The present invention concerns a crane base for a loading crane having the features of the classifying portion of claim 1 and a loading crane having the features of claim 3 and a motor vehicle having such a loading crane.
Crane bases are arranged in the central region of the non-rotatable part of a loading crane. Arranged in a base part (generally in the form of a transverse beam member) of the crane base is a mounting region for the rotating part of the loading crane. The mounting arrangement for the rotating part of the loading crane is generally implemented with two vertically offset displaced radial bearings and an upwardly or downwardly disposed thrust bearing (generally plain bearings). The slewing drive (for example: a toothed rack slewing drive) for the rotatable part of the loading crane is generally also disposed in or on the base part.
The crane base is also the connecting element in relation to the substructure (generally of a motor vehicle, for example a truck) and is fixed (generally by way of outwardly disposed plate members by screws) to the substructure by way of at least one support portion (generally a so-called “auxiliary frame”), by way of a fixing region.
The substructure, that is to say for example the truck chassis, is not to be inadmissibly deformed or stressed by the loading crane or the crane base which is fitted in place by way of the base part and the at least one support portion.
To achieve a statically determinate application of force, a journal pin is arranged between the base part and the at least one support portion (see
The carrier for the mounting pin is of a closed (torsionally stiff) cross-sectional shape. Both the base part and also the rocker are rigidly connected to the auxiliary frame substructure, but can rotate relative to each other about the horizontal axis (rocker axis). As a result the system is statically determinate.
Another known form of construction is a rigid, one-piece structure for the crane base without the above-described rotary joint (
As the application of force to the at least one support portion and by way of same to the substructure is in that case statically indeterminate the substructure can be inadmissibly stressed.
The removal of the rotary joint means that this structure is admittedly simpler and less expensive, but is in particular often not desired by the manufacturers of motor vehicles.
The object of the invention is to provide a crane base, a loading crane and a motor vehicle having a loading crane, which are indeed statically determinate but which are simpler and less expensive to produce than the above-discussed structure using a rotary joint.
That object is attained by a crane base having the features of claim 1, a loading crane having the features of claim 3 and a motor vehicle having the features of claim 4.
The invention does not provide an additional journal pin joint between the base part and at least one support portion. By way of the torsionally flexible carrier which can be integrated into the steel construction of the crane base, the joint function is implemented even without the journal pin joint of the state of the art.
That can be effected for example by way of an open carrier structure (for example of a “I-profile structural configuration”) in the region in which the journal pin joint would usually be disposed. An open I-profile cross-section of suitable length is distinguished by a low level of torsional or rotational stiffness, but high flexural stiffness. The slight rotational movements which occur can therefore be passed by way of the carrier without same being thereby statically overloaded (by torsion). The transmission of all other forces or moments in operation of the crane is unrestrictedly possible. The function of such a structure is practically identical to that with “rocker pins”, but can be produced with a lower level of complication and expenditure.
Further details of the state of the art and of the invention can be seen in the Figures in which:
The profile cross-section belonging to that carrier 5 is shown in
Number | Date | Country | Kind |
---|---|---|---|
GM 66/2014 | Feb 2014 | AT | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/AT2015/000019 | Feb 2015 | US |
Child | 15235459 | US |