1. Technical Field
The disclosure relates to crawling devices, and particularly, to a crawling device used in a toy.
2. Description of the Related Art
Some animal shaped toys lack any moveable parts, other animal shaped toys provide limited movement such as rotation of a limb about a corresponding joint. However the motion of these toys is not verisimilar to that of the actual animals, so it is easy for children to lose interest in these toys.
Accordingly, it is desirable to provide a crawling device used in a toy, which can overcome the above-mentioned problem.
Embodiments of the disclosure will now be described in detail with reference to the accompanying drawings.
Referring to
The first end 10 includes a first main body 12, a first electromagnet 14, a first magnet 16, and a first spring 18. In the embodiment, the first main body 12 is substantially circular. The first main body 12 includes a first supporting portion 122, a first surface 124, and a second surface 126 opposite to the first surface 124. The first supporting portion 122 is configured for supporting the first main body 12 on a supporting surface 90, such as a top of a table or on the ground. In the embodiment, the supporting surface 90 is the ground. The first electromagnet 14 is mounted on the first surface 124 and electrically connected to the controller 80. In this embodiment, the first electromagnet 14 is glued to the first surface 124. The first spring 18 is mounted on the first surface 124 near the first supporting portion 122, and the first magnet 16 is mounted on the first spring 18, thereby following a movement of the first spring 18. In the embodiment, the first magnet 16 defines a first through hole 162, and the first spring 18 is inserted through the first through hole 162 and mounted on the first main body 12. In the embodiment, a first flange 128 extends from the first surface 124 of the first main body 12, a first cutout 129 is defined in the first flange 128, and two ends of the first spring 18 are correspondingly mounted between the two ends of the first flange 128 in the first cutout 129.
When the controller 80 connects the power source module 60 to the first electromagnet 14, the first electromagnet 14 becomes magnetized and repels the first magnet 16 away, supporting on the supporting surface 90. When the controller 80 disconnects the power source module 60 to the first electromagnet 14, the first electromagnet 14 is no longer magnetized and the first magnet 16 returns to its original position.
The second end 20 includes a second main body 22, a second electromagnet 24, a second magnet 26 and a second spring 28. The second main body 22 is substantially circular. The second main body 22 includes a second supporting portion 222, a first surface 224 and a second surface 226 opposite to the first surface 224. The second supporting portion 222 is configured for supporting the second main body 22 on the supporting surface 90. The second electromagnet 24 is mounted on the first surface 224 and electrically connected to the controller 80. In this embodiment, the second electromagnet 24 is glued to the second surface 226. The second spring 28 is mounted on the first surface 224 near the second supporting portion 222, and the second magnet 26 is mounted on the second spring 28, thereby following a movement of the second spring 28. In the embodiment, the second magnet 26 defines a second through hole 262, and the second spring 28 is inserted through the second through hole 262 and mounted on the second main body 22. In the embodiment, a second flange 228 extends from the first surface 224 of the second main body 22, a second cutout 229 is defined in the second flange 228, and two ends of the second spring 28 are correspondingly mounted between the two ends of the second flange 228 in the second cutout 229.
When the controller 80 connects the power source module 60 to the second electromagnet 24, the second electromagnet 24 repels the second magnet 26 away, supporting on the supporting surface 90. When the controller 80 disconnects the power source module 60 to the second electromagnet 24, the second electromagnet 24 is no longer magnetized and the second magnet 26 returns to its original position.
Two ends of the elastic member 40 are mounted between the second surface 126 of the first main body 12 and the second surface 226 of the second main body 22. When the controller 80 disconnects the power source module 60 to the elastic member 40, the length of the elastic member 40 substantially equals to the distance between the first end 10 and second end 20. That is to say, the elastic member 40 is in normal state when the power source is not applied. When the power source is applied on the elastic member 40 by the controller 80, the elastic member 40 becomes compressed. When the power source is cut off the elastic member 40 by the controller 80, the elastic member 40 is in a free state.
The power source module 60 is mounted on the second surface 226 of the second end 20. In the embodiment, the power source module 60 is a battery, such as a rechargeable battery or a dry battery.
The controller 80 is mounted on the second surface 226 of the second end 20 and configured for controlling a connection between the power source module 60 to the first electromagnet 14, the second electromagnet 24, and the elastic member 40 according to a state of the elastic member 40. In the embodiment, when the elastic member 40 is in the normal state, the controller 80 connects the power source module 60 to the second end 20 and the elastic member 40. When the elastic member 40 is compressed to a first compressed limit, the controller 80 disconnects the power source module 60 to the second end 20 and the elastic member 40 and connects the power source module 60 to the first end 10. It is to be understood, the controller 80 can connect and disconnect the power source module 60 with the first electromagnet 14, the second electromagnet 24 and the elastic member 40 according to predetermined sequences.
Referring to
Referring to
The crawling device 100 can move when the power source module 60 provides the power source to the first electromagnet 14, the second electromagnet 24, and the elastic member 40 by the controller 80. When the crawling device 100 is used in an animated toy, such as a toy imitating a worm toy, the crawling device 100 will retain the interest of users of the toy.
It is to be understood, however, that even though numerous characteristics and advantages of the embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
200810304920.7 | Oct 2008 | CN | national |