The present disclosure is directed to a lift kit for attachment to a piece of portable equipment (e.g., a generator) that provides a means by which the portable equipment may be lifted by a crane. When not in use, the lift kit may be rotated to a horizontal position, thereby reducing the overhead clearance necessary for storage of the equipment and reducing the likelihood that the lift kit assembly will be an obstruction to the use of the equipment.
Portable power generation units, or generators, are commonly used in construction sites as an efficient means of providing electrical power for the building projects. Often, it is necessary or desirable to relocate the generator to different areas within the construction site, for example, for proximity to a work zone or for organization of the work site. Further, because these generators may be targets for theft or vandalism, construction workers may hoist the generator above the ground for temporary storage when a worksite is unmanned (such as during overnight periods). For these reasons, the top of the generator may be provided with an eyelet for attachment to a crane hook.
At least one drawback with the typical crane hook eyelet is that the eyelet tends to be large and bulky to accommodate large crane hooks. Furthermore, the conventional eyelet, which is rigidly attached to the generator frame, projects well above a top surface of the power generation unit to ease attachment to the crane hook. However, due to projection of the eyelet, the power generation unit usually has a relatively tall profile that may prevent storage of the power generation unit in smaller or low profile storage areas. Additionally, the conventional eyelet is simply in the way most of the time since it is only used occasionally.
What is needed in the industry is a foldable, low-profile attachment system that, when extended, provides sufficient strength and durability for repeated attachments and hoisting by cranes.
The present disclosure is directed in general to a lightweight, compact and foldable lift kit assembly, which is attached to generators, trailers, and other portable equipment for hoisting and repositioning by cranes and the like.
According to various embodiments of the disclosure, the lift kit assembly generally includes a lift kit ring connected to one or more piston assemblies, each having a spring constant. The spring constant urges the lift kit ring into a locked, upright position for connection to a crane hook. However, the piston assemblies readily yield to stowage forces to fold or retract the lift kit ring generally flush with a surface of a generator. Thus, the lift ring may be movable between an upright lift position and a flush storage position.
More specifically, when a lift kit ring, or eye, of the lift kit assembly is not in use, the pistons are retracted within the respective assemblies, and the ring is folded down parallel to the top surface of the generator (in a storage position). The rotational movement of the lifting ring and the attached pistons is restricted to prevent the ring from making contact with the generator's top surface, such as its gas tank. From this storage position, the ring and pistons may be rotated 90 degrees to an upright position, with the pistons remaining compressed within their cylinders. In the upright lift position, the lifting ring is perpendicular to the generator's top surface. Further rotational movement is restricted beyond this upright position so the total rotational movement when the pistons are retracted is 90 degrees, from a parallel to a perpendicular position in relation to the top of the generator (and vice versa).
Once the lifting ring is rotated to the upright position, by lifting on the eye, the pistons may be extended outward, which moves the eye further from the generator. At its peak, further rotational movement of the ring and the pistons is prevented, and the assembly remains in its fully extended and locked position. In this position, the ring may be attached to a lifting mechanism of the user's choice (e.g., a hook attached to a crane), and the generator may be raised. The ring remains extended away from the generator in its upright locked position due to the lifting tension on the apparatus, when the generator is suspended in the air.
When returned to the ground and the upward tensional force of the crane hook is removed, the ring and pistons remain in the fully extended locked position. To return the lift kit assembly to its storage position, a small downward force may be applied to the ring, which retracts the pistons. As soon as the pistons return to their retracted position, the assembly is unlocked, meaning that the ring may be rotated 90 degrees to its storage position.
As will be described in greater detail below along with other features and aspects of the disclosure, the various components and elements of the lift kit assembly and its equivalents are simple to manufacture, install and use. Other advantages of the various embodiments and their equivalents according to the disclosure will be apparent from the following description and the attached drawings, or can be learned through practice of the embodiments and their equivalents.
A full and enabling disclosure of the present disclosure, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Detailed reference will now be made to the drawings in which examples of the present disclosure are shown. The detailed description uses numerical designations to refer to features of the drawings. Like or similar designations of the drawings and description have been used to refer to like or similar parts of the disclosure where possible.
The drawings and detailed description provide a full and written description of the examples in the disclosure, and of the manner and process of making and using these examples, so as to enable one skilled in the pertinent art to make and use them, as well as the best mode of carrying out the disclosure. The examples set forth in the drawings and detailed description are provided by way of explanation only and are not meant as limitations of the disclosure. The present disclosure thus includes any modifications and variations of the following examples as come within the scope of the appended claims and their equivalents.
As used herein, the term “lift position” refers to the orientation of the lift kit assembly 10 that enables the engagement of a crane hook 99 for lifting the portable equipment (as shown in
The term “storage position” refers to the orientation of the lift kit assembly 10, in which the piston assemblies 14, 16 are retracted and the lift ring 12 is parallel, or substantially parallel, to the top surface (58) of the portable equipment 52 (as shown in
It is to be understood that the lift ring 12 may or may not be exactly perpendicular or parallel to the top surface (58) of the portable equipment 52, or to all portions of the top surface (58), depending upon the contours of the top surface (58). For this reason, the terms “substantially perpendicular” and “substantially parallel” are used to indicate the position of the lift ring 12, relative to a majority of the top surface (58).
The lift kit ring 12 may have a generally flat profile, or planar surface, through which planar surface the opening 18 may be provided. The ring 12 may have the shape of a pentagon (with or without rounded edges) or some other shape, as may accommodate the centrally located opening 18 and the attachment of the piston assemblies 14, 16 on opposite ends thereof. For connection of the piston assemblies 14, 16, the opposite ends of the ring 12 are provided with pin-receiving bores (24, 26, shown in
The piston assemblies 14, 16 include a spring (44, 46, as shown in
Even when the generator 52 is returned to the ground and the upward tensional force is removed, the lift ring 12 and the pistons 14, 16 remain in their upright and locked position. By applying a downward force to the ring 12, the piston assemblies 14, 16 are retracted, and the lift kit assembly 10 may be rotated to a storage position, as described above and as illustrated in
The lift kit assembly 10 is most clearly shown in
Root cannulations, or tubes, 36, 38 are positioned over the connecting rod clevels 28, 30 before the clevels 28, 30 are housed within the connecting cannulations 32, 34. Respective root cannulations, or tubes, 36, 38 and respective roots, or plates, 40, 42 compress respective spring elements 44, 46 therebetween, when the piston assemblies 14, 16 are to be retracted. As shown, the connecting rod clevels 28, 30 are connected to the lift ring 12 by respective pins 48, 50 inserted through the pin bores 24, 26 in the lift ring 12, and the piston assemblies 14, 16 are in turn connected by bolts or other attachment devices (via bores through one end of the connecting cannulations 32, 34, at the end opposite their connection point to the lift ring 12) to the holding portions 54, 56 of the generator 52.
As further shown in
With reference now to
In this illustration, the lift ring 12 is connected to the piston assembly 16 by inserting the pin 50 through a pin bore in one end of the connecting rod clevel 30 and the pin bore 26 of the lift ring 12, after the connecting rod clevel 30 is positioned through the root cannulation 38. As further shown in
Although reference has been made herein to a spring piston assembly, it is contemplated that similar results may be achieved through use of other types of piston assemblies.
The foregoing is a description of various embodiments of the disclosure that are provided here by way of example only. Although the lift kit assembly has been described with referenced presently preferred embodiments and examples thereof, other embodiments and examples may perform similar functions and/or achieve similar results. All such equivalent embodiments and examples are within the spirit and scope of the present disclosure and are intended to be covered by the appended claims and their equivalents. Moreover, although specific terms are employed herein, they are used in a generic and descriptive sense only and are not for purposes of limitation.