This application claims priority to German Patent Application No. DE 10 2015 115 768.3, filed Sep. 18, 2015, which is incorporated by reference herein in its entirety.
The present application relates to a crash barrier system.
In the field of vehicle safety, passive protective devices on motor vehicle test tracks, motorsport racetracks and roads are referred to all in all as protective beams, guardrails or crash barriers. A crash barrier system of the type in question serves essentially to prevent single- or multi-track vehicles from coming off the roadway or to protect regions outside the roadway from a vehicle collision.
DE 196 01 377 A1, which is incorporated by reference herein, discloses a protective beam arrangement, known as SUPER-RAIL, in particular a steel protective beam arrangement for local reinforcement of standard crash barrier constructions. Here, the protective beam arrangement has a barrier rail which is supported by stanchions and which is connected to the stanchion via a deformation element and a lower longitudinal stringer. A further upper longitudinal stringer is also provided in addition to this lower longitudinal stringer and at the end sides of which there are provided supporting profiles which run downward to a ground anchoring and which are supported on the ground anchoring embedded in the ground. The deformation element is formed by a rectilinear circular tube which is arranged substantially vertically. The lateral spacing of the stanchions lies in the range between 1.3 and 2 m.
DE 195 36 915 C2, which is incorporated by reference herein, discloses a protective beam arrangement on a central reserve dividing two roadways with two-way traffic, which arrangement comprises sectionally assembled C-shaped profile strands which are fastened on both sides approximately in the central height region and at the upper end of posts embedded in the ground at a spacing from one another in the longitudinal direction of the central reserve, and which arrangement comprises likewise sectionally joined-together W-shaped barrier rail strands which are stiffened by means of trough-like profile pieces and are spaced in the central height region from the C-shaped profile strands by tubular buffers provided in the vertical transverse planes of the posts, wherein the C-shaped profile strands, which are arranged at the upper end of the posts and coupled with the posts by predetermined breaking connections, are connected to one another via transversely directed coupling members not connected to the posts to form an absorption strip, and sliding layers which avoid steel-on-steel friction are integrated into the connections of the C-shaped profile strands to the upper ends of the posts.
DE 10 2005 020 917 A1, which is incorporated by reference herein, discloses a protective beam arrangement for roadways, in particular for use on the roadway edge, on the central reserve or for securing danger points, comprising a plurality of stanchions which are fixed to the ground and which are connected to one another by means of lower and upper longitudinal stringers extending parallel to one another, wherein deformation elements are fixed to the lower longitudinal stringer in the region of the stanchions and support a barrier rail extending parallel to the lower longitudinal stringer, and wherein the deformation elements are each formed as a rectilinear circular tube whose axis is oriented vertically.
Finally, AT 409 004 B, which is incorporated by reference herein, discloses a barrier device consisting of uprights anchored in the ground and of guardrails which are fastened to the uprights by deformable intermediate pieces, wherein the deformable intermediate pieces are fastened to the uprights via a screw connection which is released under the action of the impact of a vehicle.
DE 296 04 226 U1, DE 20 2007 019 215 U1, DE 10 2007 033 770 B3, DE 84 34 689 U1, DE 28 46 258 A1 and DE 19 04 538 U, all of which are incorporated by reference herein, relate to further crash barrier systems.
An advantage of the invention lies—by comparison with conventional installations—in the considerably more homogeneous variation of the stiffness along the crash barrier system, which is achieved by the offset according to aspects of the invention of posts and deformation tubes. The dynamic impulse acting on a vehicle during the impact of the latter is appreciably reduced in this manner. The effects triggered by the impulse in individual cases right up to a possible rollover of the vehicle can thus be diminished.
Thus, the crash barrier system can further comprise a lower fastening bracket and a post collision guard, wherein the post collision guard is fastened to the support post on the front side near the ground by means of the lowering fastening bracket. As a rule, an impacting vehicle can slide along such a post collision guard without the otherwise exposed support posts damaging the passenger safety cell.
In a further embodiment, the crash barrier system further comprises a soft suspension, a lower tube and a motorcycle underride guard. Here, the lower tube is shorter than the upper tube and is suspended on the post collision guard by means of the soft suspension, and the motorcycle underride guard is connected to the lower tube. In the event of a collision, a flexible construction such as this absorbs a considerable amount of impact energy and prevents the serious and often fatal injuries which are suffered by a fallen motorcycle rider even at low speeds as a result of underriding the barrier rails and coming into contact with the post construction.
The box beams preferably comprise a lower box beam and an upper box beam, wherein the lower box beam is arranged above the post collision guard and the upper box beam is arranged above the lower box beam. The described position of the box beams makes the crash barrier system according to aspects of the invention doubly suited to protect sports cars on the one hand and sport utility vehicles (SUVs) on the other hand. Here, mutually offset axes of the barrier rail and lower box beam can contribute to the improved elasticity and integrity of the crash barrier assembly in order to avoid sports cars otherwise threatening to underride the crash barrier system.
The crash barrier system can further comprise C-shaped rails which are connected to the support post on a rear side of the crash barrier system. Such C-shaped rails can decisively contribute to improving the post attachment to the overall system.
In an advantageous variant, the crash barrier system comprises containers which are filled with sand, water or gravel. These can be formed from brittle materials such as Styropor, textile fabrics, films or the like in such a way that they absorb energy during an impact and release the energy again on bursting.
According to an embodiment which is particularly suitable for super-elevated roadways, the crash barrier system further comprises an elongate ground anchoring which is connected to the support post at an obtuse angle at the end side, with the result that the support post is inclined with respect to the ground anchoring toward the front side.
Finally, it is conceivable for the crash barrier system to have a defined predetermined breaking point. For this purpose, the ground anchoring and the support post are preferably screwed in such a way that the predetermined breaking point is situated substantially between the ground anchoring and the support post. In the event of a vehicle collision, the support post breaks out of the ground anchoring at this point; the damage to the vehicle is thus reduced. At the same time, this measure avoids an undesired rotational impulse which can lead to the helical ascension and rollover of the vehicle.
Exemplary embodiments of the invention are illustrated in the drawings and are described in more detail hereinbelow.
Referring generally to the figures, a crash barrier system 20 comprises support posts 2, box beams 5, 6, upper tubes 9, lower tubes 8, barrier rails 13, 14, and a lower suspension. The support posts 2 are arranged axially parallel to one another. The box beams 5, 6 are connected to the support posts 2 on a front facing side of the support posts 2, and the box beams 5, 6 are mounted between the support posts 2 and the upper tubes 9. The upper tubes 9 are arranged axially parallel to one another, connected to the box beams 5, 6, and mounted between the barrier rails 13, 14 and the box beams 5, 6. The barrier rails 13, 14 are fastened to the upper tubes 9, and positioned on a front facing side of the crash barrier system 20. The lower suspension includes the lower tubes 8 and is fastened to the front facing side of the support posts 2 at a location beneath the box beams 5, 6 and the upper tubes 9. The lower tubes 8 are positioned at an elevation beneath the upper tubes 9, and lower tubes 8 have a greater ductility than the upper tubes 9 for absorbing impact energy in an event of a collision with the lower suspension.
A post collision guard 4 is fastened to the support post 2 near the ground by means of a lower fastening bracket 3. A lower tube 8 is for its part suspended on this post collision guard 4 by means of a soft suspension 7, and a motorcycle underside guard 12 is connected to the lower tube 8.
A lower box beam 5 is connected to the support post 2 on the front side above the post collision guard 4, and an upper box beam 6 is in turn connected to the support post 2 on the front side above the lower box beam 5. An upper tube 9, which is longer than the lower tube 8, is for its part connected to both box beams 5, 6 and, in an alternative embodiment, can be reinforced by a possible further or additional inner tube (not illustrated in the drawing) in the upper region in order to vary or adapt the stiffness without exchanging the barrier rail.
The offset, which is essential to the invention, between the support posts 2 and tubes 8, 9 which each project upward axially parallel to one another along the box beams 5, 6 is particularly evident in the plan view shown in
A lower barrier rail 13 is fastened above the motorcycle underride guard 12 to the upper tube 9 by means of a fastening beam 11, and an upper barrier rail 14 is in turn fastened above the lower barrier rail 13 to the upper tube 9 by means of an upper fastening bracket 10. Here, the box beams 5, 6 are arranged offset with respect to the barrier rails 13, 14 in order to avoid underriding of the crash barrier system 20 by sports cars, for instance.
Two C-shaped rails 15 are connected to the support post 2 on the left-hand side, as shown in the drawings, of the crash barrier system 20—hereinbelow: “rear side”.
Elongate ground anchorings 1 are first anchored axially parallel to one another at a uniform spacing at the edge of a roadway—for instance, an unused edge region of the roadway or the adjacent ground come into consideration.
An support post 2 is then connected at an obtuse angle at the end side to each ground anchoring 1, with the result that the support post 2 is inclined with respect to the ground anchoring 1—as shown in
A lower fastening bracket 3 is now fastened to the support post 2 near the ground on the front side.
A post collision guard 4 is then fastened to the lower fastening bracket 3 (see
A lower box beam 5 is connected above the post collision guard 4 to the support post 2 on the front side (see
An upper box beam 6 is connected above the lower box beam 5 to the support post 2 on the front side—which, as shown in the drawings, faces the observer—(see
Soft suspensions 7 are suspended on the post collision guard 4 at a spacing which differs from the axial spacing of the posts 2 (see
Lower tubes 8 are suspended axially parallel to one another on the soft suspensions 7 (see
Above each lower tube 8, a longer upper tube 9 is connected to the box beams 5, 6 (see
An upper fastening bracket 10 is fastened to the upper tube 9 (see
A fastening beam 11 is fastened below the upper fastening bracket 10 to the upper tube 9 (see
A motorcycle underride guard 12 is connected below the fastening beam 11 to the lower tube 8 (see
A lower barrier rail 13 is fastened to the fastening beam 11 (see
An upper barrier rail 14 is fastened to the upper fastening bracket 10 (see
Finally, C-shaped rails 15 are connected to the support post 2 on a rear side—which, as shown in the drawings, faces away from the observer—of the crash barrier system 20.
Finally,
Number | Date | Country | Kind |
---|---|---|---|
10 2015 115 768 | Sep 2015 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2093577 | Shepherd | Sep 1937 | A |
2238523 | Holst | Apr 1941 | A |
3430923 | Giavotto | Mar 1969 | A |
4406563 | Urlberger | Sep 1983 | A |
4638979 | Demarest | Jan 1987 | A |
4662611 | Ruane | May 1987 | A |
5069576 | Pomero | Dec 1991 | A |
5657966 | Cicinnati | Aug 1997 | A |
5876020 | Giavotto | Mar 1999 | A |
5957435 | Bronstad | Sep 1999 | A |
6488268 | Albritton | Dec 2002 | B1 |
6520711 | Kim | Feb 2003 | B2 |
6942263 | Welch | Sep 2005 | B2 |
7257875 | Masinelli | Aug 2007 | B2 |
7677533 | Fracasso | Mar 2010 | B2 |
7726632 | Amengual Pericas | Jun 2010 | B2 |
7731159 | Amengual Pericas | Jun 2010 | B2 |
7794173 | Amengual Pericas | Sep 2010 | B2 |
7988133 | Gripne | Aug 2011 | B2 |
7997824 | Amengual Pericas | Aug 2011 | B2 |
8215619 | Leonhardt | Jul 2012 | B2 |
8282082 | An | Oct 2012 | B2 |
8393822 | Hotchkin | Mar 2013 | B2 |
8491216 | Dyke | Jul 2013 | B2 |
8517349 | Ross | Aug 2013 | B1 |
20090003932 | Neusch | Jan 2009 | A1 |
20140103278 | Cai | Apr 2014 | A1 |
20150354155 | Yun | Dec 2015 | A1 |
20160145819 | Hotchkin | May 2016 | A1 |
Number | Date | Country |
---|---|---|
409004 | May 2002 | AT |
1904538 | Nov 1964 | DE |
1534565 | Mar 1970 | DE |
2846258 | May 1980 | DE |
8434689 | Feb 1985 | DE |
29604226 | May 1996 | DE |
19536915 | Feb 1997 | DE |
19601377 | Jul 1997 | DE |
102005020917 | Nov 2006 | DE |
102007033770 | Oct 2008 | DE |
202007019215 | Mar 2011 | DE |
0999310 | May 2000 | EP |
1719840 | Nov 2006 | EP |
2159327 | Mar 2010 | EP |
2374941 | Oct 2011 | EP |
2400061 | Dec 2011 | EP |
2722442 | Apr 2014 | EP |
2532787 | Sep 2015 | EP |
2793501 | Nov 2000 | FR |
2911351 | Jul 2008 | FR |
WO-2007036593 | Apr 2007 | WO |
Entry |
---|
German Search Report for German Application No. 10 2015 115 768.3, dated Jul. 11, 2016 with partial translation, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20170081815 A1 | Mar 2017 | US |