The present disclosure relates generally to computer networking, and more particularly to multicast communications.
Many businesses with large computer networks opt to use third-party provider networks rather than create a private network spanning large distances at potentially prohibitive cost. These third-party provider networks should be able to provide the ability for multicast transmissions. In one approach, a business may utilize a third-party provider network using Multi-Protocol Label Switching (MPLS). Multicast transmissions may be handled by the creation and use of a Multi-Point to Multi-Point (MP2MP) MPLS tree.
An MP2MP MPLS tree is a set of network nodes (e.g., computers, routers, hubs, switches), with one root node, and one or more child nodes connected either directly or indirectly to the root node. Every child node is either directly connected to the root node or to at least one other child node to enable communications with the root node. MPLS Label-Switched Paths (LSPs) are set up to allow messages to be multicast to all nodes of the MP2MP MPLS tree. In such a tree, MPLS routers within the third-party provider network replicate multicast transmissions based on a set of LSPs through the network. Each MPLS router sends multicast transmissions up the tree towards a root node as well as down the tree to nodes downstream from the router. Each MP2MP MPLS tree has one root node. A similar approach is described in pending U.S. Patent Application Publication No. 2006/0221867 (Wijnands, et al.), entitled “Building Multipoint-to-Multipoint Label Switch Paths.”
Objects, features and advantages will be apparent from the following description of particular embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of various embodiments of the invention.
In one example embodiment, a first root node of a first MP2MP MPLS tree, advertises to a second root node of a second MP2MP MPLS tree a first label for the second root node to use to send multicast traffic to the first MP2MP MPLS tree. The first root node receives a second label from the second root node for the first root node to use to send multicast traffic to the second MP2MP MPLS tree. Communications are carried out between the first MP2MP MPLS tree and the second MP2MP MPLS tree using the first label and the second label.
In another example embodiment, an apparatus includes (a) a first network interface, the first network interface connecting to a child node, (b) a second network interface, the second network interface connecting to a peer node over a directed Label Distribution Protocol (LDP) session, (c) memory, the memory including a Forwarding Information Base, and (d) a controller. The controller is configured to (i) serve as a root node for a first MP2MP MPLS tree, (ii) advertise to the peer node a first MPLS label, the first MPLS label identifying the first MP2MP MPLS tree, and (iii) receive from the peer node a second MPLS label identifying a second MP2MP MPLS tree, the peer node serving as a root node for the second MP2MP MPLS tree.
If a business wishes to spread its network across the third-party provider networks of two or more service providers (e.g., if the business uses Verizon service in North America, but MCI service in Europe), then it is not obvious where to place the root node for an MP2MP MPLS tree for multicast communications. Because many service providers wish to maintain control of their own root nodes, it may not be possible to place a single root node. Thus, in one embodiment, a root node may be placed in each service provider's domain. Each root node maintains its own separate MP2MP MPLS tree. These multiple MP2MP MPLS trees are then stitched together to form a super-MP2MP MPLS tree encompassing the MP2MP MPLS trees of all service providers.
It should be noted that the customer edge router and the provider edge router functionality can be provided by a single router. Further, a network element 44 can also serve as an edge router. The provider edge routers 42 provide access to the service provider's network 32 which can contain data transmission lines, network router elements, and OSI Level 2 network devices to aid in the transmission of data from one provider edge router to another provider edge router. Transmission of data between provider edge routers may take place via core LSRs.
A directed Label Distribution Protocol (LDP) session 70 interconnects the two root nodes 34, 52. The directed LDP session 70 may be an indirect connection. For example, one or more computers, routers, switches, etc. may interpose between the first root node 34 and the second root node 52.
Network interfaces 102, 106, 120, 124 may be, for example, Asynchronous Transfer Mode (ATM) interfaces. They may also be any other type of network interface such as Ethernet or TokenRing.
In one embodiment, the MP2MP MPLS trees are each operated for particular client companies. For example, MP2MP MPLS tree 150 may be operated by Verizon on behalf of the American branch of Company A, MP2MP MPLS tree 152 may be operated by Verizon on behalf of the American branch of Company B, and MP2MP MPLS tree 154 may be operated by Verizon on behalf of the American branch of Company C, while MP2MP MPLS tree 156 may be operated by MCI on behalf of the European branch of Company A, and MP2MP MPLS tree 158 may be operated by MCI on behalf of the European branch of Company C. Thus, company A has stitched MP2MP MPLS tree 160, which includes MP2MP MPLS trees 150 and 156, while company C has stitched MP2MP MPLS tree 162, which includes MP2MP MPLS trees 154 and 158. Company B's network does not extend beyond the Verizon network, and thus Company B does not require a stitched MP2MP MPLS tree.
But, packets entering first root node 34 over network interface 102(a) having label L30 are intended for MP2MP MPLS tree 152. Therefore these packets are sent over network interface 102(b) with label L31 and over network interface 102(c) with label L32.
Packets entering first root node 34 over network interface 102(a) having label L50 are intended for MP2MP MPLS tree 154 and linked MP2MP MPLS tree 158. Therefore these packets are sent over network interface 102(c) with label L51 and across directed LDP session 170(b) through network interface 106 with label L52.
Additional details of the forwarding are omitted from this description, but are provided in
In step 220, second root node 52 advertises to first root node 34 a label L4 for the first root node 34 to use in sending traffic intended for MP2MP MPLS tree 156. Second root node 52 sends the label L4 across the directed LDP session 170(a) to the first root node 34 using LDP. This label L4 represents a forwarding equivalency class for all packets directed towards MP2MP MPLS tree 156. First root node 34 places this label L4 into its local FIB 114, indicating that all traffic on stitched MP2MP MPLS tree 160 is to be forwarded over directed LDP session 170(a) with label L4.
In step 230, multicast communications are carried out between MP2MP MPLS tree 150 and MP2MP MPLS tree 156 using the exchanged labels L4, L8. For example, when first root node receives a multicast packet over interface 102(a) having label L1, that means that the packet is to be multicast to all nodes within stitched MP2MP MPLS tree 160. Thus, first root node 34 replicates the multicast packet and sends it to all child nodes of MP2MP MPLS tree 150 as in a standard MP2MP MPLS tree setup. First root node also sends a replicated multicast packet across interface 106 to one or more peer nodes. A peer node is a root node in a second provider network, allowing MP2MP MPLS trees to be stitched together across provider networks. As depicted in the figures, the peer node is second root node 52 so that the packet may be multicast to members of stitched MP2MP MPLS tree 160 on second provider network 50 (i.e., to all members of MP2MP MPLS tree 156). This is accomplished by referring to FIB 114, see
The arrows in
First root node also transmits the packet across directed LDP session 70 to second root node 52 of second MP2MP MPLS tree 54, where second root node 52 transmits the packet to the entire second MP2MP MPLS tree 54 as in a standard MP2MP MPLS tree.
While various embodiments of the invention have been particularly shown and described, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6466985 | Goyal et al. | Oct 2002 | B1 |
6661789 | Cankaya et al. | Dec 2003 | B1 |
7039687 | Jamieson et al. | May 2006 | B1 |
7489695 | Ayyangar | Feb 2009 | B1 |
7630322 | Mohr | Dec 2009 | B2 |
20040028064 | Cetin et al. | Feb 2004 | A1 |
20040143672 | Padmanabham et al. | Jul 2004 | A1 |
20040205239 | Doshi et al. | Oct 2004 | A1 |
20050027782 | Jalan et al. | Feb 2005 | A1 |
20060002370 | Rabie et al. | Jan 2006 | A1 |
20060002408 | Ould-Brahim | Jan 2006 | A1 |
20060198321 | Nadeau et al. | Sep 2006 | A1 |
20060221867 | Wijnands et al. | Oct 2006 | A1 |
20060221950 | Heer | Oct 2006 | A1 |
20060221958 | Wijnands et al. | Oct 2006 | A1 |
20070091827 | Boers et al. | Apr 2007 | A1 |
20070104194 | Wijnands et al. | May 2007 | A1 |
20070140107 | Eckert et al. | Jun 2007 | A1 |
20070174483 | Raj et al. | Jul 2007 | A1 |
20070177525 | Wijnands et al. | Aug 2007 | A1 |
20070177527 | Bragg et al. | Aug 2007 | A1 |
20070217420 | Raj et al. | Sep 2007 | A1 |
20070253416 | Raj | Nov 2007 | A1 |
20070280276 | Sadler et al. | Dec 2007 | A1 |
20080080507 | Swallow et al. | Apr 2008 | A1 |
20080123650 | Bhaskar | May 2008 | A1 |
20080159311 | Martinotti et al. | Jul 2008 | A1 |
20080253367 | Ould-Brahim | Oct 2008 | A1 |
20090086644 | Kompella et al. | Apr 2009 | A1 |
Entry |
---|
Multicast Extentions for Ldp. |
MPLS Configuration on Cisco IOS Software, Chapter 11, Introduction to Layer 2 VPNs. |
Number | Date | Country | |
---|---|---|---|
20090161583 A1 | Jun 2009 | US |