An enterprise can gather a variety of data, such as data gathered from social websites, data from log files relating to visits of a website, data collected by sensors, financial data, and so forth. A MapReduce framework can be used to develop parallel applications for processing relatively large amounts of different data. A MapReduce framework provides a distributed arrangement of machines to process requests with respect to data.
A MapReduce job can include map tasks and reduce tasks that can be executed in parallel by multiple machines. The performance of a MapReduce job generally depends upon the configuration of the cluster of machines, and also based on the size of an input dataset.
Some embodiments are described with respect to the following figures:
Generally, a MapReduce system includes a master node and multiple slave nodes (also referred to as worker nodes). An example open-source implementation of a MapReduce system is a Hadoop system. A MapReduce job submitted to the master node is divided into multiple map tasks and multiple reduce tasks, which can be executed in parallel by the slave nodes. The map tasks are defined by a map function, while the reduce tasks are defined by a reduce function. Each of the map and reduce functions can be user-defined functions that are programmable to perform target functionalities. A MapReduce job thus has a map stage (that includes map tasks) and a reduce stage (that includes reduce tasks).
MapReduce jobs can be submitted to the master node by various requestors. In a relatively large network environment, there can be a relatively large number of requestors that are contending for resources of the network environment. Examples of network environments include cloud environments, enterprise environments, and so forth. A cloud environment provides resources that are accessible by requestors over a cloud (a collection of one or multiple networks, such as public networks). An enterprise environment provides resources that are accessible by requestors within an enterprise, such as a business concern, an educational organization, a government agency, and so forth.
Although reference is made to a MapReduce framework or system in some examples, it is noted that techniques or mechanisms according to some implementations can be applied in other distributed processing frameworks that employ map tasks and reduce tasks. More generally, “map tasks” are used to process input data to output intermediate results, based on a specified map function that defines the processing to be performed by the map tasks. “Reduce tasks” take as input partitions of the intermediate results to produce outputs, based on a specified reduce function that defines the processing to be performed by the reduce tasks. The map tasks are considered to be part of a map stage, whereas the reduce tasks are considered to be part of a reduce stage.
A MapReduce system can process unstructured data, which is data that is not in a format used in a relational database management system. Although reference is made to unstructured data in some examples, techniques or mechanisms according to some implementations can also be applied to structured data formatted for relational database management systems.
Map tasks are run in map slots of slave nodes, while reduce tasks are run in reduce slots of slave nodes. The map slots and reduce slots are considered the resources used for performing map and reduce tasks. A “slot” can refer to a time slot or alternatively, to some other share of a processing resource or storage resource that can be used for performing the respective map or reduce task.
More specifically, in some examples, the map tasks process input key-value pairs to generate a set of intermediate key-value pairs. The reduce tasks produce an output from the intermediate results. For example, the reduce tasks can merge the intermediate values associated with the same intermediate key.
The map function takes input key-value pairs (k1, v1) and produces a list of intermediate key-value pairs (k2, v2). The intermediate values associated with the same key k2 are grouped together and then passed to the reduce function. The reduce function takes an intermediate key k2 with a list of values and processes them to form a new list of values (v3), as expressed below.
map(k1,v1)→list(k2,v2)
reduce(k2,list(v2))→list(v3).
The reduce function merges or aggregates the values associated with the same key k2. The multiple map tasks and multiple reduce tasks are designed to be executed in parallel across resources of a distributed computing platform that makes up a MapReduce system.
The lifecycle of a computing platform (which can include hardware and machine-readable instructions), such as a computing platform used to implement a MapReduce system, is in a range of some number of years, such as three to five years, for example. After some amount of time, an existing computing platform may have to be upgraded to a new computing platform, which can have a different configuration (in terms of a different number of computing nodes, different number of processors per computing node, different numbers of processor cores per processor, different types of hardware resources, different types of machine-readable instructions, and so forth) than the existing computing platform.
Human information technology (IT) personnel may be involved in making the decision regarding choices relating to the configuration of the new computing platform. In some cases, the decision process may be a manual process that can be based on guesses made by the IT personnel. There can be a relatively large set of different configuration choices that the IT personnel can select for the new computing platform.
In some cases, the IT personnel may select the configuration of the new computing platform based on general specifications associated with components (e.g. processors, memory devices, storage devices, etc.) of a computing platform. However, predicting performance of a new computing platform based on general specifications of platform components may not accurately capture actual performance of the new computing platform when executing production MapReduce jobs. A production job can refer to a job that is actually executed or used by an enterprise (e.g. business concern, government agency, educational organization, individual, etc.) as part of the normal operation of the enterprise.
The intricate interaction of processors, memory, and disks, combined with the complexity of the execution model of a MapReduce system (e.g. Hadoop system) and layers of machine-readable instructions (e.g. Hadoop Distributed File System (HDFS) and other software or firmware) may make it difficult to predict the performance of a computing platform based on assessing the performance of underlying components.
In accordance with some implementations, techniques or mechanisms are provided to allow for more accurate prediction of a performance of a MapReduce job on a target computing platform. The target computing platform (for implementing a MapReduce system) can be a new computing platform that is different from an existing computing platform. The new computing platform can be selected as an upgrade from the existing computing platform (which is currently being used to execute production MapReduce jobs).
A model (also referred to as a “prediction model” or “comparative model”) can be created that characterizes a relationship between a MapReduce job executing on an existing computing platform and the MapReduce job executing on the target computing platform. As discussed further below, creation of the model can be based on platform profiles generated from running benchmarks on the respective existing and new platforms. The model can be used to determine performance of a production MapReduce job on the new computing platform, given the performance of the production MapReduce job on the existing computing platform.
More generally, instead of a model that characterizes a relationship between an existing computing platform and a new computing platform, the model can characterize a relationship between a first computing platform and a second computing platform. In some cases, it is noted that the first and second computing platforms may both be new alternative computing platforms that have not yet been used to execute production MapReduce jobs. Thus, in this latter example, the comparison is not between an existing computing platform and a new computing platform, but between two new computing platforms.
The model that characterizes the relationship between the first and second computing platforms can be considered a comparative model to allow for more accurate prediction of relative performance of MapReduce jobs on the first and second computing platforms.
The predicted performance of MapReduce jobs on a computing platform can include a predicted completion time of the MapReduce job. The completion time can include a length of time, or an absolute time by which the MapReduce job can complete. In other examples, other types of performance metrics can be determined for characterizing the performance of MapReduce jobs on computing platforms.
In accordance with some implementations, the model used to characterize a relationship between first and second computing platforms can model various phases of map tasks and various phases of reduce tasks. The ability to model phases of a map task and phases of a reduce task allows for more accurate determination of predicted performance on a computing platform for executing MapReduce jobs.
The storage modules 102 can be implemented with storage devices such as disk-based storage devices or integrated circuit or semiconductor storage devices. In some examples, the storage modules 102 correspond to respective different physical storage devices. In other examples, multiple ones of the storage modules 102 can be implemented on one physical storage device, where the multiple storage modules correspond to different logical partitions of the storage device.
The system of
A “node” refers generally to processing infrastructure to perform computing operations. A node can refer to a computer, or a system having multiple computers. Alternatively, a node can refer to a CPU within a computer. As yet another example, a node can refer to a processing core within a CPU that has multiple processing cores. More generally, the system can be considered to have multiple processors, where each processor can be a computer, a system having multiple computers, a CPU, a core of a CPU, or some other physical processing partition.
A computing platform (or a computing cluster) that is used to execute map tasks and reduce tasks includes the slave nodes 112 and the respective storage modules 102.
Each slave node 112 has a corresponding number of map slots and reduce slots, where map tasks are run in respective map slots, and reduce tasks are run in respective reduce slots. The number of map slots and reduce slots within each slave node 112 can be preconfigured, such as by an administrator or by some other mechanism. The available map slots and reduce slots can be allocated to the jobs.
The slave nodes 112 can periodically (or repeatedly) send messages to the master node 110 to report the number of free slots and the progress of the tasks that are currently running in the corresponding slave nodes.
In accordance with some implementations, a scheduler 118 in the master node 110 is configured to perform scheduling of MapReduce jobs on the slave nodes 112. The master node 110 can also include a model creation module 120, which can be used to create a model that characterizes a relationship MapReduce job execution on a first computing platform (such as the platform depicted in
The model created by the model creation module 120 can be used by a performance predictor 122 to predict a performance of the target computing platform. Additionally, the master node 110 includes a benchmark engine 124 that is used to generate benchmarks (discussed further below) that can be used by the model creation module 120 to create models.
The scheduler 118, model creation module 120, performance predictor 122, and benchmark engine 124 can be implemented as machine-readable instructions executable on one or multiple processors 116.
Although the model creation module 120, performance predictor 122, and benchmark engine 124 are depicted as being part of the master node 110 in
In some implementations, the at least one benchmark that is determined (at 202) is based on a production MapReduce job. In other implementations, the benchmark can be created in the absence of a production job. This can be in the context where IT personnel may be comparing alternative new computing platforms to select. Since the new computing platforms have not yet been deployed, a production job has not yet run on the alternative new computing platforms.
The model creation module 120 generates (at 204) platform profiles based on running the at least one benchmark on a first computing platform and on a second computing platform that is being considered as an upgrade from the existing platform. The platform profiles can each include durations of various phases associated with map and reduce tasks. Additional discussion of these various phases are discussed further below.
Based on the generated platform profiles, the model creation module 120 creates (at 206) a model that characterizes a relationship between a MapReduce job executing on the first platform and the MapReduce job executing on a second platform.
The performance of a phase of a map task or reduce task depends on the amount of data processed in each phase as well as the efficiency of the underlying computing platform involved in this phase. Since performance of a phase can depend upon the amount of data processed, there is no single value of a parameter that can characterize the performance of a phase. However, by running multiple benchmarks on each of the platforms that are considered, a model can be built that more accurately relates the phase execution times of the map and reduce tasks on the platforms.
Each benchmark can include specified fixed numbers of map tasks and reduce tasks. The numbers of map and reduce tasks can be relatively low numbers to lessen computation time in the model creation process. Thus, by running benchmarks on the first and second computing platforms (rather than running actual production MapReduce production jobs on the computing platforms), a more efficient process of creating a model can be provided.
In some examples, a benchmark can include the following parameters:
In some implementations, a benchmark B is parameterized as:
B=(Minp,Mcomp,Msel,Rcomp,Rsel).
A specific benchmark can be produced by assigning values to respective ones of the parameters listed above in the benchmark B. In some implementations, a range of values can be associated with each of the benchmark parameters. The ranges of benchmark parameters can be specified in a benchmark specification such as a benchmark specification 302 depicted in
In the example given in
The benchmark engine 124 (
The number of benchmarks 304-1 to 304-m that can be produced by the benchmark engine 124 can depend on the number of values specified in the benchmark specification 302 for each of Msel and Rsel. In the example of
Each benchmark 304-i depicted in
Selecting different values of Minp, Mcomp, and Rcomp in a round robin or other fashion for each benchmark refers to selecting different values of Minp, Mcomp, and Rcomp to use during execution of the benchmark in a computing platform being considered.
Once the benchmarks are created, the benchmarks can be run on respective platforms to produce platform profiles, as performed at task 204 in
Each map task or reduce task includes a sequence of processing phases. Each phase can be associated with a time duration, which is the time involved in completing the phase. The following are example phases of a map task:
A reduce task can include the following phases:
Platform profiles are generated (at 204 in
The durations of the eight execution phases listed above (read, map, collect, spill, merge, shuffle, reduce, and write) on each computing platform is collected:
Tables 1 and 2 show portions of a platform profile based on executing a benchmark suite on a computing platform (Table 1 shows the phase durations for map tasks and Table 2 shows the phase durations for reduce tasks):
In Table 1, the first column includes an identifier of a benchmark, and the second column includes an identifier of a map task. The remaining columns of Table 1 include phase durations for the phases of map tasks: D1, D2, D3, D4, and D5. The first row of Table 1 contains phase durations for the benchmark with benchmark ID 1, and the map task with map task ID 1. The second row of table 1 contains phase durations for the benchmark with benchmark ID 1, and the map task with ID 2.
Similarly, in Table 2, the first column includes the benchmark ID, and the second column includes the reduce task ID. The remaining columns of Table 2 include phase durations for the phases of reduce tasks: D6, D7, and D8.
Once the platform profiles on the computing platforms to be compared have been derived, a model can be created (task 206 in
In some examples, a model Msrc→tgt can be created that characterizes the relationship between Map Reduce job executions on two different computing platforms, denoted here as src (source) and tgt (target) computing platforms. In some examples, the source computing platform can be an existing computing platform, and the target computing platform can be a new computing platform. In other examples, both the source and target computing platforms are new alternative computing platforms.
The model creation first finds the relationships between durations of different execution phases on the computing platforms. In some implementations, eight sub-models M1, M2, . . . , M7, M8 are built that define the relationships for the read, map, collect, spill, merge, shuffle, reduce, and write phases, respectively, on two computing platforms. To build these sub-models, the platform profiles gathered by executing the benchmark suite on the computing platforms being compared are used.
The following describes how to build a sub-model Mi, where 1≦i≦8. By using values from the collected platform profiles, a set of equations is formed that express the duration of each specific execution phase on the target computing platform as a linear function of the same execution phase on the source computing platform. Note that the right and left sides of equations below relate the phase duration of the same task (map or reduce) and of the same microbenchmark on two different computing platforms (by using the task and benchmark IDs):
where Di,srcj,k and Di,tgtj,k are the values of metric Di collected on the source and target platforms, respectively, for the task with ID=j during the execution of benchmark with ID=k.
To solve for (Ai, Bi) in the equations above, i=1 to 8, a linear regression technique can be used, such as a Least Squares Regression technique or another technique.
Let (Âi, {circumflex over (B)}i), i=1 to 8, denote a solution for the set of equations above. Then Mi=(Âi, {circumflex over (B)}i) is the sub-model that describes the relationship between the durations of execution phase i on the source and target platforms. The entire model Msrc→tgt=(M1, M2, . . . , M7, M8).
The training dataset (platform profiles) is gathered by the automated benchmark engine 124 that runs identical benchmarks on both the source and target platforms. The non-determinism in MapReduce processing and some unexpected anomalous or background processes, can skew the measurements, leading to outliers or incorrect data points. With ordinary least squares regression, even a few bad outliers can significantly impact the model accuracy, because it is based on minimizing the overall absolute error across multiple equations in the set.
To decrease the impact of occasional bad measurements and to improve the overall model accuracy, an iteratively re-weighted least squares technique can be used. This technique is from the Robust Regression family of techniques designed to lessen the impact of outliers.
Once the model Msrc→tgt is created, the performance predictor 122 (
Machine-readable instructions of various modules described above (including 118, 120, 122, 124 of
Data and instructions are stored in respective storage devices, which are implemented as one or multiple computer-readable or machine-readable storage media. The storage media include different forms of memory including semiconductor memory devices such as dynamic or static random access memories (DRAMs or SRAMs), erasable and programmable read-only memories (EPROMs), electrically erasable and programmable read-only memories (EEPROMs) and flash memories; magnetic disks such as fixed, floppy and removable disks; other magnetic media including tape; optical media such as compact disks (CDs) or digital video disks (DVDs); or other types of storage devices. Note that the instructions discussed above can be provided on one computer-readable or machine-readable storage medium, or alternatively, can be provided on multiple computer-readable or machine-readable storage media distributed in a large system having possibly plural nodes. Such computer-readable or machine-readable storage medium or media is (are) considered to be part of an article (or article of manufacture). An article or article of manufacture can refer to any manufactured single component or multiple components. The storage medium or media can be located either in the machine running the machine-readable instructions, or located at a remote site from which machine-readable instructions can be downloaded over a network for execution.
In the foregoing description, numerous details are set forth to provide an understanding of the subject disclosed herein. However, implementations may be practiced without some or all of these details. Other implementations may include modifications and variations from the details discussed above. It is intended that the appended claims cover such modifications and variations.