This invention relates to a method for verifying a vehicle has crashed and notifying a call center or emergency responders.
OnStar®, a wholly owned subsidiary of GM®, is a leading provider of telematics services. An OnStar® module connects an on-board vehicle computer to the OnStar® Center via cellular communications. A GM® vehicle is equipped with multiple built-in sensors, which allows the vehicle computer to capture critical real-time details in the event of a crash. The OnStar® module can provide the details to an advisor at the OnStar® Center, who can alert and pass along critical information to emergency responders. Other car manufacturers offer similar telematics systems and services. It is difficult for an independent party to offer aftermarket telematics systems and services as the telematics module needs to be intimately tied to the vehicle computer, which is often proprietary.
In one or more embodiments of the present disclosure, a method is provided for an aftermarket device to provide telematics service for a vehicle. The method includes accessing sensor data internal to the device and on-board diagnostic data from the vehicle, determining if one or more combinations of the sensor data and the on-board diagnostic data indicate a crash of the vehicle, and wirelessly contacting a call center or an emergency responder when at least one combination of the sensor data and the on-board diagnostic data indicates a crash of the vehicle.
In the drawings:
Use of the same reference numbers in different figures indicates similar or identical elements.
Executing telematics application 220, processor 202 monitors sensor data from within device 100 and OBD-II data from vehicle 102 to determine if a crash has occurred. Processor 202 has access to acceleration data from accelerometer 210, orientation data from gyroscope 212, and altitude data altimeter 214. Processor 202 uses OBD-II interface 216 to access OBD-II data from an on-board vehicle computer 224 of vehicle 102. The OBD-II data include vehicle speed data and engine revolution per minute (RPM) data. OBD-II interface 216 makes either a wired or a wireless connection to the vehicle computer.
When a crash is detected, processor 202 uses transceiver 218 provide relevant information to a call center 226, and an advisor contacts emergency responders for assistance. Instead of contacting a call center, processor 202 can directly contact the emergency responders 226. The relevant information describes the vehicle's route, including the vehicle's current location, the vehicle's orientation along the route, which may indicate any rollover, and the severity of the crash. In other words, device 100 acts similar to a flight data recorder or “black box” for an aircraft. Processor 202 determines the vehicle's route using GPS receiver 208. Processor 202 determines the vehicle's orientation from gyroscope 212. Processor 202 determines the severity of the crash from a combination of the sensor data and the OBD-II data. Processor 202 records the vehicle's route, the vehicle's orientation, and the severity of the crash in hard disk or solid state drive 206.
In block 302, processor 202 monitors the sensor data from within device 100, such as sensor data from accelerometer 210, gyroscope 212, and altimeter 214. Block 302 may be followed by block 304.
In block 304, processor 202 monitors the OBD-II data from vehicle computer 224. Note that processor 202 may monitor the sensor data and the OBD-II data concurrently. Block 304 may be followed by block 306.
In decision block 306, processor 202 determines if a combination of the sensor data and the OBD-II data indicates a crash of vehicle 102. The combination may include one or more of a rapid deceleration, a rapid change in direction or orientation, a rapid change in altitude, a rapid decrease in speed, and a rapid decrease in engine RPM indicate a crash. When a combination of the sensor data and the OBD-II data indicates a crash, decision block 306 may be followed by block 308. Otherwise decision block 306 loops back to block 302.
In block 308, processor 202 uses transceiver 218 to contact a call center or emergency responder 226. In the communications, processor 202 provides the vehicle's route, including the vehicle's current location, the vehicle's orientation along the route, and the severity of the crash. Block 308 may loop back to block 302.
Various other adaptations and combinations of features of the embodiments disclosed are within the scope of the present disclosure. Numerous embodiments are encompassed by the following claims.