The present application claims priority benefits of International Patent application No. PCT/EP2017/066744, filed Jul. 5, 2017, and claims benefit of German patent application DE 102016212517.6, filed Jul. 8, 2016.
The invention relates to a crane having a counterweight adjustment apparatus and to a method for adjusting a counterweight on a crane.
US 2013/0 161 278 A1 discloses the displacement of a counterweight by means of a hydraulic cylinder on a crane superstructure. The displacement path, i.e. the adjustable counterweight radius, is restricted and dependent in particular upon the operating displacement of the hydraulic cylinder.
In order to displace the counterweight beyond the crane superstructure, it is necessary in accordance with US 2013/098860 A1 to transfer the counterweights to a telescopic counterweight support beam. In accordance with DE 20 2014 007 894 U1, a telescopic frame can be extended by means of a separate drive.
British patent application GB 2 442 139 A relates to a camera crane comprising a telescopic arm and a counterweight arrangement which comprises a displaceable counterweight support beam in order to compensate for the movements of the camera and to prevent the camera crane from toppling over.
Patent EP 0 368 463 B1 relates to a crane comprising a counterweight support arm, on which a received counterweight can be moved by means of a counterweight support beam. The counterweight support arm is extendible and consists of a multiplicity of connected segments. By connecting the segments, two positions of the counterweight support arm can be adjusted and then the counterweight can be moved along the counterweight support arm.
The object of the present invention is to improve the options for adjusting a counterweight on a crane, wherein in particular the outlay for adjustment of the counterweight is to be reduced.
In accordance with an embodiment of the invention, this object is achieved by means of a crane having a counterweight adjustment apparatus.
In accordance with another embodiment of the invention, it has been recognised that a crane comprising a lower carriage, a superstructure, which can be pivoted about an axis of rotation with respect to the lower carriage, a counterweight unit and a counterweight adjustment apparatus comprises a telescopic framework which is fastened to the superstructure and has a telescopic longitudinal member, a counterweight unit which is arranged so as to be displaceable along the framework, a drive unit for displacing the counterweight unit in a driven manner on the framework, and a kinematic unit which can be coupled to the drive unit in order to telescope the framework in a driven manner, wherein a cantilever element is fastened to a rear end of the longitudinal member remote from the axis of rotation, the counterweight unit can be displaced along the framework in the region of the superstructure as far as onto the cantilever element, the counterweight unit can be fastened to the cantilever element and the counterweight unit can be telescoped inwards and outwards on the cantilever element with the framework. In particular, an additional drive unit for telescoping the framework is not required. In particular, only a single drive unit is provided. In particular, it is possible to combine the entire counterweight of a crane, i.e. in particular a central ballast, a superstructure counterweight and a superlift counterweight, into one counterweight and to arrange same on the superstructure of the crane. This increases efficiency in terms of counterweight displacement. The counterweight displacement apparatus permits effective counterweight displacement. In particular, additional counterweights are not required. The adjustment of the counterweight is improved. A counterweight unit is arranged in a displaceable manner on a framework. The framework is telescopic. By telescoping the framework, it is possible to additionally displace the counterweight, in particular together with the telescoped part of the framework. In particular, the counterweight adjustment is effected in two stages. In a first stage, the displacement of the counterweight unit is effected on the framework, in particular to an end position on a cantilever element. In particular, in the first stage the framework is not telescoped. In a second stage, the displacement of the counterweight is effected by telescoping the framework. The counterweight unit can be designed having multiple parts and in particular can have a plurality of counterweight elements which, in particular, are stacked one above the other and which, in particular, are two-dimensional. The counterweight unit can also have two stacks of counterweight elements which are arranged next to one another, in particular spaced apart from one another. The counterweight unit can be displaced starting from a minimum counterweight radius, which amounts in particular to 0, to a maximum counterweight radius. The minimum counterweight radius can also be negative. This means that the counterweight is arranged on the superstructure between the axis of rotation and the jib. The displacement is effected exclusively by means of the drive unit. The counterweight radius is defined as the radial distance from an axis of rotation, in relation to which a superstructure is arranged in a rotatable manner on a lower carriage of a crane. The counterweight adjustment apparatus ensures that the entire range of the adjustable counterweight radius remains usable in order to adapt the position of the counterweight unit to the requirements arising from a crane configuration and a loading. The stability of the crane towards the rear is retained even with an increased superstructure counterweight because the superstructure counterweight is displaceably mounted. Improved mass distribution, in particular with and without a load on the crane, improves the introduction of force into the ground via the crane lower carriage. The counterweight adjustment apparatus increases the flexibility of use of the crane, in particular with regard to its manoeuvrability. By reason of the fact that the entire counterweight can be arranged in the counterweight unit on the superstructure of the crane, the crane can be moved at any moment during a lift and the superstructure can be rotated with respect to the lower carriage.
A guide unit permits advantageous displacement of the counterweight unit on the framework. The guide unit can be e.g. an, in particular, linear guide rail which is arranged in particular on a top side of the longitudinal member. A driven displacement element of the drive unit can be linearly displaced along the guide rail. The guided displacement of the counterweight unit is effected indirectly by the driven displacement of the displacement element which can be coupled to the counterweight unit.
Alternatively, the guide unit, in particular as a component of the drive unit, can be designed in the form of a force transmission element, in particular in the form of a circulating roller chain, to which the counterweight unit can be coupled and thus displaced in a guided manner.
Fastening the counterweight unit to the cantilever element according to claim 1 ensures secure displacement of the counterweight unit during telescoping of the framework.
A longitudinal member ensures reliable and multiple telescoping in order to achieve larger counterweight radii with the smallest possible basic length of the crane, in particular of the crane superstructure. In particular, the longitudinal member comprises an outer basic box and at least one telescoping element arranged therein, in particular a first telescoping element and a second telescoping element which is arranged in the first telescoping element. It is also possible to have telescoping elements which are arranged nested inside one another a number of times, so-called inner boxes. In particular, the basic box and the inner boxes have mutually similar contours. In particular, the contours are rectangular. Other cross-sectional contours are also feasible.
An embodiment comprising two longitudinal members permits an advantageous arrangement of the counterweight adjustment apparatus symmetrical to the superstructure longitudinal axis. A free space arranged between the longitudinal members permits integration of the counterweight adjustment apparatus on the superstructure of the crane, said integration being advantageous because it saves space. Functional components of the crane, such as an A-bracket, jib and/or cable winches, can be arranged in the free space. In particular, the framework is arranged with a longitudinal axis in parallel with the superstructure longitudinal axis. In particular, the longitudinal axis of the framework and the superstructure longitudinal axis are arranged on a common vertical plane which contains in particular the axis of rotation, in relation to which the crane superstructure is arranged in a rotatable manner on the crane lower carriage.
A locking unit permits defined locking of the counterweight unit on the cantilever element, in particular during telescoping of the framework. The locking unit can have a locking element of the counterweight unit and a locking counter-element of the cantilever element. The locking element and the locking counter-element can be locked together in particular in an uncomplicated and time-saving manner. In particular, they are corresponding plates which can be locked by means of a bolt.
Dividing the entire counterweight of the crane into the counterweight unit and an additional cantilever element counterweight permits a reduction in the counterweight unit, i.e. a reduction in the mass and/or volume, in particular height, of the counterweight unit. As a result, the height of the centre of mass of the counterweight adjustment apparatus can be reduced. The height of the centre of mass of the crane is reduced. It is possible to displace the crane, in particular the superstructure, in a more stable manner. In addition, it is possible to dimension the framework and in particular the longitudinal member, to be smaller. The construction size is reduced. The additional cantilever element counterweight is anchored in particular to an underside of the cantilever element.
A displacement element permits uncomplicated displacement of the counterweight unit. The counterweight unit can be coupled directly to the displacement element and can be displaced along the guide unit.
An embodiment of the kinematic unit ensures advantageous coupling of the at least one telescoping element to the displacement element by means of a cable winch system. In particular, the cable winch system is a circulating, closed cable winch system. The cable winch system comprises a first extension cable and a first return cable which are connected, in particular, to one another.
A second cable winch system simplifies the multiple telescoping capability of the framework. The second cable winch system has, in particular, an open design and has a second extension cable and a second return cable. The second cable winch system comprises an extension cable deflecting roller and a return cable deflecting roller which are each fastened to the telescopic telescoping element of the longitudinal member.
In an alternative embodiment of the drive unit, it is possible to directly couple the drive unit to the counterweight unit. The drive unit comprises a rotatably driven rotating element and a force transmission element which cooperates therewith and is designed in particular as a circulating roller chain. The circulating roller chain can be used directly to displace the counterweight unit.
Displaceability of the rotating element permits an arrangement of the rotating element in different positions. In a first position, the rotating element cooperates with the first force transmission element directly for displacing the counterweight unit.
In the first position, the rotating element is not in engagement with the kinematic unit. By displacing the rotating element in a coupling direction which is oriented perpendicularly to the axis of rotation of the rotating element, the rotating element is displaced to a second position. In the second position, the rotating element is in engagement with the kinematic unit for telescoping the framework. In the second position, the rotating element is not in engagement with the first force transmission element.
A second force transmission element permits an advantageous telescoping capability of the longitudinal member.
A method permits advantageous displacement of the counterweight unit on the crane.
Further advantageous embodiments, additional features and details of the invention will be apparent from the following description of exemplified embodiments with reference to the drawings.
A crane 1 shown in
A superstructure 8 is arranged on the lower carriage 2 in such a manner as to be rotatable about a vertical axis of rotation 9 by means of a rotary connection 7. The superstructure 8 has a superstructure frame 10. A cabin 11 for a crane operator is fastened to the superstructure frame 10. A main jib 13 is articulated to the superstructure frame 10 so as to be able to pivot about a jib axis 12. A bracing unit 14 for the main jib 13 is arranged on the superstructure frame 10. The bracing unit 14 comprises a bracing bracket 15 which is pivotably articulated to the superstructure 8, a bracing cable 116 for bracing the main jib 13 to the bracing bracket 15 and a cable mechanism 17 for changing the angle of the bracing bracket 15 or the main jib 13. The cable mechanism 17 is guided via a cable pulley 18 which is rotatably mounted on the superstructure 8.
The superstructure 8 has a superstructure longitudinal axis 21. The superstructure frame 10 is symmetrical with respect to the superstructure longitudinal axis 21. The superstructure frame 10 is arranged symmetrically with respect to the superstructure longitudinal axis 21. In relation to the axis of rotation 9, the superstructure frame is fastened in a non-rotationally symmetrical manner to the rotary connection 7. The cabin is 11 is arranged on a front end of the superstructure frame 10. The pivot axis 12 with the articulated main jib 13 is arranged on the front end of the superstructure frame 10. The front end of the superstructure frame 10 terminates substantially flush with the rotary connection 7. It is also feasible for the superstructure 10 to protrude with the front end at the rotary connection 7 along the superstructure longitudinal axis 21.
At a rear end opposite the front end, the superstructure frame 10 protrudes along the superstructure longitudinal axis 21 at the rotary connection 7. In particular, the superstructure frame 10 protrudes with the rear end to such an extent that, in an arrangement shown in
A counterweight adjustment apparatus 19 is arranged on the superstructure 8. The counterweight adjustment apparatus 19 comprises a telescopic framework 20 which is designed in the manner of a frame and is fixedly connected to the superstructure 8 and in particular can be fastened to the superstructure frame 10. A rotation of the superstructure 8 about the axis of rotation 9 automatically produces a rotational movement of the counterweight adjustment apparatus 19. In the plan view shown in
The counterweight adjustment apparatus 19 is articulated to the superstructure 8 at a front end facing the cabin 11 in such a manner as to be rotatable on the superstructure about an axis of rotation 80 in parallel with the pivot axis 12. At a rear end arranged opposite the front end, the counterweight adjustment apparatus 19 is rigidly coupled to the superstructure 8. This blocks a rotation about the axis of rotation 80.
The framework 20 has two telescopic longitudinal members 22 which are fastened to a cantilever element 23 at the rear end remote from the axis of rotation 9. The two longitudinal members 22 are connected to one another via the cantilever element 23. The cantilever element 23 can be supported on the ground 26 by means of a support device 27. The support device 27 comprises at least one, preferably height-adjustable, vertical support 28 and at least one base plate 29 connected thereto.
A counterweight unit 24 is arranged on the framework 20. The counterweight 24 comprises two counterweight stacks which are spaced apart from one another in relation to the superstructure longitudinal axis 21. Each counterweight stack has a plurality of two-dimensional counterweight elements 25 which are stacked on top of one another. In the arrangement shown in
In the arrangement shown in
The counterweight adjustment apparatus 19 has a drive unit, not illustrated in greater detail in
The counterweight adjustment apparatus 19 has a kinematic unit, not illustrated in greater detail in
The counterweight adjustment apparatus 19 in accordance with a first exemplified embodiment is explained in greater detail hereinafter in
The longitudinal member 22 has an outer basic box 30, a first telescoping element 31 arranged in the basic box 30 and a second telescoping element 32 arranged in the first telescoping element 31. It is also feasible for the longitudinal member 22 to have only one telescoping element or more than two telescoping elements. The telescoping elements 31, 32 can be telescoped in combination with one another with respect to the basic box 30 independently of one another. It is also possible to extend more than one telescoping element and in particular all telescoping elements with respect to the basic box 30. Extension of the telescoping elements can be effected in a coupled manner, in particular simultaneously, or sequentially, i.e. successively in time. The basic box 30 is mounted along the longitudinal axis of the longitudinal member 22 at a front and rear end, i.e. on both sides along the longitudinal axis, on the superstructure by means of a respective bearing 33. The bearing 33 illustrated on the left in
In the arrangement of the counterweight unit 24 shown in
It is essential that the foremost position of the counterweight unit 24, which determines the minimum counterweight radius rmin, is arranged within the tilting edges of the standing base of the crane 1. The tilting edges are defined substantially along a rectangle by the standing surface of the crane, i.e. in particular by the length of the crawler supports and the track width of the crawler supports in a crawler crane.
A guide unit 35 for displacing the counterweight unit 24 in a guided manner is provided on a top side 34 of the longitudinal members 22, in particular of the respective basic box 30. The guide unit 35 has a guide rail 36 which is arranged mounted on the basic box 30 by means of the guide unit bearings 37. The guide rail 36 is linear and specifies a linear guide axis 38. On the guide rail 36, a displacement element 39 can be displaced in a driven manner along the guide axis 38. The displacement element 39 forms a drive unit. The displacement element 39 can be directly coupled to the counterweight unit 24 by means of a coupling element 40. In the coupled arrangement shown in
According to the exemplified embodiment of the counterweight adjustment apparatus 19, as shown in
The second connection point 45 is arranged on the first telescoping element 31. The displacement element 39 can be coupled to the first telescoping element 31 by means of the cable winch system.
In the arrangement shown in
In
The kinematic unit 41 also has a second cable winch system. The second cable winch system has an open design and has a second extension cable 47 and a second return cable 148. The cables 47, 48 are not connected to one another. A first end 49 of the second extension cable 47 is fastened to a rear wall 50 of the second telescoping element 32 remote from the cantilever element 23. A second end 51 of the second extension cable 47 is fastened to a rear wall 52 of the basic box 30 remote from the cantilever element 23. The second extension cable 47 is guided via an extension cable deflecting roller 53 which is arranged mounted in a rotatable manner on an extension cable deflecting roller beam 54. The extension cable deflecting roller beam 54 is fastened to a rear wall 55 of the first telescoping element 31 remote from the cantilever element 23.
A first end 56 of the second return cable 48 is fastened to a rear wall 57 of the cantilever element 23 remote from the longitudinal member 22. A second end 58 of the second return cable 48 is fastened to an end face 59 of the basic box 30 facing the cantilever element 23. The second return cable 148 is guided about a rotatably mounted return cable deflecting roller 60. The return cable deflecting roller 60 is fastened to the rear wall 55 of the first telescoping element 31 by means of a return cable deflecting roller beam 61.
A method for adjusting a counterweight, in particular the counterweight unit 24, will be explained hereinafter with reference to
In the arrangement shown in
The displacement unit 39 is displaced along the guide axis 38.
As a result, the counterweight unit 24 is directly displaced in a manner guided along the guide unit 35, in particular from the axis of rotation 9 in the direction of the cantilever element 23. In a maximum-displaced arrangement shown in
The counterweight unit 24 is locked to the cantilever element 23 by means of a locking unit 64. To this end, the counterweight unit 24 has a locking element which cooperates with a locking counter-element of the cantilever element 23. In the locked arrangement shown in
Subsequently, the displacement element 39 is displaced back to the initial position shown in
The counterweight adjustment apparatus is telescoped inwards in a correspondingly reversed sequence. Displacing the adjustment element 39 back to the position shown in
A further embodiment of the invention will be described hereinafter with reference to
The substantial difference in the counterweight adjustment apparatus 19a is that an additional cantilever element counterweight 65 is provided. By reason of the additional cantilever element counterweight 65, the mass and in particular the stacking height of the counterweight elements 25 of the counterweight unit 24 can be reduced. By virtue of the fact that the counterweight unit 24 which is to be displaced along the longitudinal member 22 is reduced in terms of weight, the longitudinal members, in particular the basic box 30 and the telescoping elements 31 and 32 arranged therein can be dimensioned smaller, i.e. can have a smaller construction. In particular, it is feasible to reduce the number of counterweight elements 25.
The cantilever element counterweight 65 is fastened to an underside 66 of the cantilever element 23. By reason of the off-centre, i.e. eccentric in relation to the axis of rotation 9, arrangement of the cantilever element counterweight 65, the counterweight adjustment apparatus 19a according to this embodiment in the arrangement shown in
It is possible to arrange the counterweight adjustment apparatus 19a on the superstructure 8 and to fasten it thereto such that the counterweight unit 24 is arranged, in relation to the axis of rotation 9, opposite the cantilever element counterweight 65 in order to produce an effective counterweight radius of reff=0.
A further difference in comparison with the first embodiment is that neither the second end 51a of the second extension cable 47 nor the second end 58a of the second return cable 48 are fastened. During actuation of the counterweight adjustment apparatus 19a by displacing the displacement element 39 with a coupled kinematic unit 41, only the first telescoping element 31 is telescoped. The second telescoping element 32 is telescoped together with the first telescoping element 31. However, the second telescoping element 32 is not adjusted with respect to the first telescoping element 31.
A further embodiment of the invention will be described hereinafter with reference to
The substantial difference compared with the previous embodiments is that in the case of the counterweight adjustment apparatus 19b the drive unit has a rotating element 68 which is rotatably driven about an axis of rotation 67. In particular, the rotating element 68 is a gearwheel.
The rotating element 68 can be driven in a rotatable manner in relation to the axis of rotation 67 in particular in both directions of rotation.
The rotating element 68 can be displaced in a coupling direction 69 which is oriented perpendicularly to the axis of rotation 67. According to the exemplified embodiment shown, the coupling direction 69 is linear and in particular vertical. It is essential that a displacement of the rotating element 68 in the coupling direction 69 permits an arrangement in a first position shown in
The roller chain of the first force transmission element 70 is used at the same time as a guide unit 35b for the guided displacement of the counterweight unit 24. Fastened to the first force transmission element 70 is the coupling element 40b, by means of which the counterweight unit 24 can be fastened directly to the first force transmission element 70. The gearwheels 71, about which the first force transmission element 70 is guided, is rotatably mounted on the top side 34 of the basic box 30. The first telescoping element 31 can be coupled to the basic box 30 by means of a first telescoping-coupling apparatus 73. In a coupled arrangement, the first telescoping element 31 is locked on the basic box 30.
The second telescoping element 32 can be coupled to the first telescoping element 31 by means of a second telescoping-coupling apparatus 74. In a coupled arrangement, the second telescoping element 32 is fastened to the first telescoping element 31.
The second force transmission element 72, i.e. the roller chain, is guided in a circulating manner over gearwheels 71. The gearwheels 71 are each fastened at the end face to a gearwheel carrier 75. The gearwheel carrier 75 is fastened to the rear wall 52 of the basic box 30. The second force transmission element 72 corresponds to the kinematic unit 41b for this exemplified embodiment.
The method for displacing the counterweight unit 24 with the counterweight adjustment apparatus 19b will be explained in greater detail hereinafter with reference to
The rotating element 68 is displaced downwards in the coupling direction 69 until the rotating element 68 is in engagement with the second force transmission element 72 (
Subsequently, the rotating element 68 in the view in
Alternatively, it is also possible, proceeding from the arrangement in
It is also feasible to perform the procedure in a staggered manner, in particular in succession, i.e. in that e.g. initially the inner second telescoping element 32 is extended as shown in
A further embodiment of a crane 78 will be described hereinafter with reference to
The substantial difference with respect to the crane shown in
Moreover, the counterweight adjustment apparatus 19 in the case of the crane 78, i.e. during the superlift operation, is coupled at the rear end non-rigidly to the superstructure 8. This permits rotatability of the counterweight adjustment apparatus 19 about the axis of rotation 80, which is in parallel with the pivot axis 12, at the front end of the counterweight adjustment apparatus 19.
Coupling between the superstructure 8 and the longitudinal member 22 can be advantageous.
The A-bracket 15 is connected to the tip of the superlift mast 79 by means of the cable reeving 16. The triangle formed by the A-bracket 15, the reeving 16 and the superlift mast 79 is rigid. The triangle is articulated to the superstructure 8 of the crane 78 so as to be able to rotate about the axis of rotation 80. Since said triangle 15, 16, 79 is rigid, the cable reeving 14 between the superstructure 8 of the crane 78 and the A-bracket 15 is also rigid, i.e. not variable in length. The bracing 56 of the counterweight unit 24 on the superlift mast 79 is formed in particular by support rods which have a constant length. During a displacement of the counterweight unit 24 by means of the cantilever element 23, the counterweight unit 24 is displaced non-linearly, in particular along an arc segment. In order to ensure support on the ground, the vertical supports 28 can be height-adjustable. The height-adjustability can also be used for compensating for height differences in the standing surface of the crane 78 under the base plate 29. In addition or alternatively, the support rods of the brace 46 can also be variable in length in order to permit a displacement of the counterweight unit 24 in a linear direction.
Number | Date | Country | Kind |
---|---|---|---|
102016212517.6 | Jul 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/066744 | 7/5/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/007433 | 1/11/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3726416 | Pottorff et al. | Apr 1973 | A |
4729486 | Petzold | Mar 1988 | A |
6568547 | Kretschmer | May 2003 | B1 |
20110031202 | Pech | Feb 2011 | A1 |
20130098860 | Pech et al. | Apr 2013 | A1 |
20130161278 | Sun et al. | Jun 2013 | A1 |
20150210514 | Albinger | Jul 2015 | A1 |
20150210515 | Pech | Jul 2015 | A1 |
20160090278 | Willim | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
101309850 | Nov 2008 | CN |
201292224 | Aug 2009 | CN |
101643182 | Feb 2010 | CN |
102020210 | Apr 2011 | CN |
105460799 | Apr 2016 | CN |
202014007894 | Oct 2014 | DE |
0368463 | Jul 1994 | EP |
2829500 | Mar 2015 | EP |
2442139 | Mar 2008 | GB |
2000198674 | Jul 2000 | JP |
3180204 | Jun 2001 | JP |
2005138962 | Jun 2005 | JP |
2011037634 | Feb 2011 | JP |
2010108363 | Sep 2011 | RU |
Entry |
---|
Preliminary Report on Patentability of the International Searching Authority in English from corresponding Patent Cooperation Treaty (PCT) Application No. PCT/EP2017/066744, completed Jan. 8, 2019. |
International Search Report of the International Searching Authority from corresponding Patent Cooperation Treaty (PCT) Application No. PCT/EP2017/066744, indicated completed on Sep. 26, 2017. |
Written Opinion of the International Searching Authority from corresponding Patent Cooperation Treaty (PCT) Application No. PCT/EP2017/066744, indicated completed on Sep. 26, 2017. |
Number | Date | Country | |
---|---|---|---|
20190315607 A1 | Oct 2019 | US |