The present invention relates to a crane, particularly a crawler crane or mobile crane, as well as to a monitoring and simulation means for a crane.
In general, known cranes, such as, crawler cranes or mobile cranes, are provided with a deployment planner.
Thus, for example, from DE 10 2005 059 768 A1, a crane is known which is provided with a crane monitoring device for monitoring the operational state of the crane, consisting of a calculation unit and an operation and display unit. Moreover, a deployment planner consisting substantially of an additional calculation unit having its own monitor output, is provided, works, on the one hand, as a device for planning the crane deployment, and, on the other hand, as a redundant crane monitoring unit in addition to the crane monitoring unit.
The deployment planning made possible with such a deployment planner enables the generation and display of bearing load tables in which the degrees of that are possible for the given configuration of the crane freedom are taken into account. Here, there is always a principal luffing movement, the design of which may be different depending on the type of operation. In the principal boom operation and in operation types with cylinder-adjustable or fixed accessory, the principal luffing movement is the boom luffing, whereas in case of operation with a movable accessory boom, for example, an accessory boom that is movable via cables, the principal luffing movement is the luffing of the accessory boom. The principal luffing movement is represented in table form in columns in the bearing load representation. Additional operating movements that are taken into account in the bearing load representation are represented in the hearing load representation in table form using additional columns.
These tables have been shown to be satisfactory in practice: however, it would be desirable to have available stored bearing load values that apply not only to exactly defined states corresponding to discrete radius steps. At present, for intermediate states, the currently admissible maximum bearing load is calculated and displayed for each case by the crane control. However, for other positions that differ from the current position of the crane, the crane operator receives no data on the maximum admissible bearing load.
From EP 1 444 162 B1 a crane having a deployment planner is also known, which comprises a graphic display which can display, in a work mode and in a planning mode, the work field of the crane under the given parameter settings, between a solid and a broken line, in a diagram with counterweight radius as the x-axis and load radius as the y-axis.
Therefore, the problem of the present invention is to further develop a crane of the type indicated in the introduction, particularly to the effect that said crane can display the current bearing load and/or the possible bearing loads, in particular the maximum possible hearing loads or crane movements, in a simple and understandable manner.
This problem is solved according to the invention by a crane having the characteristics herein. Accordingly, a crane is provided with at least one monitoring and simulation means, by means of which a state of the crane can be monitored and/or simulated, wherein the monitoring and simulation means comprise at least one input means and at least one output means, and wherein, by means of the monitoring and simulation means, the change in state, particularly the bearing, load curve of the crane, and particularly also the movement of the crane and/or of the boom of the crane, can be represented at any time, and/or a possible state and/or a possible change in state of the crane, particularly the bearing load curve of the crane, can be simulated and/or represented.
The simulation and/or representation of the change in state and preferably of the bearing load curve of the crane at any time relates particularly to the circumstance that this can occur taking into account several degrees of freedom, particularly taking into account, for example, both the telescoping movement and also the simultaneous luffing movement of the crane.
The crane can be particularly a crawler crane or mobile crane. Advantageously, it is possible to display, in a simple and understandable manner, current and/or possible bearing loads, particularly maximum possible bearing loads or crane movements. The representation is preferably a graphic representation which can be comprehended in a simple and intuitive manner. The comparatively time consuming evaluation of the bearing load tables can be omitted, and, instead, the crane driver or crane operator can, at a glance, perceive the current state or a possible state of the crane, and in this manner evaluate the current state, for example, with regard to the bearing load, and/or plan additional crane movements.
Moreover, it is possible to provide that the monitoring and simulation means comprises at least one calculation unit and/or can be or is connected to at least one calculation unit, wherein the parameters describing the current state of the crane can be evaluated by means of the calculation unit and/or wherein a possible state and/or a possible change in state of the crane can be simulated and/or calculated by means of the calculation unit.
Moreover, it is conceivable that the monitoring and simulation means presents at least one model generation means, wherein, by the interaction of the calculation unit and the model generation means, the change in state and/or the possible change in state can be calculated. For example, the change in state, which may be the current and/or a possible change in state, can be calculated approximately. In the broadest sense, this involves a model of the change in state. The change in state and/or the possible change in state can accordingly be modeled particularly by the interaction of the calculation unit and the model generation means, preferably as a model in the form of at least one mathematical function.
It is possible to provide that the change in state and/or the possible change in state can be represented as a graph or curve, particularly a function curve of the generated model, wherein the actual state of the crane and/or the possible actual state of the crane can be represented on the graph or on the curve, in particular in a manner with highlighting in comparison to the surroundings. The representation as a graph or curve allows a simple and intuitive perception at a glance, wherein advantageously not only the current state, but also states in the surroundings of the actual state can be perceived at a glance in a simple and intuitive manner by the operator. By highlighting the actual state on the graph or the curve, a simple and rapid orientation of the operator becomes possible.
Furthermore, it is conceivable that the change in state is a bearing load curve of the crane, particularly a curve representing the hearing load of the crane, wherein the bearing load curve is preferably represented graphically as a curve by means of the output means.
The actual state of the crane can be represented on the represented bearing load curve as a bold-print point or cross.
In addition, it is possible that the model representing the change in state and/or the possible change in state is a multidimensional, particularly at least two-dimensional, model on the basis of at least two influencing factors that influence the bearing load of the crane, wherein the influencing factors are particularly the luffing movement and the telescoping movement of the crane.
It is advantageously conceivable to provide for being able to include in the model, as additional influencing factors, besides the luffing movement and/or telescoping movement, the luffing of the accessory boom, a luffing of the derrick boom, a setting of the pulled derrick ballast, a change in the derrick ballast radius, a rotation of the upper carriage, a change in the spreading angle between the stay racks in case of Y staying, and the crane inclination or also the wind.
Moreover, it is possible to provide that the change in state is a bearing load curve of the crane, particularly a curve representing the bearing load of the crane, wherein the bearing load curve can preferably be represented graphically as a curve by means of the output means and/or wherein the bearing load is plotted on the y-axis or height axis and/or wherein the actual state of the crane can be represented on the represented hearing load curve as a bold-print point or cross, and/or that, by means of the monitoring and simulation means, the at least two-dimensional model can be represented in the form of superposed curves in a plane and/or in the form of a perspective representation, preferably by a perspective representation of a characteristic zone or relief.
Moreover, it is possible that the monitoring and simulation means comprises at least one monitor with at least one keypad as input means and with at least one display as output means, or that the monitoring and simulation means is designed as a monitor with at least one keypad as input means and with at least one display as output means.
It is possible to provide that the crane comprises at least two master switches which can be and/or are connected to the monitoring and simulation means, wherein at least one first master switch is provided, by means of which the luffing movement of the boom can be controlled directly and/or indirectly, and wherein at least one second master switch is provided, by means of which the telescoping movement can be controlled directly and/or indirectly, wherein preferably, on the basis of the entries via the master switch by means of the monitoring and simulation means, the change in state, particularly the bearing load curve of the crane, can be represented, and/or a possible state and/or possible change in state of the crane, particularly the bearing load curve of the crane, can be simulated and/or represented.
Moreover, it is conceivable that the master switch(es) can be operated in at least one first and at least one second mode, wherein, in the first mode, at least one crane element can be actuated, and wherein, in the second mode, by means of the master switch, entries can be made to the monitoring and simulation means, particularly using a TrackPoint and/or a PC mouse.
Moreover, the present invention relates to a monitoring and simulation means for a crane having the characteristics herein. Accordingly, a monitoring and simulation means for a crane, particularly for a crawler crane or mobile crane, is provided, which is designed with the monitoring and simulation characteristics herein.
Additional details and advantages of the present invention are explained in greater detail below in reference to an embodiment example represented in the drawing.
The figures show:
The monitor 10 contains at the same time also the calculation unit, by means of which the current state of the crane, particularly the current parameters relating, for example, to the maximum bearing load of the crane, can be evaluated. Moreover, by means of the calculation unit which is not shown in further detail, and of the model generation means stored therein, particularly by means of an appropriate program, a calculation model can be established, on the basis of which, for example, a possible change in bearing load or change in movement of the crane can be visualized and simulated. The monitor is thus designed like a “all-in-one computer.”
The input unit 12 has several areas, wherein a first area is arranged in the upper right portion of the monitor 10, and comprises a numerical input block 20. Beneath the numerical block 20, a program key block 22 is provided, wherein subprograms can be called by means of the individual program keys. Beneath the program key block 22, special keys 24 are provided, wherein additional special keys 24, namely an additional input key 25 and an additional shift key 26, are arranged next to the function key line 28 located beneath the display 14. Here, the input key 25 is arranged on the right next to the function key line 28, and the shift key 26 is arranged on the left next to the function key line 28 with function keys 29.
By means of the display unit 14, the displays represented in
For the operation of the crane, at least one program, which can comprise or be connected to the model generation means, is provided on the monitor 10. The program here has at least two essential program parts or operating modes in which it can be operated. Thus, on the one hand, as a first operating mode, a crane monitoring is provided, with a representation of the actual movements of the crane, and, on the other hand, as a second operating mode, a crane simulation, with virtual crane movements and the display thereof, and identical input units are provided.
The crane driver or crane operator can select freely between said two operating modes. In the “crane monitoring” mode, the crane with its movable crane elements is operated in the known manner using the input units. The input units, for example, the master switch(es) or the keys of the input unit 12 on the monitor 10 select the appropriate actuators in each case. The graphic bearing load representation described below can occur in the two-display areas, namely the “crane monitoring” and “crane simulation” areas.
In the “crane simulation” mode, the display in the display area 14 occurs very close to the display in the “crane monitoring” mode which is known to the crane driver or crane operator. The positions where the information contents are displayed, just like the symbols that are used, are intuitively known to the crane driver from the “crane monitoring” mode. Thus, he can immediately use the “crane simulation” mode and readily obtain the relevant information. In particular, it is no longer necessary to laboriously find the needed value from a multitude of values in table form. In both operating modes, the same information is always available, so that both program parts, after switching, immediately use the display that corresponds to the actual situation.
For example, it is possible to provide that the crane driver or crane operator switches from “crane monitoring” to “crane simulation.” The “crane simulation” immediately displays the current state “Zactual.” In the next step, the additional steps can be planned, and in a simulated manner the crane can be moved into new positions in the “crane simulation” mode. Then, one can switch back to “crane monitoring.” The display 14 in the “crane monitoring” mode immediately shows the actually existing state “Zactual” again.
The use of the two program parts, namely “crane monitoring” and “crane simulation,” occurs via the same input units 20, 22, 24, 25, 26, 28, 29 of the input unit 12. The entries via the input unit 12 here also have substantially the same effects on the display area 14 of the monitor 10. In the “crane monitoring” mode, the corresponding actuator of the crane element to be moved is at first still actuated. However, this is of course not the case in the “crane simulation” mode.
Moreover, it is possible to provide that the actual crane movements are controlled according to a pattern from existing records.
For safety reasons, the movement is of course not carried out completely automatically, but only for as long as and as rapidly as the master switch is deflected. If the master switch, after the stop, is again actuated in the provided manner, then the planned movement continues to be performed.
The actual movements obviously also continue to be monitored by the crane control with its load moment limitation, namely independently, and thus redundantly, by the monitor 10 which indeed functions not only as simulation means but also as monitoring means.
In addition, the movements of the crane can also be run virtually on the crane simulator. Said patterns can also be run for the tests in a test facility, in which individual crane subunits are to be tested without the interaction of several components. As shown in
Said pattern can be filled from virtual movements of crane movements that have been taken up in a targeted manner and actually executed in the crane simulator, or from the data logger already present on in the crane, that is from a process-controlled storage unit of the crane. In this manner, as the final effect, a very good model of the crane movement, or in any case a model with sufficient precision, can be generated.
The graphic hearing load representation, which can be generated and reproduced with the monitor 10, can also be used on a PC when planning a deployment. It is particularly advantageous here that, for example, any existing planning data can be taken over accordingly, in particular it can be played from the PC on the monitor 10, and it is possible advantageously to work in the usual program environment. Thus, no conceptual readjustment is needed.
The operating mode, that is the “crane monitoring” or “crane simulation” mode, can be selected freely, independently of the operating mode in which the system happens to be.
Moreover, it is possible that the crane driver or crane operator can at all times lake over the operation via the master switches that are usually used in crane operation. Moreover, the symbols known from the “crane monitoring” operating mock or program part are also used in the “crane simulation” mode. This makes it easier for the operator to rapidly become familiar with the two operating mocks.
If the operator needs, in addition to the input possibilities via the input unit 12, an additional input means similar to a PC mouse, then this function is applied similarly to the “TrackPoint” in laptops to the master switch, and it is possible, by pushing a button, to switch the function of the master switch from normal operation to “TrackPoint” function. In this operating mode, the master switch thus functions as an additional input means for the monitor 10.
The displays represented in
Besides this degree of freedom or this performable movement possibility, a crane, depending on the crane configuration, also allows for additional degrees of freedom. Such additional, possible degrees of freedom can comprise, for example, the telescoping movement, the luffing of the accessory boom, a luffing of the derrick boom, a setting of the pulled derrick ballast, a change in the derrick ballast radius, a rotation of the upper carriage, a change in the spreading angle between the stay racks in case of Y staying, and the crane inclination or also the wind. With regard to the setting of the pulled derrick ballast, it can concern, for example, the transmission of the force via traction means from the derrick ballast to the upper carriage. As a rule, this force is smaller than the weight of the total derrick ballast.
All the curve representations have in common that all the degrees of freedom except for one are kept constant or fixed. This one, variable, degree of freedom is usually represented here on the x-axis. The y-axis represents the bearing load. In contrast to the representation in table form, there are many principal movements in the curve representation. The current principal movement is the movement represented in the graph along the x-axis. In this manner, it is possible to use different curves to graphically represent bearing loads versus crane movements, for which, for example, no data material at all in table form exists to date.
Besides the curve representation described below, concerning the “boom luffing” movement, additional curve representations can thus also be used, which, however, will be discussed only superficially below.
The embodiments represented in
Moreover, intermediate extension states can be provided, which are also each unbolted, wherein one corresponds to an extension state with 30% extended boom (telescopic extension state 3. T 0+/+−/0+/0+, and an additional extension state corresponds to a 60% extended boom (telescopic extension state 4, T 0+/60−/0+/0+.
By switching, the table shown in
The vertical line L1 above the point P1, which is preferably colored red, shows the current state in relation to the outreach, that is the current state or actual state. By highlighting the point P1 with respect to the surroundings, the actual state can be perceived in a simple, intuitive, and reliable manner at a glance.
If according to
By comparison, the solution shown in
The bold-print frame around the selection button 16 represents the selected state, here, using button 161 the selection “graphic representation” with graphic representation of the bearing load curve K1, and using button 162, the “boom luffing” movement. Other selection possibilities would be, for example, the “telescoping” movement, using button 163, and the “rotation of the upper carriage” movement, using button 164. Advantageously, the scales adapt automatically to the representable range. As a result the operator or the crane driver receives the maximum possible magnification level. As directly evident from a comparison of
This is in relation to the corresponding views according to
To get from state 1 to state 2, the crane driver must extend the telescope 2 from 0% to 92%. In the process, during the extension process, a load may also be suspended on the hook. However, for said different extension states, from 0% to 92%, there are no explicit data in the bearing load table. The bearing load determination consequently must base itself on the limiting columns, and determine the respective bearing load value. This occurs advantageously by means of the calculation unit of the monitor 10. Via the display area 14 of the monitor 10, it is possible to display, for example, the extension states of the telescope 2 which are located between the extension states 30% (state 3) and 60% (state 4), wherein corresponding representations of the curves K2 and K4 are shown in
Here too, analogously to
It is also conceivable to superpose the curves shown in
For example, if the crane had only one degree of freedom, for example, “fixed outreach length” and “boom can only be luffed,” then the bearing load behavior would still be relatively easy to predict or read from a table.
In a crane with several degrees of freedom, for example, with a boom which can be telescoped under a load or also simultaneously luffed, etc. it is helpful, however, if the bearing loads can be represented spatially. Accordingly, it is also advantageous to represent the corresponding bearing load curves spatially.
One can clearly see that one direction in space represents a change in the boom angle, whereas the other direction in space represents a change due to telescoping. Height represents the bearing load.
For telescoping with a load under a fixed boom angle, a curve also exists, namely through the points P1, P2, P3 and P4. Assuming a starting position as described under state 1, and a target situation as described under state 2, the curve can be represented as follows by means of appropriate connections of the curves represented in the curves according to
Thus, a bearing load curve K5 is obtained for the telescoping in a fixed luffing angle. Connecting all the curve points of the four curves K1, K2, K3 and K4 adjacent in space would result in a characteristic zone or a relief which describes the bearing load behavior.
An additional representation possibility consists in allowing two or more degrees of freedom to contribute to the calculation which can be carried out by means of the calculation unit and the model generation means. For example, the crane driver or crane conductor can here control the movements of the crane via the master switch. In the “crane operation” mode, the crane is actually operated, whereas in the “crane simulation” mode, the crane moves only on the display, i.e., the crane movement is only simulated and represented via the display means 14 or the display 14 of the monitoring and simulation monitor 10. In both cases, the above-described point, for example, the point P1, continues to move on the bearing load curve K1 in accordance with the movement. The bearing load curves are here calculated and displayed continuously with the current crane movement.
Moreover, at least two master switches are present for controlling the crane movements. On each master switch, another function assignment can be provided. For example, telescoping can be carried out with the first master switch, and the boom can be luffed with the second master switch. It is also conceivable that a master switch receives two functions or function assignments which are associated with the movement directions (front/back or left/right) of the master switch. Thus the “telescoping” crane movement can be on the forward and backward movement of the master switch, and the crane movement “principal boom luffing” on the left/right movement of the principal switch. Moving the master switch exactly in the 45° angle towards the front right would thus represent a simultaneous movement with identical movement components of the movement consisting of “luffing” and “telescoping.”
A bearing load curve of such a movement can also be calculated and represented by means of the monitoring and simulation monitor 10 or its calculation unit with the model generation means. Here, in the representation on the display 14, for example, on the x-axis, the outreach resulting from the crane movement comprising 50% “telescoping” and 50% “boom luffing” would result, and the associated maximum bearing load can be represented on the y-axis.
According to this principle, additional degrees of freedom are advantageously included in the calculation and modeling of the bearing load curve. In a two-dimensional curve representation on the display 14, the resulting outreach which is changed by the current movement form of the crane, i.e., the resulting outreach as a function of the included degrees of freedom or influencing factors, is accordingly also plotted on the x-axis, and the associated bearing load on the y-axis. An example is shown in
It is evident that the crane movement can change at all times. In that case, the calculation unit has in particular the following tasks:
Thus, the current outreach must be calculated on the basis of the moved crane elements. Moreover, the currently admissible bearing load and the bearing load associated with the respective outreach have to be calculated, to allow the obtention of a curve or function of the y=f(x) type, and thus a model. If the type of the composite movements comprising the different individual movements is constant, then the curve y=f(x) does not need to be recalculated. If the type of movement is changed, however, for example, by a changed movement component of the “telescoping” or “luffing” movement, for example, more “telescoping” and less “luffing,” then only the curve y=f(x) is calculated, and a new model established.
lithe components of the composite movement change, the graph represented in
Besides a perspective representation as shown in
Furthermore, it is possible to provide that an automatic switching of the curve occurs depending on the movement that has just been performed. In this manner, in the case of a luffing movement, the luffing curve can be displayed automatically, and analogously, in the case of a telescoping movement, the associated telescoping curve can be shown.
Number | Date | Country | Kind |
---|---|---|---|
UM 202010014309.8 | Oct 2010 | DE | national |