The present application relates to crankcase ventilation (“CV”) systems for internal combustion engines. More particularly, the present application relates to a heating system for a CV system that heats the CV system utilizing engine oil.
During the combustion cycle of conventional internal combustion engines, some combustion gases may leak past the piston rings of the cylinder and into the crankcase. These leaked gases are often referred to as blow-by gases. Crankcase ventilation (“CV”) systems are employed to vent the blow-by gases from the crankcase. Some CV systems are open loop systems, meaning the blow-by gases are vented to the ambient environment. Other CV systems are closed loop systems, meaning the blow-by gases are returned to the engine for combustion.
Many CV systems include a crankcase ventilation filter that allows the blow-by gases to be swept out of the crankcase (e.g., out of a road draft tube, into the engine intake, etc.). The crankcase ventilation filter may be a coalescing filter, a ventilation rotating filter, an inertial separator, a rotating cone stack filter, or the like. The crankcase ventilation filter may assist in treating the blow-by gases to reduce environmental impact of the internal combustion engine.
In some arrangements, the CV filter may be susceptible to cold temperatures. The cold temperatures may cause solidification of liquids in outlets (e.g., water vapor in the blow-by gases to freeze), which may plug the outlet. If an outlet of the CV system becomes plugged, pressure may build within the CV system and damage the CV system and possibly the engine itself. The plugging of CV system outlets due to cold conditions is a greater risk in CV systems having the CV filter mounted external to an engine cavity.
Some CV systems utilize a heating element that requires a source of energy outside of the internal combustion engine itself (i.e., a heating component having a primary function of heating the CV filter). For example, some CV systems utilize electric heating elements to directly heat the CV filter. As another example, some CV systems may utilize a separate coolant system to pass heated coolant through the CV filter. Still, other CV systems may utilize insulation, such as an over-molded insulation on plastic housings for the CV system parts, to protect the CV filter from cold temperatures. However, insulation alone does not generate heat. Accordingly, some CV systems may utilize both a heating element that requires a source of energy outside of the internal combustion engine itself and insulation. Utilizing a heating element that requires a source of energy outside of the internal combustion engine itself requires additional components and may negatively impact the overall efficiency of the engine.
A first embodiment relates to a crankcase ventilation system. The system includes a housing and a crankcase ventilation filter element within the housing. The crankcase ventilation filter element is configured to separate oil and oil aerosol from blow-by gases from a crankcase. An oil inlet is configured to receive pressurized oil from a component of an internal combustion engine. A conduit is positioned within the housing, the conduit positioned along a length of the housing. The conduit is configured to carry the pressurized oil from the oil inlet to a component of the crankcase ventilation system. The conduit is configured to transfer thermal energy from the pressurized oil to the housing. The system also includes an oil outlet configured to return the pressurized oil to the crankcase.
Another embodiment relates to a housing for a crankcase ventilation system. The housing includes a cavity configured to house a crankcase ventilation filter element within the housing. An oil inlet is configured to receive pressurized oil from a component of an internal combustion engine. A conduit is positioned within the housing, the conduit positioned along a length of the housing. The conduit is configured to carry the pressurized oil from the oil inlet to a component of the crankcase ventilation system. The conduit is configured to transfer thermal energy from the pressurized oil to the housing. The system also includes an oil outlet configured to return the pressurized oil to the crankcase.
These and other features, together with the organization and manner of operation thereof, will become apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Referring to the figures generally, the various embodiments disclosed herein relate to a crankcase ventilation (“CV”) system having a CV filter heating system that utilizes engine oil to heat the CV filter. The engine oil is already heated during normal operation of the internal combustion engine. In some arrangements, engine oil may be provided to the CV system to drive a pelton wheel that rotates the CV filter or to form a jet pump that draws separated oil from the CV system back into the crankcase. In present disclosure, the engine oil is also routed through a heat transfer device that transfers heat from the already heated engine oil to the CV filter, thereby protecting the CV filter from freeze up due to cold ambient conditions.
Referring to
In the present embodiment, the engine oil received through oil inlet 108 also serves to heat the rotating coalescer 100. The oil is routed through a conduit 114. The conduit 114 may comprise a channel or similar passageway which is formed directly in the housing 116 of the rotating coalescer 100. Alternatively, the conduit 114 may be part of a separate component that is mounted to the housing 116. The housing 116 may be formed out of a metal. The metal may have a high thermal conductivity and may comprise, for example, aluminum. The conduit may include a high thermal conductivity material insert. For example, the housing 116 may be formed from steel or iron, and the conduit 114 may be lined with copper, which has a higher thermal conductivity than steel and iron. Alternatively or additionally, the conduit 114 may include internal fins or ribs configured to increase the surface area in contact with the oil routed through the conduit 114, thereby increasing the heat transfer from the oil to the housing 116. The internal fins or ribs may also be configured to cause flow turbulence in the oil flowing through the conduit thereby increasing the nusselt number of the system and increases the heat transfer from the oil to the housing 116. In some arrangements, the conduit 114 may include an internal honeycomb-like channels formed out of a metal. The honeycomb-like channels increase the surface area thereby increasing the heat transfer rate from the oil to the housing 116. In further arrangements, the conduit 114 may include sinusoidal flow channels that create oscillatory flows that increase the heat transfer rate from the oil to the housing 116. In some arrangements, the conduit 114 may be split into multiple parallel channels. The conduit may run along a length of the housing 116. As shown in
Referring to
Referring to
The CV filter 300 includes an oil-driven jet pump system to assist in draining separated oil through the oil drain 310. The jet pump system includes a jet pump nozzle 312 configured to form a high velocity motive jet flow of engine oil through the oil drain 310. The momentum exchange between the high velocity motive jet flow from the jet pump nozzle 312 and the lower velocity surrounding fluid in the oil drain 310 creates a pumping effect which suctions and pumps separated oil from the oil drain 310. The oil within the oil drain 310 may be pumped into the crankcase. The oil used to create the high velocity motive jet flow is engine oil received from a pressurized engine oil source through oil inlet 314. Further details of how an oil-driven jet pump for a CV system works may be found in U.S. Pat. No. 7,870,850, entitled “CRANKCASE VENTILATION SYSTEM WITH PUMPED SCAVENGED OIL,” filed on Mar. 22, 2010, issued on Jan. 18, 2011, and assigned to Cummins Filtration IP, Inc., which is hereby incorporated by reference in its entirety and for all purposes.
As in the rotating coalescers 100 and 200, the engine oil received through oil inlet 314 also serves to heat the CV filter 300. The oil is routed through a conduit 316. The conduit 316 may be formed directly in the housing 304 of the CV filter 300. The housing 304 may be formed in a similar manner as discussed above with respect to housing 116. The conduit 316 is substantially similar to conduits 114 and 204 as discussed above with respect to
Referring to
In some arrangements, the housing 400 includes an insert 410 positioned within the cavity 406 of the conduit 402. A perspective view of this arrangement is shown in
Referring to
As utilized herein, the terms “approximately,” “about,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
It should be noted that the term “exemplary” as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The terms “coupled,” “connected,” and the like as used herein mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” etc.) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
It is important to note that the construction and arrangement of the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Additionally, it should be understood that features from one embodiment disclosed herein may be combined with features of other embodiments disclosed herein as one of ordinary skill in the art would understand. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention.
This application claims priority to U.S. Provisional Patent Application No. 61/927,281, entitled “CRANKCASE VENTILATION SYSTEM HEATER,” filed on Jan. 14, 2014, which is herein incorporated by reference in its entirety and for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US15/11158 | 1/13/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61927281 | Jan 2014 | US |