, {dot over (y)}* and ÿ*, respectively, since they serve as reference for the system output of the drive dynamics.


Due to the separate trajectory planning it is possible to use the same trajectory planning and the same sequential controller with the heave compensation switched off or in the case of a complete failure of the heave compensation (e.g. due to failure of the IMU) for the hand lever control in manual operation and thereby generate an identical operating behavior with the heave compensation switched on.


In order not to violate the given constraints in velocity vmax and acceleration amax despite the completely independent planning, vmax and amax are split up by a weighting factor 0≦kl≦1 (cf. FIG. 1). The same is specified by the crane operator and hence provides for individually splitting up the power which is available for the compensation and/or for moving the load. Thus, the maximum velocity and acceleration of the compensation movement are (1−kl)vmax and (1−kl)amax and the trajectories for the superimposed unwinding and winding of the cable are klvmax and klamax.


A change of kl can be performed during operation. Since the maximum possible traveling speed and acceleration are dependent on the total mass of cable and load, vmax and amax also can change in operation. Therefore, the respectively applicable values likewise are handed over to the trajectory planning.


By splitting up the power, the control variable constraints possibly are not utilized completely, but the crane operator can easily and intuitively adjust the influence of the active heave compensation.


A weighting of kl=1 is equal to switching off the active heave compensation, whereby a smooth transition between a compensation switched on and switched off becomes possible.


The first part of the chapter initially explains the generation of the reference trajectories ya*, {dot over (y)}a* and ÿa* for compensating the vertical movement of the cable suspension point. The essential aspect here is that with the planned trajectories the vertical movement is compensated as far as is possible due to the given constraints set by kl.


Therefore, by the vertical positions and velocities of the cable suspension point {tilde over (z)}ah=[{tilde over (z)}ah(tk+Tp,l) . . . {tilde over (z)}ah(tk+Tp,Kp)]T and {tilde over (ż)}ah=[{tilde over (ż)}ah(tk+Tp,l) . . . {tilde over (ż)}ah(tk+Tp,Kp)]T predicted over a complete time horizon, an optimal control problem therefore is formulated, which is solved cyclically, wherein Kp designates the number of the predicted time steps. The associated numerical solution and implementation will be discussed subsequently.


The second part of the chapter deals with the planning of the trajectories yl*, {dot over (y)}l* and ÿl* for traveling the load. The same are generated directly from the hand lever signal of the crane operator whh. The calculation is effected by an addition of the maximum admissible jerk.


1.1 Reference Trajectories for the Compensation


In the trajectory planning for the compensation movement of the hoisting winch, sufficiently smooth trajectories must be generated from the predicted vertical positions and velocities of the cable suspension point taking into account the valid drive constraints. This task subsequently is regarded as constrained optimization problem, which can be solved online at each time step. Therefore, the approach resembles the draft of a model-predictive control, although in the sense of a model-predictive trajectory generation.


As references or setpoint values for the optimization the vertical positions and velocities of the cable suspension point {tilde over (z)}ah=[{tilde over (z)}ah(tk+Tp,l) . . . {tilde over (z)}ah(tk+Tp,Kp)]T and {tilde over (ż)}ah=[{tilde over (ż)}ah(tk+Tp,l) . . . {tilde over (ż)}ah(tk+Tp,Kp)]T are used, which are predicted at the time tk over a complete time horizon with Kp time steps and are calculated with the corresponding prediction time, e.g. by the algorithm described in DE 10 2008 024 513.


Considering the constraints valid by kl, vmax and amax an optimum time sequence thereupon can be determined for the compensation movement.


However, analogous to the model-predictive control only the first value of the trajectory calculated thereby is used for the subsequent control. In the next time step, the optimization is repeated with an updated and therefore more accurate prediction of the vertical position and velocity of the cable suspension point.


The advantage of the model-predictive trajectory generation with successive control as compared to a classical model-predictive control on the one hand consists in that the control part and the related stabilization can be calculated with a higher scan time as compared to the trajectory generation. Therefore, the calculation-intensive optimization can be shifted into a slower task.


In this concept, on the other hand, an emergency function can be realized independent of the control for the case that the optimization does not find a valid solution. It includes a simplified trajectory planning which the control relies upon in such emergency situation and further actuates the winch.


1.1.1 System Model for Planning the Compensation Movement


To satisfy the requirements of the steadiness of the reference trajectories for the compensation movement, its third derivative custom character at the earliest can be regarded as jump-capable. However, jumps in the jerk should be avoided in the compensation movement with regard to the winch life, whereby only the fourth derivative ya(4)* can be regarded as jump-capable.


Thus, the jerk custom character must at least be planned steady and the trajectory generation for the compensation movement is effected with reference to the fourth order integrator chain illustrated in FIG. 2. In the optimization, the same serves as system model and can be expressed as












x
.

a

=




[



0


1


0


0




0


0


1


0




0


0


0


1




0


0


0


0



]




A
a





x
a


+



[



0




0




0




1



]




B
a





u
a




,



x
a



(
0
)


=

x

a
,
0



,






y
a

=

x
a






(
1.1
)








in the state space. Here, the output ya=[ya*,{dot over (y)}y*,ÿa*,custom character]T includes the planned trajectories for the compensation movement. For formulating the optimal control problem and with regard to the future implementation, this time-continuous model initially is discretized on the lattice

τ01< . . . <τKp−1Kp  (1.2)

wherein Kp represents the number of the prediction steps for the prediction of the vertical movement of the cable suspension point. To distinguish the discrete time representation in the trajectory generation from the discrete system time tk, it is designated with τk=kΔτ, wherein k=0, . . . , Kp and Δτ is the discretization interval of the horizon Kp used for the trajectory generation.



FIG. 3 illustrates that the chosen lattice is non-equidistant, so that the number of the necessary supporting points on the horizon is reduced. Thus, it is possible to keep the dimension of the optimal control problem to be solved small. The influence of the rougher discretization towards the end of the horizon has no disadvantageous effects on the planned trajectory, since the prediction of the vertical position and velocity is less accurate towards the end of the prediction horizon.


The time-discrete system representation valid for this lattice can be calculated exactly with reference to the analytical solution











x
a



(
t
)


=



e


A
a


t





x
a



(
0
)



+



0
t




e


A
a



(

t
-
τ

)





B
a




u
a



(
τ
)











(
1.3
)







For the integrator chain from FIG. 2 it follows to












x
a



(

τ

k
+
1


)


=


[



1



Δ






τ
k






Δ






τ
k
2


2





Δ






τ
k
3


6





0


1



Δ






τ
k






Δ






τ
k
2


2





0


0


1



Δ






τ
k






0


0


0


1



]

+


[





Δ






τ

4

k



24







Δ






τ
k
3



6












Δ






τ
k
2


2






Δ






τ
k





]




u
a



(

τ
k

)





,







x
a



(
0
)


=

x

a
,
0



,







y
a



(

τ
k

)


=


x
a



(

τ
k

)



,

k
=
0

,





,


K
p

-
1

,




(
1.4
)








wherein Δτkk+1−τk describes the discretization step width valid for the respective time step.


1.1.2 Formulation and Solution of the Optimal Control Problem


By solving the optimal control problem a trajectory will be planned, which as closely as possible follows the predicted vertical movement of the cable suspension point and at the same time satisfies the given constraints.


To satisfy this requirement, the merit function reads as follows:









J
=


1
2






k
=
1


K
p




{







[



y
a



(

τ
k

)


-


w
a



(

τ
k

)



]

T




Q
w



(

τ
k

)








y
a



(

τ
k

)


-


w
a



(

τ
k

)






+








u
a



(

τ

k
-
1


)




r
u




u
a



(

τ

k
-
1


)






}







(
1.5
)








wherein wak) designates the reference valid at the respective time step. Since only the predicted position {tilde over (z)}ah(tk+Tp,k) and velocity {tilde over (ż)}ah(tk+Tp,k) of the cable suspension point are available here, the associated acceleration and the jerk are set to zero. The influence of this inconsistent specification, however, can be kept small by a corresponding weighting of the acceleration and jerk deviation. Thus:

wak)=[{tilde over (z)}ah(tk+Tp,k){tilde over (ż)}ah(tk+Tp,k)00]T,k=1, . . . ,Kp.  (1.6)

Over the positively semidefinite diagonal matrix

Qwk)=diag(qw,1k),qw,2k),qw,3,qw,4),k=1, . . . ,Kp  (1.7)

deviations from the reference are weighted in the merit function. The scalar factor ru evaluates the correction effort. While ru, qw,3 and qw,4 are constant over the entire prediction horizon, qw,1 and qw,2 are chosen in dependence on the time step τk. Reference values at the beginning of the prediction horizon therefore can be weighted more strongly than those at the end. Hence, the accuracy of the vertical movement prediction decreasing with increasing prediction time can be depicted in the merit function. Because of the non-existence of the references for the acceleration and the jerk, the weights qw,3 and qw,4 only punish deviations from zero, which is why they are chosen smaller than the weights for the position qw,1k) and velocity qw,2k).


The associated constraints for the optimal control problem follow from the available power of the drive and the currently chosen weighting factor kl (cf. FIG. 1). Accordingly, it applies for the states of the system model from (1.4):

−δak)(1−kl)vmax≦xa,2k)≦δak)(1−kl)vmax,
−δak)(1−kl)amax≦xa,3k)≦δak)(1−kl)amax,k=1, . . . ,Kp,
−δak)jmax≦xa,4k)≦δak)jmax  (1.8)

and for the input:












-


δ
a



(

τ
k

)





d
dt



j

ma





x






u
a







(

τ
k

)






δ
a



(

τ
k

)




d
dt



j

ma





x




,





k
=
0

,





,


K
p

-
1.





(
1.9
)







Here, δak) represents a reduction factor which is chosen such that the respective constraint at the end of the horizon amounts to 95% of that at the beginning of the horizon. For the intermediate time steps, δak) follows from a linear interpolation. The reduction of the constraints along the horizon increases the robustness of the method with respect to the existence of admissible solutions.


While the velocity and acceleration constraints can change in operation, the constraints of the jerk jmax and the derivative of the jerk d/dt jmax are constant. To increase the useful life of the hoisting winch and the entire crane, they are chosen with regard to a maximum admissible shock load. For the positional state no constraints are applicable.


Since the maximum velocity vmax and acceleration amax as well as the weighting factor of the power kl in operation are determined externally, the velocity and acceleration constraints also are changed necessarily for the optimal control problem. The presented concept takes account of the related time-varying constraints as follows: As soon as a constraint is changed, the updated value first is taken into account only at the end of the prediction horizon for the time step τKp. With progressing time, it is then pushed to the beginning of the prediction horizon.



FIG. 4 illustrates this procedure with reference to the velocity constraint. When reducing a constraint, care should be taken in addition that it fits with its maximum admissible derivative. This means that for example the velocity constraint (1−kl)vmax maximally can be reduced as fast as is allowed by the current acceleration constraint (1−kl)amax. Because the updated constraints are pushed through, there always exists a solution for an initial condition xa0) present in the constraints, which in turn does not violate the updated constraints. However, it will take the complete prediction horizon, until a changed constraint finally influences the planned trajectories at the beginning of the horizon.


Thus, the optimal control problem is completely given by the quadratic merit function (1.5) to be minimized, the system model (1.4) and the inequality constraints from (1.8) and (1.9) in the form of a linear-quadratic optimization problem (QP problem for Quadratic Programming Problem). When the optimization is carried out for the first time, the initial condition is chosen to be xa0)=[0,0,0,0]T. Subsequently, the value xa1) calculated for the time step τ1 in the last optimization step is used as initial condition.


At each time step, the calculation of the actual solution of the QP problem is effected via a numerical method which is referred to as QP solver.


Due to the calculation effort for the optimization, the scan time for the trajectory planning of the compensation movement is greater than the discretization time of all remaining components of the active heave compensation; thus: Δτ>Δt.


To ensure that the reference trajectories are available for the control at a faster rate, the simulation of the integrator chain from FIG. 2 takes place outside the optimization with the faster scan time Δt. As soon as new values are available from the optimization, the states xa0) are used as initial condition for the simulation and the correcting variable at the beginning of the prediction horizon ua0) is written on the integrator chain as constant input.


1.2 Reference Trajectories for Moving the Load


Analogous to the compensation movement, two times steadily differentiable reference trajectories are necessary for the superimposed hand lever control (cf. FIG. 1). As with these movements specifiable by the crane operator, no fast changes in direction normally are to be expected for the winch, the minimum requirement of a steadily planned acceleration ÿl* also was found to be sufficient with respect to the useful life of the winch. Thus, in contrast to the reference trajectories planned for the compensation movement, the third derivative custom character, which corresponds to the jerk, already can be regarded as jump-capable.


As shown in FIG. 5, it also serves as input of a third order integrator chain. Beside the requirements as to steadiness, the planned trajectories also must satisfy the currently valid velocity and acceleration constraints, which for the hand lever control are found to be klvmax and klamax.


The hand lever signal of the crane operator −100≦whh≦100 is interpreted as relative velocity specification with respect to the currently maximum admissible velocity klvmax. Thus, according to FIG. 6 the target velocity specified by the hand lever is










v
hh
*

=


k
l



v

ma





x










w
hh

100

.






(
1.10
)







As can be seen, the target velocity currently specified by the hand lever depends on the hand lever position whh, the variable weighting factor kl and the current maximum admissible winch speed vmax.


The task of trajectory planning for the hand lever control now can be indicated as follows: From the target velocity specified by the hand lever, a steadily differentiable velocity profile can be generated, so that the acceleration has a steady course. As procedure for this task a so-called jerk addition is recommendable.


The basic idea is that in a first phase the maximum admissible jerk jmax acts on the input of the integrator chain, until the maximum admissible acceleration is reached. In the second phase, the speed is increased with constant acceleration; and in the last phase the maximum admissible negative jerk is added such that the desired final speed is achieved.


Therefore, merely the switching times between the individual phases must be determined in the jerk addition. FIG. 7 shows an exemplary course of the jerk for a speed change together with the switching times. Tl,0 designates the time at which replanning takes place. The times Tl,1, Tl,2 and Tl,3 each refer to the calculated switching times between the individual phases. Their calculation is outlined in the following paragraph.


As soon as a new situation occurs for the hand lever control, replanning of the generated trajectories takes place. A new situation occurs as soon as the target velocity vhh* or the currently valid maximum acceleration for the hand lever control klamax is changed. The target velocity can change due to a new hand lever position whh or due to a new specification of kl or vmax (cf. FIG. 6). Analogously, a variation of the maximum valid acceleration by kl or amax is possible.


When replanning the trajectories, that velocity initially is calculated from the currently planned velocity {dot over (y)}l(Tl,0) and the corresponding acceleration ÿl*(Tl,0) which is obtained with a reduction of the acceleration to zero:











v
~

=




y
.

i
*



(

T

l
,
0


)


+

Δ







T
~

1





y
~

l
*



(

T

l
,
0


)



+


1
2


Δ







T
~

1
2




u
~


l
,
1





,




(
1.11
)








wherein the minimum necessary time is given by











Δ







T
~

1


=

-



y
~

l
*



u
~



l
,
1










,



u
~


l
,
1



0





(
1.12
)








and ũl,1 designates the input of the integrator chain, i.e. the added jerk (cf. FIG. 5): In dependence on the currently planned acceleration ÿl*(Tl,0) it is found to be











u
~


l
,
1


=

{





j

ma





x


,





for







y
~

l
*


<
0







-

j

ma





x



,





for







y
~

l
*


>
0






0
,





for







y
~

l
*


=
0.









(
1.13
)







In dependence on the theoretically calculated velocity and the desired target velocity, the course of the input now can be indicated. If vhh*>{tilde over (v)}, {tilde over (v)} does not reach the desired value vhh* and the acceleration can be increased further. However, if vhh*<{tilde over (v)}, {tilde over (v)} is too fast and the acceleration must be reduced immediately.


From these considerations, the following switching sequences of the jerk can be derived for the three phases:










u
l

=

{





[




j

ma





x




0



-

j

ma





x






]

,





for






v
~




v
hh
*








[




-

j

ma





x





0



j

m





ax





]

,






for






v
~


>

v
hh
*















(
1.14
)








with ul=[ul,1,ul,2,ul,3] and the input signal ul,i added in the respective phase. The duration of a phase is found to be ΔTi=Tl,i−Tl,i−1 with i=1, 2, 3. Accordingly, the planned velocity and acceleration at the end of the first phase are:













y
.

l
*



(

T

l
,
1


)


=




y
.

l
*



(

T

l
,
0


)


+

Δ






T
1





y
_

l
*



(

T

l
,
0


)



+


1
2


Δ






T
1
2



u

l
,
1





,




(
1.15
)









y
_

l
*



(

T

l
,
1


)


=




y
_

l
*



(

T

l
,
0


)


=

Δ






T
1



u

l
,
1








(
1.16
)








and after the second phase:

{dot over (y)}l*(Tl,2)={dot over (y)}l*(Tl,1)+ΔT2ÿl*(Tl,3)  (1.17)
ÿl*(Tl,2)=ÿl*(Tl,1).  (1.18)

wherein ul,2 was assumed=0. After the third phase, finally, it follows:













y
.

l
*



(

T

l
,
3


)


=




y
.

l
*



(

T

l
,
2


)


+

Δ






T
3





y
_

l
*



(

T

l
,
2


)



+


1
2


Δ






T
3
2



u

l
,
3





,




(
1.19
)









y
_

l
*



(

T

l
,
3


)


=




y
_

l
*



(

T

l
,
2


)


+

Δ






T
3




u

l
,
3


.







(
1.20
)







For the exact calculation of the switching times Tl,i the acceleration constraint initially is neglected, whereby ΔT2=0. Due to this simplification, the lengths of the two remaining time intervals can be indicated as follows:











Δ






T
1


=



a
~

-



y
_

l
*



(

T

l
,
0


)




u

l
,
1




,




(
1.21
)








Δ






T
3


=


0
-

a
~



u

l
,
3




,




(
1.22
)








wherein ã stands for the maximum acceleration achieved. By inserting (1.21) and (1.22) into (1.15), (1.16) and (1.19) a system of equations is obtained, which can be resolved for ã. Considering {dot over (y)}l*(Tl,3)=vhh*, the following finally is obtained:










a
~

=

±





u

l
,
3




[


2








y
.

l
*



(

T

l
,
0


)




u

l
,
1



-




y
¨

l
*



(

T

l
,
0


)


2

-

2


v
hh
*



u

l
,
1




]




u

l
,
1


-

u

l
,
3





.






(
1.23
)







The sign of ã follows from the condition that ΔT1 and ΔT3 in (1.21) and (1.22) must be positive.


In a second step, ã and the maximum admissible acceleration klamax result in the actual maximum acceleration:

ā=ÿl*(Tl,1)=ÿl*(Tl,2)=min{klamax,max{−klamax,ā}}.  (1.24)


With the same, the really occurring time intervals ΔT1 and ΔT3 finally can be calculated. They result from (1.21) and (1.22) with ã=ā. The yet unknown time interval ΔT2 now is determined from (1.17) and (1.19) with ΔT1 and ΔT3 from (1.21) and (1.22) to be











Δ






T
2


=



2






v
hh
*



u

l
,
3



+


a
_

2

-

2








y
.

l
*



(

T

l
,
1


)




u

l
,
3





2






a
_







u

l

.3





,




(
1.25
)








wherein {dot over (y)}l*(Tl,1) follows from (1.15). The switching times can directly be taken from the time intervals:

Tl,i=Tl,i−1+ΔTi,i=1,2,3.  (1.26)


The velocity and acceleration profiles {dot over (y)}l* and ÿl* to be planned can be calculated analytically with the individual switching times. It should be mentioned that the trajectories planned by the switching times frequently are not traversed completely, since before reaching the switching time Tl,3 a new situation occurs, replanning thereby takes place and new switching times must be calculated. As mentioned already, a new situation occurs by a change in whh, vmax, amax or kl.



FIG. 8 shows a trajectory generated by the presented method by way of example. The course of the trajectories includes both cases which can occur due to (1.24). In the first case, the maximum admissible acceleration is reached at the time t=1 s, followed by a phase with constant acceleration. The second case occurs at the time t=3.5 s. Here, the maximum admissible acceleration is not reached completely due to the hand lever position. The consequence is that the first and the second switching time coincide, and ΔT2=0 applies. According to FIG. 5, the associated position course is calculated by integration of the velocity curve, wherein the position at system start is initialized by the cable length currently unwound from the hoisting winch.


Actuation Concept for the Hoisting Winch


In principle, the actuation includes two different operating modes: the active heave compensation for decoupling the vertical load movement from the ship movement with free-hanging load and the constant tension control for avoiding a slack cable, as soon as the load is deposited on the sea bed. During a deep-sea lift, the heave compensation initially is active. With reference to a detection of the depositing operation, switching to the constant tension control is effected automatically. FIG. 9 illustrates the overall concept with the associated reference and control variables.


Each of the two different operating modes however might also be implemented each without the other operating mode. Furthermore, a constant tension mode as it will be described below can also be used independent of the use of the crane on a ship and independent of an active heave compensation.


Due to the active heave compensation, the hoisting winch should be actuated such that the winch movement compensates the vertical movement of the cable suspension point zah and the crane operator moves the load by the hand lever in the h coordinate system regarded as inertial. To ensure that the actuation has the required predictive behavior for minimizing the compensation error, it is implemented by a pilot control and stabilization part in the form of a structure of two degrees of freedom. The pilot control is calculated from a differential parameterization by the flat output of the winch dynamics and results from the planned trajectories for moving the load yl*, {dot over (y)}l* and ÿl* as well as the negative trajectories for the compensation movement −ya*, −{dot over (y)}a* and −ÿa* (cf. FIG. 9). The resulting target trajectories for the system output of the drive dynamics and the winch dynamics are designated with yh*, {dot over (y)}h* and ÿh*. They represent the target position, velocity and acceleration for the winch movement and thereby for the winding and unwinding of the cable.


During the constant tension phase, the cable force at the load Fsl is to be controlled to a constant amount, in order to avoid a slack cable. The hand lever therefore is deactivated in this operating mode, and the trajectories planned on the basis of the hand lever signal no longer are added. The actuation of the winch in turn is effected by a structure of two degrees of freedom with pilot control and stabilization part.


The exact load position zl and the cable force at the load Fsl are not available as measured quantities for the control, since due to the long cable lengths and great depths the crane hook is not equipped with a sensor unit. Furthermore, no information exists on the kind and shape of the suspended load. Therefore, the individual load-specific parameters such as load mass ml, coefficient of the hydrodynamic increase in mass Ca, coefficient of resistance Cd and immersed volume ∇l, are not known in general, whereby a reliable estimation of the load position is almost impossible in practice.


Thus, merely the unwound cable length ls and the associated velocity is as well as the force at the cable suspension point Fc are available as measured quantities for the control. The length ls is obtained indirectly from the winch angle φh measured with an incremental encoder and the winch radius rh(jl) dependent on the winding layer jl. The associated cable velocity is can be calculated by numerical differentiation with suitable low-pass filtering. The cable force Fc applied to the cable suspension point is detected by a force measuring pin.


2.1 Actuation for the Active Heave Compensation



FIG. 10 illustrates the actuation of the hoisting winch for the active heave compensation with a block circuit diagram in the frequency range. As can be seen, there is only effected a feedback of the cable length and velocity yh=ls and {dot over (y)}h=is from the partial system of the drive Gh(s). As a result, the compensation of the vertical movement of the cable suspension point Zah(s) acting on the cable system Gs,z(s) as input interference takes place purely as pilot control; cable and load dynamics are neglected. Due to a non-complete compensation of the input interference or a winch movement, the inherent cable dynamics is incited, but in practice it can be assumed that the resulting load movement is greatly attenuated in water and decays very fast.


The transfer function of the drive system from the correcting variable Uh(s) to the unwound cable length Yh(s) can be approximated as ITl system and results in














G
h



(
s
)


=





Y
h



(
s
)




U
h



(
s
)









=





K
h




r
h



(

j
l

)






T
h



s
2


+
s









(
2.1
)








with the winch radius rh(jl). Since the system output Yh(s) at the same time represents a flat output, the inverting pilot control F(s) will be













F


(
s
)


=





U
ff



(
s
)




Y
h
*



(
s
)









=



1


G
h



(
s
)









=






T
h



K
h




r
h



(

j
l

)






s
2


+


1


K
h




r
h



(

j
l

)





s









(
2.2
)








and can be written in the time domain in the form of a differential parameterization as











u
ff



(
t
)


=




T
h



K
h




r
h



(

j
l

)








y
_

h
*



(
t
)



+


1


K
h




r
h



(

j
l

)








y
.

h
*



(
t
)








(
2.3
)








(2.3) shows that the reference trajectory for the pilot control must be steadily differentiable at least two times.


The transfer function of the closed circuit, consisting of the stabilization Ka(s) and the winch system Gh(s), can be taken from FIG. 10 to be











G
AHC



(
s
)


=




K
a



(
s
)





G
h



(
s
)




1
+



K
a



(
s
)





G
h



(
s
)









(
2.4
)







By neglecting the compensation movement Ya*(s), the reference variable Yh*(s) can be approximated as ramp-shaped signal with a constant or stationary hand lever deflection, as in such a case a constant target velocity vhh* exists. To avoid a stationary control deviation in such reference variable, the open chain Ka(s)Gh(s) therefore must show a I2 behavior [9]. This can be achieved for example by a PID controller with












K
a



(
s
)


=



T
h



K
h




r
h



(

j
l

)






(



κ

AHC
,
0


s

+

κ

AHC
,
1


+


κ

AHC
,
2



s


)



,


κ

AHC
,
i


>
0





(
2.5
)








Hence it follows for the closed circuit:












G
AHC



(
s
)


=



κ

AHC
,
0


+


κ

AHC
,
1



s

+


κ

AHC
,
2




s
2





s
3

+


(


1

T
h


+

κ

AHC
,
2



)



s
2


+


κ

AHC
,
1



s

+

κ

AHC
,
0





,




(
2.6
)







wherein the exact values of κAHC,i are chosen in dependence on the respective time constant Th.


Detection of the Depositing Operation


As soon as the load hits the sea bed, switching from the active heave compensation into the constant tension control should be effected. For this purpose, a detection of the depositing operation is necessary (cf. FIG. 9). For the same and the subsequent constant tension control, the cable is approximated as simple spring-mass element. Thus, the force acting at the cable suspension point approximately is calculated as follows

Fc=kcΔlc,  (2.7)


wherein kc and Δlc designate the spring constant equivalent to the elasticity of the cable and the deflection of the spring. For the latter, it applies:













Δ






l
c


=





0
l





ɛ
s



(


s
_

,
t

)










s
_










=






z
_


s
,
stat




(
1
)


-



z
_


s
,
stat




(
0
)


-

l
s








=





gl
s



E
s



A
s






(


m
e

+


1
2



μ
s



l
s



)

.









(
2.8
)







The equivalent spring constant kc can be determined from the following stationary observation. For a spring loaded with the mass mf it applies in the stationary case:

kcΔlc=mjg.  (2.9)


A transformation of (2.8) results in













E
s



A
s



l
s



Δ






l
c


=


(


m
e

+


1
2



μ
s



l
s



)



g
.






(
2.10
)







With reference to a coefficient comparison between (2.9) and (2.10) the equivalent spring constant can be read as










k
c

=



E
s



A
s



l
s






(
2.11
)







In (2.9) it can also be seen that the deflection of the spring Δlc in the stationary case is influenced by the effective load mass me and half the cable mass







1
2



μ
s




l
s

.






This is due to the fact that in a spring the suspended mass mf is assumed to be concentrated in one point. The cable mass, however, is uniformly distributed along the cable length and therefore does not fully load the spring. Nevertheless, the full weight force of the cable μslsg is included in the force measurement at the cable suspension point.


With this approximation of the cable system, conditions for the detection of the depositing operation on the sea bed now can be derived. At rest, the force acting on the cable suspension point is composed of the weight force of the unwound cable μslsg and the effective weight force of the load mass meg. Therefore, the measured force Fc with a load located on the sea bed approximately is

Fc=(mesls)g+ΔFc  (2.12)
with
ΔFc=−kcΔls,  (2.13)

wherein Δls designates the cable unwound after reaching the sea bed. From (2.13) it follows that Δls is proportional to the change of the measured force, since the load position is constant after reaching the ground. With reference to (2.12) and (2.13) the following conditions now can be derived for a detection, which must be satisfied at the same time:


The decrease of the negative spring force must be smaller than a threshold value:

ΔFc<Δ{circumflex over (F)}c.  (2.14)


The time derivative of the spring force must be smaller than a threshold value:

{dot over (F)}c<{circumflex over ({dot over (F)})}c.  (2.15)


The crane operator must lower the load. This condition is checked with reference to the trajectory planned with the hand lever signal:

{dot over (y)}l*≧0.  (2.16)


To avoid a wrong detection on immersion into the water, a minimum cable length is unwound as:

ls>ls,min.  (2.17)


The decrease of the negative spring force ΔFc each is calculated with respect to the last high point Fc in the measured force signal Fc. To suppress measurement noise and high-frequency interferences, the force signal is preprocessed by a corresponding low-pass filter.


Since the conditions (2.14) and (2.15) must be satisfied at the same time, a wrong detection as a result of a dynamic inherent cable oscillation is excluded: As a result of the dynamic inherent cable oscillation, the force signal Fc oscillates, whereby the change of the spring force ΔFc with respect to the last high point Fc and the time derivative of the spring force {dot over (F)}c have a shifted phase. Consequently, with a suitable choice of the threshold values Δ{circumflex over (F)}c and {circumflex over ({dot over (F)})}c in the case of a dynamic inherent cable oscillation, both conditions cannot be satisfied at the same time. For this purpose, the static part of the cable force must drop, as is the case on immersion into the water or on deposition on the sea bed. A wrong detection on immersion into the water, however, is prevented by condition (2.17).


The threshold value for the change of the spring force is calculated in dependence on the last high point in the measured force signal as follows:

Δ{circumflex over (F)}c=min{−χ1Fc,Δ{circumflex over (F)}c,max}.  (2.18)

wherein χ1<1 and the maximum value Δ{circumflex over (F)}c,max were determined experimentally. The threshold value for the derivative of the force signal {circumflex over ({dot over (F)})}c can be estimated from the time derivative of (2.7) and the maximum admissible hand lever velocity klvmax as follows

{circumflex over ({dot over (F)})}c=min{−χ2kcklvmax,{circumflex over ({dot over (F)})}c,max}  (2.19)

The two parameters χ2<1 and {circumflex over ({dot over (F)})}c,max likewise were determined experimentally.


Since in the constant tension control a force control is applied instead of the position control, a target force Fc* is specified as reference variable in dependence on the sum of all static forces Fl,stat acting on the load. For this purpose Fl,stat is calculated in the phase of the heave compensation in consideration of the known cable mass μsls:

Fl,stat=Fc,stat−μslsg.  (2.20)


Fc,stat designates the static force component of the measured force at the cable suspension point Fc. It originates from a corresponding low-pass filtering of the measured force signal. The group delay obtained on filtering is no problem, as merely the static force component is of interest and a time delay has no significant influence thereon. From the sum of all static forces acting on the load, the target force is derived taking into account the weight force of the cable additionally acting on the cable suspension point, as follows:

Fc*=psFl,statslsg.  (2.21)

wherein the resulting tension in the cable is specified by the crane operator with 0<ps<1. To avoid a setpoint jump in the reference variable, a ramp-shaped transition from the force currently measured on detection to the actual target force Fc* is effected after a detection of the depositing operation.


For picking up the load from the sea bed, the crane operator manually performs the change from the constant tension mode into the active heave compensation with free-hanging load.


2.3 Actuation for the Constant Tension Mode



FIG. 11 shows the implemented actuation of the hoisting winch in the constant tension mode in a block circuit diagram in the frequency range. In contrast to the control structure illustrated in FIG. 10, the output of the cable system Fc(s), i.e. the force measured at the cable suspension point, here is fed back instead of the output of the winch system Yh(s). According to (2.12), the measured force Fc(s) is composed of the change in force ΔFc(s) and the static weight force meg+μslsg, which in the Figure is designated with M(s). For the actual control, the cable system in turn is approximated as spring-mass system.


The pilot control F(s) of the structure of two degrees of freedom is identical with the one for the active heave compensation and given by (2.2) and (2.3), respectively. In the constant tension mode, however, the hand lever signal is not added, which is why the reference trajectory only consists of the negative target velocity and acceleration −{dot over (y)}a* and −ÿa* for the compensation movement. The pilot control part initially in turn compensates the vertical movement of the cable suspension point Zah(s). However, a direct stabilization of the winch position is not effected by a feedback of Yh(s). This is effected indirectly by the feedback of the measured force signal.


The measured output Fc(s) is obtained from FIG. 11 as follows











F
c



(
s
)


=




G

CT
,
1




(
s
)





[




Y
a
*



(
s
)




F


(
s
)





G
h



(
s
)



+


Z
a
h



(
s
)



]





E
a



(
s
)





+



G

CT
,
2




(
s
)





F
c
*



(
s
)








(
2.22
)








with the two transfer functions












G

CT
,
1




(
s
)


=



G

s
,
F




(
s
)



1
+



K
s



(
s
)





G
h



(
s
)





G

s
,
F




(
s
)






,




(
2.23
)









G

CT
,
2




(
s
)


=




K
s



(
s
)





G
h



(
s
)





G

s
,
F




(
s
)




1
+



K
s



(
s
)





G
h



(
s
)





G

s
,
F




(
s
)






,




(
2.24
)








wherein the transfer function of the cable system for a load standing on the ground follows from (2.12):

Gs,F(s)=−kc.  (2.25)


As can be taken from (2.22), the compensation error Ea(s) is corrected by a stable transfer function GCT,l(s) and the winch position is stabilized indirectly. In this case, too, the requirement of the controller Ks(s) results from the expected reference signal Fc*(s), which after a transition phase is given by the constant target force Fc* from (2.21). To avoid a stationary control deviation with such constant reference variable, the open chain Ks(s)Gh(s)Gs,F(s) must have an I behavior. Since the transfer function of the winch Gh(s) already implicitly has such behavior, this requirement can be realized with a P feedback; thus, it applies:












K
s



(
s
)


=



T
h



K
h




r
h



(

j
l

)






κ
CT



,


κ
CT

>
0.





(
2.6
)






Claims
  • 1. A crane controller for a crane which includes a hoisting gear for lifting a load hanging on a cable, comprising: an active heave compensation which by actuating the hoisting gear at least partly compensates a movement of a cable suspension point and/or a load deposition point due to a heave; andan operator control which actuates the hoisting gear with reference to specifications of an operator, wherein a division of at least one kinematically constrained quantity of the hoisting gear is adjustable between the heave compensation and the operator control,wherein the division of the at least one kinematically constrained quantity is effected via at least one weighting factor, via which a maximum available power and/or velocity and/or acceleration of the hoisting gear is split up between the heave compensation and the operator control.
  • 2. The crane controller according to claim 1, wherein the division of the at least one kinematically constrained quantity of the hoisting gear comprises a division of the maximum available power and/or maximum available velocity and/or maximum available acceleration of the hoisting gear.
  • 3. The crane controller according to claim 1, wherein the division is steplessly adjustable at least over a partial region and/or wherein the heave compensation is switched off by assigning an entire at least one kinematically constrained quantity to the operator control.
  • 4. A crane controller for a crane which includes a hoisting gear for lifting a load hanging on a cable, comprising: an active heave compensation which by actuating the hoisting gear at least partly compensates movement of a cable suspension point and/or a load deposition point due to heave; andan operator control which actuates the hoisting gear with reference to specifications of an operator, wherein the controller includes two separate path planning modules via which trajectories for the heave compensation and for the operator control are calculated separate from each other,wherein the trajectories specified by the two separate path planning modules are added up and serve as setpoint values for control and/or regulation of the hoisting gear, wherein the control of the hoisting gear feeds back measured values to a position and/or velocity of a hoisting winch of the hoisting gear and/or takes account of dynamics of a drive of the hoisting winch.
  • 5. The crane controller according to claim 4, wherein the heave compensation includes an optimization function which calculates a trajectory with reference to a predicted movement of the cable suspension point and/or the load deposition point and takes into account at least one kinematically constrained quantity available for the heave compensation, wherein the operator control calculates a trajectory with reference to specifications of the operator and takes into account at least one kinematically constrained quantity available for the operator control.
  • 6. The crane controller according to claim 5, wherein a division of the at least one kinematically constrained quantity is changed during a lifting operation.
  • 7. The crane controller according to claim 4, further comprising a calculation function which calculates a currently available at least one kinematically constrained quantity, wherein the calculation function takes account of a length of unwound cable and/or a cable force and/or a power available for driving the hoisting gear.
  • 8. The crane controller according to claim 6, wherein the optimization function of the heave compensation initially includes a change in the division of the at least one kinematically constrained quantity of the hoisting gear and/or a change of an available at least one kinematically constrained quantity of the hoisting gear during lifting only at an end of a prediction horizon and then pushes the at least one kinematically constrained quantity to a beginning with progressing time.
  • 9. The crane controller according to claim 8, wherein the optimization function of the heave compensation determines a target trajectory which is included in the control of the hoisting gear, wherein optimization can be effected at each time step on the basis of an updated prediction of movement of a load lifting point.
  • 10. The crane controller according to claim 8, wherein the optimization function of the heave compensation determines a target trajectory which is included in the control of the hoisting gear, wherein the optimization function works with a greater scan time than the control.
  • 11. The crane controller according to claim 8, wherein the optimization function of the heave compensation determines a target trajectory which is included in the control of the hoisting gear, wherein the optimization function makes use of an emergency trajectory planning when no valid solution is found.
  • 12. The crane controller according to claim 8, wherein the operator control calculates a velocity desired by the operator with reference to a signal specified by an operator through an input device.
  • 13. A crane controller for a crane which includes a hoisting gear for lifting a load hanging on a cable, comprising: an active heave compensation which by actuating the hoisting gear at least partly compensates movement of a cable suspension point and/or a load deposition point due to heave; andan operator control which actuates the hoisting gear with reference to specifications of an operator, wherein the controller includes two separate path planning modules via which trajectories for the heave compensation and for the operator control are calculated separate from each other,wherein the heave compensation includes an optimization function which calculates a trajectory with reference to a predicted movement of the cable suspension point and/or the load deposition point and takes into account at least one kinematically constrained quantity available for the heave compensation, wherein the operator control calculates a trajectory with reference to specifications of the operator and takes into account at least one kinematically constrained quantity available for the operator control,wherein a division of the at least one kinematically constrained quantity is changed during a lifting operation,wherein the optimization function of the heave compensation initially includes a change in the division of the at least one kinematically constrained quantity of the hoisting gear and/or a change of an available at least one kinematically constrained quantity of the hoisting gear during lifting only at an end of a prediction horizon and then pushes the at least one kinematically constrained quantity to a beginning with progressing time,wherein the operator control calculates a velocity desired by the operator with reference to a signal specified by an operator through an input device, andwherein path planning of the operator control generates the trajectory by integration of a maximum admissible positive jerk, until a maximum acceleration is achieved, and thereupon is achieved by integration of the maximum acceleration, until the desired velocity can be achieved by adding a maximum negative jerk.
Priority Claims (1)
Number Date Country Kind
10 2012 004 802 Mar 2012 DE national
US Referenced Citations (62)
Number Name Date Kind
3995746 Usagida Dec 1976 A
4121806 Iato et al. Oct 1978 A
4180171 Cunningham et al. Dec 1979 A
4349179 Barber Sep 1982 A
4448396 Delago May 1984 A
4756432 Kawashima et al. Jul 1988 A
5117992 Simkus et al. Jun 1992 A
5127533 Virkkunen Jul 1992 A
5209302 Robichaux et al. May 1993 A
5392935 Kazama et al. Feb 1995 A
5443566 Rushmer et al. Aug 1995 A
5490601 Heissat et al. Feb 1996 A
5510988 Majeed et al. Apr 1996 A
5550733 Yun et al. Aug 1996 A
5732835 Morita et al. Mar 1998 A
5785191 Feddema et al. Jul 1998 A
5823369 Kuromoto Oct 1998 A
5967347 Miyata et al. Oct 1999 A
6082947 Adamson Jul 2000 A
6216789 Lorsignol et al. Apr 2001 B1
6234332 Monzen et al. May 2001 B1
6439407 Jacoff et al. Aug 2002 B1
6588610 Ong et al. Jul 2003 B2
6601718 Sawodny et al. Aug 2003 B2
6631300 Nayfeh et al. Oct 2003 B1
6826452 Holland et al. Nov 2004 B1
7367464 Agostini et al. May 2008 B1
7599762 Discenzo et al. Oct 2009 B2
7648036 Recktenwald et al. Jan 2010 B2
7731157 Davidson Jun 2010 B2
7793763 Zhu et al. Sep 2010 B2
7798471 Christopher Sep 2010 B2
7831333 Sawodny et al. Nov 2010 B2
8014982 Kang et al. Sep 2011 B2
8195368 Leban et al. Jun 2012 B1
8235231 Schneider et al. Aug 2012 B2
8265811 Kyllingstad Sep 2012 B2
8297597 Dalsmo et al. Oct 2012 B2
8640340 Foo et al. Feb 2014 B2
8651301 Kiova et al. Feb 2014 B2
20030107029 Hanson et al. Jun 2003 A1
20040164041 Sawodny et al. Aug 2004 A1
20050179021 Selcer et al. Aug 2005 A1
20050242332 Ueki et al. Nov 2005 A1
20070017889 Schobesberger Jan 2007 A1
20070050115 Discenzo et al. Mar 2007 A1
20080053945 Schneider et al. Mar 2008 A1
20080251258 Bamford Oct 2008 A1
20090008351 Schneider et al. Jan 2009 A1
20090232625 Almeda et al. Sep 2009 A1
20100012611 Sawodny et al. Jan 2010 A1
20100038091 Sack Feb 2010 A1
20100230370 Schneider et al. Sep 2010 A1
20110006024 Schneider et al. Jan 2011 A1
20110006025 Schneider et al. Jan 2011 A1
20120084052 Choi Apr 2012 A1
20130032561 Singhose et al. Feb 2013 A1
20130236272 Gassner et al. Sep 2013 A1
20130245815 Schneider et al. Sep 2013 A1
20130245816 Langer et al. Sep 2013 A1
20130245817 Schneider et al. Sep 2013 A1
20140263142 Billiot et al. Sep 2014 A1
Foreign Referenced Citations (6)
Number Date Country
3643114 Aug 1987 DE
19645812 Feb 1998 DE
102008024513 Nov 2009 DE
102009032269 Jan 2011 DE
0176832 Apr 1986 EP
0227684 Apr 2002 WO
Non-Patent Literature Citations (2)
Entry
Langer, K. et al., “Crane Controller with Cable Force Mode”, U.S. Appl. No. 13/788,851, 40 pages.
Schneider, K. et al., “Crane Controller with Drive Constraint”, U.S. Appl. No. 13/788,856, 42 pages.
Related Publications (1)
Number Date Country
20130245815 A1 Sep 2013 US