Creating, managing and deploying deceptions on mobile devices

Information

  • Patent Grant
  • 10432665
  • Patent Number
    10,432,665
  • Date Filed
    Monday, September 3, 2018
    7 years ago
  • Date Issued
    Tuesday, October 1, 2019
    6 years ago
  • Inventors
    • Yohai; Tal
    • Lauber; Ofir
    • Epelman; Yoav
  • Original Assignees
  • Examiners
    • Traore; Fatoumata
    Agents
    • Soquel Group I.P Ltd
Abstract
A system for managing attacker incidents, including a mobile device manager (MDM) receiving instructions to deploy deceptions on a mobile device used by an employee of an organization in conjunction with a network of the organization and, in response to the instructions, running a dedicated agent on the mobile device, wherein the dedicated agent is configured to register the mobile device and its current deceptions state, and install deceptions in the mobile device, a trap server triggering an incident in response to an attacker attempting to use deceptive data that was installed in the mobile device, and a deception management server sending instructions to the MDM to deploy deceptions on the mobile device, registering the mobile device and its deceptions state, receiving the notification from the trap server that an incident has occurred, and in response thereto instructing the MDM to run forensics on the mobile device.
Description
CROSS REFERENCES TO RELATED APPLICATIONS

The contents of the following of applicant's US patent applications are hereby incorporated herein in their entireties.

    • U.S. patent application Ser. No. 15/722,351, entitled SYSTEM AND METHOD FOR CREATION, DEPLOYMENT AND MANAGEMENT OF AUGMENTED ATTACKER MAP, and filed on Oct. 2, 2017 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. patent application Ser. No. 15/403,194, now U.S. Pat. No. 9,787,715, entitled SYSTEM AND METHOD FOR CREATION, DEPLOYMENT AND MANAGEMENT OF AUGMENTED ATTACKER MAP, and filed on Jan. 11, 2017 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. patent application Ser. No. 15/004,904, now U.S. Pat. No. 9,553,885, entitled SYSTEM AND METHOD FOR CREATION, DEPLOYMENT AND MANAGEMENT OF AUGMENTED ATTACKER MAP, and filed on Jan. 23, 2016 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. Provisional Application No. 62/172,251, entitled SYSTEM AND METHOD FOR CREATION, DEPLOYMENT AND MANAGEMENT OF AUGMENTED ATTACKER MAP, and filed on Jun. 8, 2015 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. Provisional Application No. 62/172,253, entitled SYSTEM AND METHOD FOR MULTI-LEVEL DECEPTION MANAGEMENT AND DECEPTION SYSTEM FOR MALICIOUS ACTIONS IN A COMPUTER NETWORK, and filed on Jun. 8, 2015 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. Provisional Application No. 62/172,255, entitled METHODS AND SYSTEMS TO DETECT, PREDICT AND/OR PREVENT AN ATTACKER'S NEXT ACTION IN A COMPROMISED NETWORK, and filed on Jun. 8, 2015 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. Provisional Application No. 62/172,259, entitled MANAGING DYNAMIC DECEPTIVE ENVIRONMENTS, and filed on Jun. 8, 2015 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.
    • U.S. Provisional Application No. 62/172,261, entitled SYSTEMS AND METHODS FOR AUTOMATICALLY GENERATING NETWORK ENTITY GROUPS BASED ON ATTACK PARAMETERS AND/OR ASSIGNMENT OF AUTOMATICALLY GENERATED SECURITY POLICIES, and filed on Jun. 8, 2015 by inventors Shlomo Touboul, Hanan Levin, Stephane Roubach, Assaf Mischari, Itai Ben David, Itay Avraham, Adi Ozer, Chen Kazaz, Ofer Israeli, Olga Vingurt, Liad Gareh, Israel Grimberg, Cobby Cohen, Sharon Sultan and Matan Kubovsky.


FIELD OF THE INVENTION

The present invention relates to computer security, and in particular to preventing attackers from harvesting credentials from an enterprise network.


BACKGROUND OF THE INVENTION

Reference is made to FIG. 1, which is a simplified diagram of a prior art organization network 100 connected to an external internet 10. Network 100 is shown generally with resources including endpoint computers 110, databases 120, switches and routers 130, and mobile devices 140 such as smart phones and tablets, for ease of presentation, although it will be appreciated by those skilled in the art that organization networks today are generally much more complex and include other devices such as printers, other types of network elements such as relays, and any Internet of Things objects. The various connections shown in FIG. 1 may be direct or indirect, wired or wireless communications, or a combination of wired and wireless connections. Endpoint computers 110 and databases 120 may be physical elements or logical elements, or a mix of physical and logical elements. Endpoint computers 110 and databases 120 may be virtual machines. Endpoint computer 110 and databases 120 may be local, remote or cloud-based elements, or a mix of local, remote and cloud-based elements. Endpoint computers 110 may be client workstation computers, or server computers including inter alia file transfer protocol (FTP) servers, email servers, structured query language (SQL) servers, secure shell (SSH) servers and other application servers, or a mix of client and server computers. An organization's information technology (IT) department manages and controls network 100 in order to serve the organization's requirements and meet the organization's needs.


Access to endpoint computers 110 and databases 120 in network 100 may optionally be governed by an access governor 150, such as a directory service, that authorizes users to access endpoint computers 110 and databases 120 based on “credentials”. Access governor 150 may be a name directory, such as ACTIVE DIRECTORY® developed by Microsoft Corporation of Redmond, Wash., for WINDOWS® environments. Background information about ACTIVE DIRECTORY® is available at Wikipedia. Other access governors for WINDOWS and non-WINDOWS environments, include inter alia Lightweight Directory Access Protocol (LDAP), Remote Authentication Dial-In User Service (RADIUS), and Apple Filing Protocol (AFP), formerly APPLETALK®, developed by Apple Inc. of Cupertino, Calif. Background information about LDAP, RADIUS and AFP is available at Wikipedia.


Access governor 150 may be one or more local machine access controllers. Access governor 150 may be one or more authorization servers, such as a database server or an application server.


In lieu of access governor 150, the endpoints and/or servers of network 100 determine their local access rights.


Credentials for accessing endpoint computers 110 and databases 120 include inter alia server account credentials such as <address> <username> <password> for an FTP server, an SQL server, or an SSH server. Credentials for accessing endpoint computers 110 and databases 120 also include user login credentials <username> <password>, or <username> <ticket>, where “ticket” is an authentication ticket, such as a ticket for the Kerberos authentication protocol or NTLM hash used by Microsoft Corp., or login credentials via certificates or via another implementation used today or in the future. Background information about the Kerberos protocol and the LM hash is available at Wikipedia.


Access governor 150 may maintain a directory of endpoint computers 110, databases 120 and their users. Access governor 150 authorizes users and computers, assigns and enforces security policies, and installs and updates software. When a user logs into an endpoint computer 110, access governor 150 checks the submitted password, and determines if the user is an administrator (admin), a normal user (user) or other user type.


Endpoint computers 110 may run a local or remote security service, which is an operating system process that verifies users logging in to computers and other single sign-on systems and other credential storage systems.


Network 100 may include a security information and event management (SIEM) server 160, which provides real-time analysis of security alerts generated by network hardware and applications. Background information about SIEM is available at Wikipedia.


Network 100 may include a domain name system (DNS) server 170, or such other name service system, for translating domain names to IP addresses. Background information about DNS is available at Wikipedia.


Network 100 may include a firewall 180 located within a demilitarized zone (DMZ), which is a gateway between organization network 100 and external internet 10. Firewall 180 controls incoming and outgoing traffic for network 100. Background information about firewalls and DMZ is available at Wikipedia.


One of the most prominent threats that organizations face is a targeted attack; i.e., an individual or group of individuals that attacks the organization for a specific purpose, such as leaking data from the organization, modifying data and systems, and sabotaging data and systems.


Targeted attacks are carried out in multiple stages, typically including inter alia reconnaissance, penetration, lateral movement and payload. Lateral movement involves establishing a foothold within the organization and expanding that foothold to additional systems within the organization.


In order to carry out the lateral movement stage, an attacker, whether a human being who is operating tools within the organization's network, or a tool with “learning” capabilities, learns information about the environment it is operating in, such as network topology, organization structure, and implemented security solutions, and then operates in accordance with that data. One method to defend against such attacks is to plant misleading information/decoys/bait with the aim that the attacker learns of their existence and consumes those bait resources, which are monitored so as to notify an administrator of malicious activity. In order to monitor usage of deceptive information, trap servers, referred to as “honeypots”, are deployed in the organization. Background information about honeypots is available at Wikipedia.


With the influx of Generation Y and the increasing demand for flexible working, the shift from company owned devices to employees bringing their own devices is having a massive impact on how IT departments react to mobile security.


Although “bring your own device” is an attractive business model, there are a number of security risks associated with it. With data security being the number one concern for CEOs, ensuring that an IT environment is secure is more paramount than ever.


Use of employee smartphones within an organization has many security drawbacks.


Smartphones, as computers, are preferred targets of attacks. These attacks exploit weaknesses inherent in smartphones that arise from the communication modes including inter alia Short Message Service (SMS), also referred to as “text messaging”, Multimedia Messaging Service (MMS), Wi-Fi, Bluetooth and GSM. In additional there are exploits that target software vulnerabilities in the smartphone browser or operating system.


Smartphones generally have access to both the World Wide Web and the inner organizational network via the organization's Wi-Fi network. Often smartphones contain sensitive organization information, including inter alia organization mail, project notes, pictures and videos.


Unlike desktop computers and servers, smartphones are not always monitored by the IT department, because they belong to the employees (bring your own device) and not to the organization.


Monitoring smartphones via Mobile Device Management (MDM) includes installing security tools such as antivirus tools on the smartphones, but these security tools are not always effective for detecting advanced persistent threats (APTs).


At present, a deception solution for smartphones does not exist, and there is no reliable detection tool for APTs. As such, there is a need for a security solution to protect organizations against attackers that breach mobile phones belonging to employees of the organization that operate in conjunction with the organization's network.


SUMMARY

Embodiments of the present invention create, manage and deploy deceptions on mobile devices, leading a potential attacker to a trap server that alerts the organization's security administrators.


Embodiments of the present invention provide a new layer of defense for smartphones. One embodiment employs a mobile device manager (MDM) to deploy deceptions on mobile devices. An alternative embodiment avoids use of an MDM and instead uses dedicated applications on mobile devices to deploy deceptions on mobile devices. In both embodiments, when an attacker attempts to use deceptive data retrieved from a mobile device, a trap server reports an incident to a deception manager server, and forensics of the mobile device are collected to monitor the attacker.


There is thus provided in accordance with an embodiment of the present invention a system for managing attacker incidents on a mobile device, including a mobile device manager (MDM) receiving instructions to deploy deceptions on a mobile device used by an employee of an organization in conjunction with a network of the organization and, in response to the instructions, running a dedicated agent on the mobile device, wherein the dedicated agent is configured to register the mobile device and its current deceptions state, receive a list of deceptions to install in the mobile device, and install the deceptions in the received list in the mobile device, a trap server triggering an incident in response to an attacker attempting to use deceptive data that was installed in the mobile device by the dedicated agent, and sending a notification that an incident has occurred, and a deception management server sending instructions to the MDM to deploy deceptions on the mobile device, sending the list of deceptions to the MDM, registering the mobile device and its deceptions state, receiving the notification from the trap server that an incident has occurred, in response thereto instructing the MDM to run forensics on the mobile device, and receiving the forensics from the dedicated agent.


There is additionally provided in accordance with an embodiment of the present invention a method for managing attacker incidents on a mobile device, including instructing, by a deception management server, a mobile device manager (MDM) to deploy deceptions on a mobile device used by an employee of an organization in conjunction with a network of the organization, in response to the instructing running, by the MDM, a dedicated agent on the mobile device, registering, by the dedicated agent, the mobile device and its current deceptions state with the deception management server, receiving, by the dedicated agent from the deception management server, a list of deceptions to install in the mobile device, installing, by the dedicated agent, the deceptions in the received list in the mobile device, wherein the received deceptions include data leading to a trap server, attempting, by an attacker, to use deceptive data installed in the mobile phone, to connect to a service, in response to the attempting, triggering an incident in the trap server, notifying, by the trap server, the deception management server, that an incident has occurred, further instructing the MDM, by the deception management server, to run forensics on the mobile device, in response to the further instructing, running by the MDM, forensics on the mobile device, and transmitting forensic data, by a forensics collector in the dedicated agent, to the deception management server.


There is further provided in accordance with an embodiment of the present invention a method for managing attacker incidents on a mobile device, including downloading, by a mobile device, a dedicated application, running by the mobile device, the dedicated application with parameters provided by a deception management server, registering, by the dedicated application, the mobile device and its current deceptions state with the deception management server, receiving, by the dedicated application from the deception management server, a list of deceptions to install in the mobile device, installing, by the dedicated agent, the deceptions in the received list in the mobile device, attempting, by an attacker, to use deceptive data in the mobile phone, to connect to a service, in response to the attempting, triggering an incident in a trap server, notifying, by the trap server, the dedicate application, that an incident has occurred, running by the dedicated application, forensics on the mobile device, and transmitting forensic data, by a forensics collector in the dedicated application, to the deception management server.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be more fully understood and appreciated from the following detailed description, taken in conjunction with the drawings in which:



FIG. 1 is a simplified diagram of a prior art enterprise network connected to an external internet;



FIG. 2 is a simplified flowchart of a method for mobile device management (MDM) deployment, in accordance with an embodiment of the present invention;



FIG. 3 is a simplified diagram of a system for MDM deployment, in accordance with an embodiment of the present invention;



FIG. 4 is a simplified flowchart of a method for attacker incident flow using MDM, in accordance with an embodiment of the present invention;



FIG. 5 is a simplified diagram of a system for attacker incident response using MDM, in accordance with an embodiment of the present invention;



FIG. 6 is a simplified flowchart of a method for mobile app deployment, in accordance with an embodiment of the present invention; and



FIG. 7 is a simplified diagram of a system for mobile app deployment, in accordance with an embodiment of the present invention.





For reference to the figures, the following index of elements and their numerals is provided. Similarly numbered elements represent elements of the same type, but they need not be identical elements.









TABLE I







Elements in the figures








Element
Description











10
Internet


100
enterprise network


110
endpoint computer


120
network databases


130
network switches and routers


140
mobile devices


150
access governor (optional)


160
STEM server


170
DNS server


180
firewall


200
enterprise network with mobile device management


210
mobile devices


220
deception management server


225
management console GUI


230
trap server


240
IPSec tunnel


250
MDM gateway server


260
MDM device management server


270
management console


280
domain controller


290
database server


300
dedicated agent


310
mobile app store (Android/iOS)









Elements numbered in the 1000's are operations of flow charts.


The following definitions are employed throughout the specification.


DECEPTION MANAGEMENT SERVER—refers to a server that manages and controls the systems and data flows. The deception management server registers the mobile devices in the organization, and saves the deceptions state, also referred to as the “snapshot” of the mobile devices, and knows where to plan which deceptions. The deception management server sets parameters and configurations.


MOBILE DEVICE MANAGEMENT (MDM)—refers to a server that handles administration of mobile devices in the organization, including inter alia, smartphones, tablets, laptops and desktops. The MDM runs an Android/iOS agent on the mobile devices and collects forensic data from the mobile devices.


TRAP SERVER—refers to a server to which attempts by an attacker to use deceptive data from mobile phones, are directed. The trap server listens for connections from various protocols, including inter alia HTTP, HTTPS and SSH.


DETAILED DESCRIPTION

In accordance with embodiments of the present invention, systems and methods are provided for generating, managing and deploying deceptions in mobile devices. These deceptions lead an attacker to a trap server, where his activity is monitored and forensics are collected.


Reference is made to FIG. 2, which is a simplified flowchart of a method 1000 for mobile device management (MDM) deployment, in accordance with an embodiment of the present invention. Reference is also made to FIG. 3, which is a simplified diagram of a system 200 for MDM deployment, in accordance with an embodiment of the present invention. Shown in FIG. 3 are mobile devices 210, a deception management server 220, a management console GUI 225, a trap server 230, an Internet Protocol Security (IPSec) tunnel 240, a mobile device management (MDM) gateway server 250, an MDM device management server 260, a management console 270, a domain controller 280, and a database server 290. MDM gateway server 250 belongs to a perimeter network. MDM device management server 260, management console 270, domain controller 280, and database server 290 belong to the organizational network.


Mobile devices 210, which are owned by employees of an organization, are used by the employees for carrying out work of the organization, and access an organizational network. As such, mobile devices 210 may hold sensitive information and credentials, which are desirable targets of an attacker. Mobile devices 210 include inter alia smartphones, tablet devices, laptops and desktop computers.


Deception management server 220, manages and controls system flows and data. Deception management server 220 saves the deception state, referred to as the “snapshot”, of each device in the organization, and knows where to plant which deceptions. Deception management server 220 is used to set configurations.


Deceptions are routed to trap server 230, which listens for connections from all common protocols, including inter alia HTTP, HTTPS and SSH. Trap server 230 may be publicly exposed to the Internet, depending on its configuration.


MDM device management server 260, which belongs to the organizational network, and which handles administration of mobile devices 210. MDM device manager server 260 runs Android/iOS agents and forensics on mobile devices 210. MDM device manager server is an optional but recommended component. At alternative embodiment is to install dedicated mobile applications on all mobile devices 210, where the mobile applications manage and deploy deceptions on mobile devices 210.


At operation 1010, deception management server 220 tells MDM device management server 260 to deploy deceptions on a mobile device 210, as indicated by the circled 1 in FIG. 3. At operation 1020, MDM device management server 260 runs a dedicated iOS or Android agent on the requested mobile device 210 with sufficient privileges, as indicated by the circled 2 in FIG. 3. At operation 1030, the dedicated agent communicates with deception management server 220 to register the requested mobile device 210 and its deceptions state; i.e., its snapshot, as indicated by the circled 3 in FIG. 3. At operation 1040, deception management server 220 sends a list of deceptions to install, to the dedicated agent running in the requested mobile device 210, as indicated by the circled 4 in FIG. 3. At operation 1050, the dedicated agent installs the deceptions received from deception management server 220.


There is a wide variety of types of mobile deceptions that are planted in mobile devices 210, including inter alia:


Applications—deceptive data planted in personal and organizational applications, in LINKEDIN®, in TWITTER®, in FACEBOOK®, in GMAIL®, in GOOGLE HANGOUTS®, and in Google Drive;


Browsers—deceptive URLs planted in local browsers;


E-mail—deceptive data planted in e-mail;


Files—files containing data leading to deceptive entities;


Network—deceptive network device leading to trap server;


SSH/Telnet—data leading to deceptive entities; and


Users—deceptive users and deceptive user credentials.


Reference is made to FIG. 4, which is a flowchart of a method 1100 for attacker incident flow using MDM, in accordance with an embodiment of the present invention. Reference is also made to FIG. 5, which is a simplified diagram of a system 300 for attacker incident response using MDM, in accordance with an embodiment of the present invention.


At operation 1110 an attacker attempts to connect to a service via a protocol including inter alia HTTP, HTTPS and SSH, using deceptive credentials retrieved from a mobile device 210 as indicated by the circled 1 in FIG. 5. The attempt triggers an incident in trap server 230. At operation 1120, trap server 230 informs deception management server 220 that an incident occurred. At operation 1130, deception management server 220 instructs MDM device management server 260 to run forensics on the mobile device 210 that triggered the incident, as indicated by the circled 2 in FIG. 5. It is noted in this regard that each mobile device 210 has a unique ID, thus making it possible to identify the specific mobile device 210 from which the deceptive credentials originated. At operation 1140, MDM device management server 260 runs forensics on the specific mobile device 210, as indicated by the circled 3 in FIG. 5. At operation 1150, a forensics collector in the mobile device 210 sends forensic data to deception management server 230, as indicated by the circled 4 in FIG. 5.


Reference is made to FIG. 6, which is a simplified flowchart of a method for mobile application deployment which does not use an MDM device management server, in accordance with an embodiment of the present invention. Reference is also made to FIG. 7, which is a simplified diagram of a system for mobile application deployment which does not use an MDM device management server, in accordance with an embodiment of the present invention. In this regard it is noted that the MDM modules of FIGS. 3 and 5 are not present in FIG. 7.


At operation 1210, each mobile device loads a dedicated application from, inter alia from the Google Play Store or the Apple App Store, as indicated by the circled 1 in FIG. 7. The dedicated application installs an agent 300 in each mobile device. At operation 1220, each mobile device 210 runs the dedicated application using parameters provided by deception management server 220, as indicated by the circled 2 in FIG. 7. At operation 1230, each agent 300 communicates with deception management server 220 to register each mobile device 210 and its state; i.e., its snapshot, as indicated by the circled 3 in FIG. 7. At operation 1240, deception management server 220 sends to each agent 300 a list of deceptions to install in its mobile device 210, as indicated by the circled 4 in FIG. 7. At operation 1250, each agent 300 installs the relevant deception on its mobile device 210.


In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made to the specific exemplary embodiments without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A system for managing attacker incidents on a mobile device, comprising: a mobile device manager (MDM) receiving instructions to deploy deceptions on a mobile device used by an employee of an organization in conjunction with a network of the organization and, in response to the instructions, running a dedicated agent on the mobile device, wherein the dedicated agent is configured to register the mobile device and its current deceptions state, receive a list of deceptions to install in the mobile device, and install the deceptions in the received list in the mobile device;a trap server triggering an incident in response to an attacker attempting to use deceptive data that was installed in the mobile device by the dedicated agent, and sending a notification that an incident has occurred; anda deception management server sending instructions to said MDM to deploy deceptions on the mobile device, sending the list of deceptions to said MDM, registering the mobile device and its deceptions state, receiving the notification from said trap server that an incident has occurred, in response thereto instructing said MDM to run forensics on the mobile device, and receiving the forensics from the dedicated agent.
  • 2. The system of claim 1 wherein the deceptions installed by said MDM in the mobile device are planted in one or more of: applications installed in the mobile device, a local browser, e-mail and local files.
  • 3. The system of claim 1 wherein the deceptions installed by said MDM in the mobile device include one or more of deceptive network devices and deceptive users and user credentials.
  • 4. A method for managing attacker incidents on a mobile device, comprising: instructing, by a deception management server, a mobile device manager (MDM) to deploy deceptions on a mobile device used by an employee of an organization in conjunction with a network of the organization;in response to said instructing running, by the MDM, a dedicated agent on the mobile device;registering, by the dedicated agent, the mobile device and its current deceptions state with the deception management server;receiving, by the dedicated agent from the deception management server, a list of deceptions to install in the mobile device;installing, by the dedicated agent, the deceptions in the received list in the mobile device, wherein the received deceptions include data leading to a trap server;attempting, by an attacker, to use deceptive data installed in the mobile phone, to connect to a service;in response to said attempting, triggering an incident in the trap server;notifying, by the trap server, the deception management server, that an incident has occurred;further instructing the MDM, by the deception management server, to run forensics on the mobile device;in response to said further instructing, running by the MDM, forensics on the mobile device; andtransmitting forensic data, by a forensics collector in the dedicated agent, to the deception management server.
  • 5. The method of claim 4 wherein the deceptions installed by said MDM in the mobile device are planted in one or more of: applications installed in the mobile device, a local browser, e-mail and local files.
  • 6. The method of claim 4 wherein the deceptions installed by said MDM in the mobile device include one or more of deceptive network devices and deceptive users and user credentials.
  • 7. A method for managing attacker incidents on a mobile device, comprising: downloading, by a mobile device, a dedicated application;running by the mobile device, the dedicated application with parameters provided by a deception management server;registering, by the dedicated application, the mobile device and its current deceptions state with the deception management server;receiving, by the dedicated application from the deception management server, a list of deceptions to install in the mobile device;installing, by the dedicated agent, the deceptions in the received list in the mobile device;attempting, by an attacker, to use deceptive data in the mobile phone, to connect to a service;in response to said attempting, triggering an incident in a trap server;notifying, by the trap server, the dedicate application, that an incident has occurred;running by the dedicated application, forensics on the mobile device; andtransmitting forensic data, by a forensics collector in the dedicated application, to the deception management server.
US Referenced Citations (136)
Number Name Date Kind
6363489 Comay et al. Mar 2002 B1
6618709 Sneeringer Sep 2003 B1
7065657 Moran Jun 2006 B1
7089589 Chefalas et al. Aug 2006 B2
7093291 Bailey Aug 2006 B2
7516227 Cohen Apr 2009 B2
7574741 Aviani et al. Aug 2009 B2
7636944 Raikar Dec 2009 B2
7665134 Hernacki et al. Feb 2010 B1
7694339 Blake et al. Apr 2010 B2
7725937 Levy May 2010 B1
7752664 Satish et al. Jul 2010 B1
7945953 Salinas et al. May 2011 B1
8015284 Isenberg et al. Sep 2011 B1
8181249 Chow et al. May 2012 B2
8181250 Rafalovich et al. May 2012 B2
8250654 Kennedy et al. Aug 2012 B1
8375447 Amoroso et al. Feb 2013 B2
8474047 Adelstein Jun 2013 B2
8499348 Rubin Jul 2013 B1
8528091 Bowen et al. Sep 2013 B2
8549642 Lee Oct 2013 B2
8549643 Shou Oct 2013 B1
8719938 Chasko et al. May 2014 B2
8739281 Wang et al. May 2014 B2
8739284 Gardner May 2014 B1
8769684 Stolfo et al. Jul 2014 B2
8819825 Keromytis et al. Aug 2014 B2
8856928 Rivner et al. Oct 2014 B1
8881288 Levy et al. Nov 2014 B1
8925080 Hebert Dec 2014 B2
9009829 Stolfo et al. Apr 2015 B2
9015842 Troyansky Apr 2015 B2
9043905 Allen et al. May 2015 B1
9124622 Falkowitz et al. Sep 2015 B1
9152808 Ramalingam et al. Oct 2015 B1
9240976 Murchison Jan 2016 B1
9325728 Kennedy et al. Apr 2016 B1
9356942 Joffe May 2016 B1
9386030 Vashist et al. Jul 2016 B2
9495188 Ettema et al. Nov 2016 B1
20020066034 Schlossberg et al. May 2002 A1
20020194489 Almogy et al. Dec 2002 A1
20030084349 Friedrichs et al. May 2003 A1
20030110396 Lewis et al. Jun 2003 A1
20030145224 Bailey Jul 2003 A1
20040088581 Brawn et al. May 2004 A1
20040128543 Blake et al. Jul 2004 A1
20040148521 Cohen et al. Jul 2004 A1
20040160903 Gai et al. Aug 2004 A1
20040172557 Nakae et al. Sep 2004 A1
20040255155 Stading Dec 2004 A1
20050114711 Hesselink et al. May 2005 A1
20050132206 Palliyil et al. Jun 2005 A1
20050149480 Deshpande Jul 2005 A1
20050235360 Pearson Oct 2005 A1
20060010493 Piesco et al. Jan 2006 A1
20060041761 Neumann et al. Feb 2006 A1
20060069697 Shraim et al. Mar 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060161982 Chari et al. Jul 2006 A1
20060224677 Ishikawa et al. Oct 2006 A1
20060242701 Black et al. Oct 2006 A1
20070028301 Shull et al. Feb 2007 A1
20070039038 Goodman et al. Feb 2007 A1
20070157315 Moran Jul 2007 A1
20070192853 Shraim et al. Aug 2007 A1
20070226796 Gilbert et al. Sep 2007 A1
20070299777 Shraim et al. Dec 2007 A1
20080016570 Capalik Jan 2008 A1
20080086773 Tuvell et al. Apr 2008 A1
20080155693 Mikan et al. Jun 2008 A1
20090019547 Palliyil et al. Jan 2009 A1
20090144827 Peinado et al. Jun 2009 A1
20090222920 Chow et al. Sep 2009 A1
20090241173 Troyansky Sep 2009 A1
20090241191 Keromytis et al. Sep 2009 A1
20090241196 Troyansky et al. Sep 2009 A1
20090328216 Rafalovich et al. Dec 2009 A1
20100058456 Jajodia et al. Mar 2010 A1
20100071051 Choyi et al. Mar 2010 A1
20100077483 Stolfo et al. Mar 2010 A1
20100082513 Liu Apr 2010 A1
20100251369 Grant Sep 2010 A1
20100269175 Stolfo et al. Oct 2010 A1
20110016527 Yanovsky et al. Jan 2011 A1
20110154494 Sundaram et al. Jun 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110214182 Adams et al. Sep 2011 A1
20110258705 Vestergaard et al. Oct 2011 A1
20110302653 Frantz et al. Dec 2011 A1
20110307705 Fielder Dec 2011 A1
20120005756 Hoefelmeyer et al. Jan 2012 A1
20120084866 Stolfo Apr 2012 A1
20120167208 Buford et al. Jun 2012 A1
20120210388 Kolishchak Aug 2012 A1
20120246724 Sheymov et al. Sep 2012 A1
20120311703 Yanovsky et al. Dec 2012 A1
20130061055 Schibuk Mar 2013 A1
20130086691 Fielder Apr 2013 A1
20130212644 Hughes et al. Aug 2013 A1
20130227697 Zandani Aug 2013 A1
20130263226 Sudia Oct 2013 A1
20140082730 Vashist et al. Mar 2014 A1
20140101724 Wick et al. Apr 2014 A1
20140115706 Silva et al. Apr 2014 A1
20140201836 Amsler Jul 2014 A1
20140208401 Balakrishnan et al. Jul 2014 A1
20140237599 Gertner et al. Aug 2014 A1
20140259095 Bryant Sep 2014 A1
20140298469 Marion et al. Oct 2014 A1
20140310770 Mahaffey Oct 2014 A1
20140337978 Keromytis et al. Nov 2014 A1
20140359708 Schwartz Dec 2014 A1
20150007326 Mooring et al. Jan 2015 A1
20150013006 Shulman et al. Jan 2015 A1
20150047032 Hannis et al. Feb 2015 A1
20150074750 Pearcy et al. Mar 2015 A1
20150074811 Capalik Mar 2015 A1
20150096048 Zhang et al. Apr 2015 A1
20150128246 Feghali et al. May 2015 A1
20150156211 Chi Tin et al. Jun 2015 A1
20150264062 Hagiwara et al. Sep 2015 A1
20150326587 Vissamsetty et al. Nov 2015 A1
20150326598 Vasseur et al. Nov 2015 A1
20160019395 Ramalingam et al. Jan 2016 A1
20160080414 Kolton et al. Mar 2016 A1
20160212167 Dotan et al. Jul 2016 A1
20160261608 Hu et al. Sep 2016 A1
20160300227 Subhedar et al. Oct 2016 A1
20160308895 Kotler et al. Oct 2016 A1
20160323316 Kolton et al. Nov 2016 A1
20160373447 Akiyama et al. Dec 2016 A1
20170032130 Joseph Durairaj et al. Feb 2017 A1
20170134423 Sysman May 2017 A1
20180309787 Evron Oct 2018 A1
Foreign Referenced Citations (3)
Number Date Country
2006131124 Dec 2006 WO
2015001969 Jan 2015 WO
2015047555 Apr 2015 WO
Non-Patent Literature Citations (39)
Entry
Wikipedia, Active Directory, https://en.wikipedia.org/wiki/Active_Directory, Jun. 24, 2015.
Wikpedia, Apple Filing Protocol, https://en.wikipedia.org/wiki/Apple_Filing_Protocol, Aug. 14, 2015.
Wikipedia, DMZ (computing), https://en.wikipedia.org/wiki/DMZ_(computing), Jun. 17, 2015.
Wikipedia, Domain Name System, https://en.wikipedia.org/wiki/Domain_Name_System, Jul. 14, 2015.
Wikipedia, Firewall (computing), https://en.wikipedia.org/wiki/Firewall_(computing), Jul. 14, 2015.
Wikipedia, Honeypot (computing), https://en.wikipedia.org/wiki/Honeypot_(computing), Jun. 21, 2015.
Wikipedia, Kerberos (protocol), https://en.wikipedia.org/wiki/Kerberos_(protocol), Jun. 30, 2015.
Wikipedia, Lightweight Directory Access Protocol, https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol, Aug. 15, 2015.
Wikipedia, LM hash, https://en.wikipedia.org/wiki/LM_hash, Jun. 8, 2015.
Wikipedia, RADIUS, https://en.wikipedia.org/wiki/RADIUS, Aug. 16, 2015.
Wikipedia, Rainbow table, https://en.wikipedia.org/wiki/Rainbow_table, Jul. 14, 2015.
Wikipedia, Secure Shell, https://en.wikipedia.org/wiki/Honeypot_(computing), Jul. 12, 2015.
Wikipedia, Security Information and Event Management, https://en.wikipedia.org/wiki/Security_information_and_event_management, Jun. 23, 2015.
Wikipedia, Tarpit (networking), https://en.wikipedia.org/wiki/Tarpit_(networking), Jul. 3, 2014.
Mishra et al., Intrusion detection in wireless ad hoc networks, IEEE Wireless Communications, Feb. 2004, pp. 48-60.
Zhang et al., Intrusion detection techniques for mobile wireless networks, Journal Wireless Networks vol. 9(5), Sep. 2003, pp. 545-556, Kluwer Academic Publishers, the Netherlands.
U.S. Appl. No. 15/004,904, Office Action, dated May 27, 2016, 16 pages.
U.S. Appl. No. 15/004,904, Notice of Allowance, dated Oct. 19, 2016, 13 pages.
U.S. Appl. No. 15/175,048, Notice of Allowance, dated Oct. 13, 2016, 17 pages.
U.S. Appl. No. 15/175,050, Office Action, dated Aug. 19, 2016, 34 pages.
U.S. Appl. No. 15/175,050, Office Action, dated Nov. 30, 2016, 31 pages.
U.S. Appl. No. 15/175,050, Notice of Allowance, dated Mar. 21, 2017, 13 pages.
U.S. Appl. No. 15/175,052, Office Action, dated Feb. 13, 2017, 19 pages.
U.S. Appl. No. 15/175,052, Office Action, dated Jun. 6, 2017, 19 pages.
U.S. Appl. No. 15/175,054, Notice of Allowance, dated Feb. 21, 2017, 13 pages.
U.S. Appl. No. 15/403,194, Office Action, dated Feb. 28, 2017, 13 pages.
U.S. Appl. No. 15/403,194, Notice of Allowance, dated Jun. 16, 2017, 9 pages.
U.S. Appl. No. 15/406,731, Notice of Allowance, dated Apr. 20, 2017.
PCT Application No. PCT/IL16/50103, International Search Report and Written Opinion, dated May 26, 2016, 9 pages.
PCT Application No. PCT/IL16/50579, International Search Report and Written Opinion, dated Sep. 30, 2016, 7 pages.
PCT Application No. PCT/IL16/50581, International Search Report and Written Opinion, dated Nov. 29, 2016, 10 pages.
PCT Application No. PCT/IL16/50582, International Search Report and Written Opinion, dated Nov. 16, 2016, 11 pages.
PCT Application No. PCT/IL16/50583, International Search Report and Written Opinion, dated Dec. 8, 2016, 10 pages.
U.S. Appl. No. 15/175,052, Notice of Allowance, dated Jan. 2, 2018, 9 pages.
U.S. Appl. No. 15/679,180, Notice of Allowance, dated Mar. 26, 2018, 14 pages.
U.S. Appl. No. 15/722,351, Office Action, dated Mar. 9, 2018, 17 pages.
U.S. Appl. No. 15/722,351, Notice of Allowance, dated Aug. 8, 2018, 8 pages.
U.S. Appl. No. 15/682,577, Notice of Allowance, dated Jun. 14, 2018, 15 pages.
U.S. Appl. No. 15/641,817, Office Action, dated Jul. 26, 2018, 29 pages.