Credit card embossing system

Information

  • Patent Grant
  • 4784059
  • Patent Number
    4,784,059
  • Date Filed
    Friday, April 24, 1987
    37 years ago
  • Date Issued
    Tuesday, November 15, 1988
    36 years ago
Abstract
An embossing system is disclosed for embossing cards with characters of at least two pitches. A number of embossers equal to the number of lines of characters to be embossed on the card are positioned in line. Each embosser is dedicated to the embossing of a particular line of characters with a particular pitch. A common transport belt conveys the cards from an input hopper past the embossing stations of each of the line embossers to a wait station. During embossing, the transport belt is moved from the current longitudinal position to the longitudinal position where the closest next character(s) are to be embossed by any one of the embossers. The embossed cards are conveyed from the wait station to a topper which applies topping to the embossed characters.
Description
Claims
  • 1. An embossing system for embossing blank cards with a plurality of vertically separated horizontally disposed lines on which characters are to be embossed comprising:
  • (a) card supply means for feeding blank cards to be embossed;
  • (b) card transporting means for receiving blanks cards to be embossed from the card supply means and for transporting the cards received from the card supply means along a single continuous transport path to a plurality of separate embossing positions and to a position where embossing is completed;
  • (c) a plurality of card embossing means each disposed at a separate one of the embossing positions disposed along the transport path, each card embossing means being vertically positioned with respect to the transport path to emboss a different one of the horizontally disposed lines of characters on each card; and
  • (d) control means coupled to the card supply means, the card transporting means and the plurality of card embossing means for controlling the card supply means to feed blank cards to the card transporting means, the transporting of the cards received by the card transporting means to the separate embossing positions along the transporting path and the position where embossing is completed and the plurality of card embossing means to emboss the plurality of lines on each blank card.
  • 2. An embossing system in accordance with claim 1 wherein the control means compares a current longitudinal position of the cards being embossed by each of the card embossing means determined with respect to a datum point of the card transporting means with a longitudinal position of a next character to be embossed on the cards being embossed by each of the card embossing means on each of the horizontally disposed lines to identify a longitudinal position of one or more closest next characters to be embossed on any of the horizontally disposed lines which are closest to the current longitudinal position, causes the card transporting means to move to the longitudinal position of the closest one or more next characters to be embossed, and activates the one or more embossing means which are to emboss the closest one or more next character to emboss the one or more closest next characters.
  • 3. An embossing system in accordance with claim 2 comprising:
  • (a) a queue of buffers comprising a plurality of embosser buffers with each embosser buffer being associated with a separate card embossing means, each embosser buffer having storage locations for storing a data record comprised of all of the characters of the vertically disposed lines to be embossed for a single card, each data record including a field of characters for each line of characters to be embossed on the card with each field to be embossed by a single associated card embossing means;
  • (b) means for shifting the data records sequentially from an input, through the queue of embosser buffers in the order in which the embossers are located along the transport path, to an output; and
  • (c) means coupled to each of the embossing buffers for sending a command to emboss the closest next character to its associated card embossing means, each card embossing means receiving commands to emboss only characters in the field of characters associated with that card embossing means.
  • 4. An embossing system in accordance with claim 2 wherein the card transporting means is movable in increments equal to a unit length divided by the product of pitches of characters being embossed on the plurality of vertically separated horizontally disposed lines.
  • 5. An embossing system in accordance with claim 4 wherein the closest next character to be embossed is displaced from the current longitudinal position of the card transporting means by a distance equal to an integer times a unit length divided by the product of the pitches being used for embossing.
  • 6. An embossing system in accordance with claim 3 wherein the controller further comprises:
  • (a) means for comparing the current longitudinal position of the blank cards being embossed with the data records stored in each embosser buffer to identify the position of the closest next character within the embosser buffer of the field of characters being embossed from each data record;
  • (b) each embosser buffer storing the position along the transport path of the next character to be embossed by its associated card embossing means which is determined by the means for comparing; and
  • (c) means for comparing the current longitudinal position of the cards with the longitudinal position stored in each embosser buffer to identify the one or more closest next characters.
  • 7. An embossing system in accordance with claim 1 wherein:
  • (a) each card embossing means comprises a pair of rotatable wheels mounted on a common shaft which have a space through which a blank card to be embossed is moved by the card transporting means, one of the wheels being a punch wheel carrying male embossing elements of each of the characters of the character set embossed by the punch wheel which are movable from a retracted position to an embossing position and the other wheel being a die wheel carrying female embossing elements of each of the characters of the character set embossed by the die wheel which are movable from a retracted position to an embossing position, the pair of wheels having embossing elements of each of the characters to be embossed which are disposed at different circumferential positions around the wheels and a space without embossing elements at a circumferential position which is separate from the circumferential positions of characters which is the circumferential position of the wheels when a space is to be left on a blank card;
  • (b) a shaft encoding means for providing a signal encoding the circumferential position cf the wheels with respect to a reference position; and
  • (c) means for rotating the wheels to any one of the circumferential positions in response to a command from the control means to position the wheels for embossing a particular character which is a closest next character to be embossed by the embossing means or to leave a space.
  • 8. An embossing system in accordance with claim 7 wherein each of the card embossing means further comprises:
  • (a) first and second rams which are movable from a first position to a second position, the first position of the first and second rams not causing the embossing elements of the wheels to emboss a character, the second position of the first ram extending to a position to contact one of the male embossing elements to cause the embossing of a character if the circumferential position having the space is not aligned therewith and the second position of the second ram extending to a position to contact one of the female embossing elements to cause the embossing of a character if the circumferential position having the space is not aligned therewith, the second position of the rams causing a single male-female pair of embossing elements of a character to move toward each other to emboss a blank card disposed therebetween; and
  • (b) means for continuously causing the rams to move from the first position to the second position and back to the first position independent of characters being embossed.
  • 9. An embossing system in accordance with claim 8 wherein the means to cause the rams to continuously move comprises:
  • (a) first and second pivotably mounted arms, each arm having first and second ends and a pivot point between the first and second ends, the first end of the first arm engaging an end of the first ram remote from an end of the first ram which engages a male element of the punch wheel and the first end of the second arm engaging an end of the second ram remote from an end of the second ram which engages a female element of the die wheel;
  • (b) third and fourth pivotably mounted arms each having a fixed pivot point, the third and fourth arms each having a cam follower mounted at a point offset from the fixed pivot point;
  • (c) a rotatably driven cam having an integer number of pairs of diametrically spaced lobes which cyclically move the cam followers of the third and fourth arms, the cam having a vertical axis of rotation which is orthogonal to a direction of travel of the cards held in the card transporting means;
  • (d) the third arm having means for engaging the second end of the first arm when one of the diametrically spaced lobes is engaging the cam follower of the third arm to cause the first ram to move from the first position toward the second position;
  • (e) the fourth arm having means for engaging the second end of the second arm when one of the diametrically spaced lobes is engaging the cam followers of the fourth arm to cause the second ram to move from the first position toward the second position; and
  • (f) means for rotating the cam.
  • 10. An embossing system in accordance with claim 9 wherein:
  • (a) each cam follower is a rotatable wheel with a peripheral surface of the wheel being in rolling contact with the cam at least when the lobes are engaged; and wherein
  • (b) the means of the third and fourth arms which respectively engages the second ends of the first and second arms is a cylindrical pin with the cylindrical surface of the pin engaging the second ends.
  • 11. An embossing system in accordance with claim 9 wherein each embossing means further comprises:
  • means for adjusting the vertical position of the horizontally disposed line which is embossed on a card being transported by the card transporting means.
  • 12. An embossing system in accordance with claim 11 wherein the means for adjusting comprises:
  • (a) a vertically extending post;
  • (b) a support base carrying the card embossing means; and
  • (c) means for clamping the support base to the vertically extending post to establish the vertical position of embossing of a line to be embossed by the embossing means carried by the support base on cards held by the transporting means.
  • 13. An embossing system in accordance with claim 11 further comprising:
  • means for rotating each of the cams synchronously with each other to maintain a constant rotational velocity and phase between each of the cams.
  • 14. An embossing system in accordance with claim 13 wherein the means for rotating each of the cams synchronously comprises:
  • (a) a wheel coupled to the cam to rotate the cam when the wheel is rotated with the wheel having teeth spaced uniformly around a peripheral surface of the wheel; and
  • (b) each of the wheels being driven by a single belt having projections which engage the teeth of the wheels, the belt being of a width which completely engages the peripheral surface of each wheel of the plurality of embossing means regardless of the vertical position of the horizontal lines being embossed.
  • 15. An embossing system in accordance with claim 8 wherein each card embossing means further comprises:
  • (a) a rotatably driven activation means for causing the rams to move from the first position to the second position; and
  • (b) means for rotating the rotatably driven activation means.
  • 16. An embossing system in accordance with claim 15 further comprising:
  • (a) means for rotating each of the means for rotating synchronously with each other to maintain a constant rotational velocity and phase between each of the rotatably driven activation means; and
  • (b) each of the activation means including a cam having an integer number of pairs of diametrically spaced lobes, first and second cam following means respectively spaced to simultaneously contact a pair of diametrically spaced lobes, the first cam following means causing the first ram to move from its first position to its second position when the first follower contacts one of the lobes of the cam and the second cam follower causing the second ram to move from its first position to its second position when the second following means contacts a second lobe.
  • 17. An embossing system in accordance with claim 1 wherein:
  • (a) each of the plurality of card embossing means has a vertically disposed drive shaft which supplies power for embossing a card; and further comprising:
  • (b) a single power source for synchronously driving each of the vertically disposed drive shafts.
  • 18. An embossing system in accordance with claim 17 wherein the single power source has at least one vertically disposed drive shaft which coupled to each of the vertically disposed drive shafts of the embossing means by a driving means including a single continuous driving element.
  • 19. An embossing system in accordance with claim 17 wherein each of the card embossing means comprises:
  • (a) a wheel coupled to the vertically disposed drive shaft of each embossing means to transmit torque to the drive shaft of each embossing means which is driven by the single power source by a means for transmitting power from the single power source; and
  • (b ) means for adjusting vertical height of embossment of the horizontally disposed line to be embossed.
  • 20. An embossing system in accordance with claim 17 wherein;
  • at least one line is embossed with characters of a first pitch and at least one line is embossed with characters of a second pitch with at least one of the card embossing means embossing a character set of a first pitch on one of the horizontally disposed lines and at least another of the card embossing means embossing a character set of a second pitch on another of the horizontally disposed lines.
  • 21. An embossing system in accordance with claim 19 wherein:
  • (a) the wheel has a plurality of uniformly spaced teeth;
  • (b) each of the wheels are driven by a single belt having projections which engage the teeth of the belt, the belt being of a width which at least partially engages the peripheral surface of each wheel of the plurality of embossing means regardless of the vertical height of embossment of a horizontal line being embossed;
  • (c) each vertically disposed drive shaft has a cam attached thereto for driving the card embossing means associated therewith, each cam having an integer number of lobes for activating the card embossing means when the lobe rotates to a predetermined rotational position; and
  • (d) at least one card embossing means embossing characters with a first pitch with each card embossing means embossing characters of the first pitch having its cam driven with a first predetermined phase and at least one card embossing means embossing characters with the second pitch with each card embossing means embossing characters of the second pitch having its cam driven with a second predetermined phase which is displaced a fixed number of degrees from the first phase.
  • 22. An embossing system in accordance with claim 1 wherein:
  • (a) at least one line is embossed with characters of a first pitch and at least one line is embossed with characters of a second pitch with at least one of the card embossing means embossing a character set of a first pitch on one of the horizontally disposed lines and at least another of the card embossing means embossing a character set of a second pitch on another of the horizontally disposed lines; and
  • (b) the control means controls the sending of commands, to emboss one or more characters of a first pitch or to leave a space of the first pitch and to emboss one or more characters of a second pitch or to leave a space of the second pitch, to the respective card embossing means for embossing the characters in a timed relationship with respect to a control signal having a cycle comprised of a high and a low level, commands for embossing characters of the first pitch or to leave a space of the first pitch being sent and embossed during intervals when the control signal is high and commands for embossing characters of the second pitch or to leave a space of the second pitch being sent and embossed during intervals when the control signal is low.
  • 23. An embossing system in accordance with claim 22 wherein commands to emboss a character of either pitch or to leave a space of either pitch are sent during a first cycle of the control signal and the embossing of the character which was commanded to be embossed during the first cycle is embossed during a second cycle of the control signal.
  • 24. An embossing system in accordance with claim 23 further comprising means for generating a second control signal which is generated synchronously with each level of the first signal, the second signal being comprised of high and low levels, the card transporting means being moved from the current position toward the longitudinal position of the one or more next closest characters during the first level of the second control signal and the embossing of the next one or more next closest characters being embossed during intervals when the second control signal is at the second level.
  • 25. An embossing system in accordance with claim 24 wherein:
  • (a) each card embossing means has a continuously driven activation means for causing the embossing of a character during the second level of the second control signal;
  • (b) each of the activation means is driven synchronously with each other by a single rotary power source; and further comprising
  • (c) means for generating the first and second control signals which is driven synchronously with the activation means of the card embossing means.
  • 26. An embossing system in accordance with claim 25 wherein the means for generating the first and second control signals is a disk attached to one of the activation means having two concentric rings each having alternating light and dark sectors and a sensor means for respectively sensing a change in light reflected from the sectors.
  • 27. In an embossing system for embossing blank cards with a plurality horizontally disposed lines on which characters are to be embossed, the improvement comprising:
  • (a) card transporting means for transporting blank cards to be embossed along a transport path to a plurality of separate embossing positions;
  • (b) a plurality of card embossing means each disposed at a separate one of the embossing positions along the transport path, each card embossing means embossing a different one of the horizontally disposed lines of characters on each card; and
  • (c) control means, coupled to the card transporting means and to the plurality of card embossing means, for controlling the transporting of the card received by the card transporting means to the separate embossing positions along the transporting path, the plurality of card embossing means embossing the plurality of lines on each blank card, and comparing a current longitudinal position of the cards being embossed by each of the card embossing means determined with respect to a reference point with a longitudinal position of a next character to be embossed on the cards being embossed by each of the card embossing means on each of the horizontally disposed lines to identify a longitudinal position of one or more closest next characters to be embossed on any of the horizontally disposed lines which are closest to the current longitudinal position, moving the card transporting means to the longitudinal position of the closest one or more next characters to be embossed, and activating the one or more embossers which are to emboss the closest one or more next characters to emboss the one or more closest next characters.
BACKGROUND OF THE INVENTION

This is a continuation application of parent U.S. application Ser. No. 820,705, filed Jan. 21, 1986 now U.S. Pat. No. 4,686,898. A Microfiche Appendix containing a source code listing of control programs for the master controller, embosser processors and hopper/topper processor of the present invention containing 2 microfiche having a total of 153 frames is attached hereto. The Microfiche Appendix contains subject matter which is copyrighted. A limited license is granted to anyone who requires a copy of the program disclosed therein for purposes of understanding or analyzing the present invention, but no license is granted to make a copy for any other purpose, including the loading of a processing device with code in any form or language. 1. Field of the Invention The invention relates to machines for embossing cards with alphanumerical text of the type used for credit cards, promotional cards and the like. 2. Description of the Prior Art High speed card embossing systems are in wide spread use today which emboss hundreds of millions of cards per year. While prior art card embossing machines are capable of performing embossing at high speed with high reliability, these machines nevertheless suffer from several disadvantages. Many prior art commercially available embossers are high in price, sizeable, have a relatively high energy consumption because of the mass of the driven components and are complex because of requirements to emboss cards with different formats with multiple pitch characters. U.S. Pat. No. 4,180,338, which is typical of prior art card embossers, discloses an embossing system which uses a single embossing wheel to emboss alpha numerical text on a plurality of vertically separated horizontally extending lines on a single card. The vertically separated horizontally extending lines are embossed by the translation of a single carriage holding a card to be embossed in orthogonal directions to position on the card with respect to the embossing wheel at those positions which characters are to be embossed. To emboss each character, the card is translated to the correct embossing position between the punch and die wheels prior to the activation of an activating mechanism for the chosen punch and die. Many commercially available embossing machines use single orthogonally movable carriage in cooperation with a single embossing wheel having characters of both a 7-pitch size (7 characters per inch) and a 10-pitch size (10 characters per inch) to emboss cards. The translation of the carriage in orthogonal directions and the activation of the single punch and die pairs of the embossing wheels require sophisticated electrical-mechanical control. U.S. Pat. No. 4,378,733 discloses an embosser for credit cards which is powered by a horizontally disposed drive shaft and the height of the embossed characters is controlled by adjustment of the location of interposers located between pairs of punch and die character elements and reciprocated arms which power the embossing operation. U.S. Pat. No. 4,519,600 discloses a credit card embossing system having transport which picks up a single card from an input hopper, moves the card past an embossing station and releases the card after embossing of the card is complete. The transport has a pair of cam actuated jaws which grip the card during transport through the embossing station. U.S. Pat. No. 3,820,455 discloses an embossing system having separate embossing units for respectively embossing OCR characters and two or more lines of A/N (alphanumerical) characters. The separate embossing units each have a separate transport track which conveys the cards past the embosser. A feeder mechanism transfers the cards between successive tracks. The transport track for conveying cards to be embossed with OCR characters is advanced at a different rate of speed than the transport track which conveys cards to be embossed with A/N characters. U.S. Pat. Nos. 3,638,563, 3,861,299 and Re. No. 27,809 disclose a credit card embossing system having separate embossing units for embossing each line of characters on a credit card with lines of characters having at least two pitches. Different transport tracks drive the cards through the separate embossing units. The transport track for conveying cards to be embossed with OCR characters is advanced at a different rate of speed than the transport track which conveys cards to be embossed with A/N characters. The Model 15000 embossing machine which is manufactured by Data Card Corporation uses a plurality of separate embossing units which each emboss a separate one of the vertically separated horizontally extending lines found on a conventional credit card or promotional card. The individual embossing units are dedicated to embossing characters of a single pitch which may be either 7 or 10 pitch size. A separate card transporting belt is provided with each embosser to move the card past the embosser with the card being transferred between the separate belts in order to emboss all of the lines of characters on the card which deleteriously affects throughput. The individual embossing units have a mechanism which continuously activates selected punch and dies positioned at the circumferential position of the embossing wheel where embossing takes place without interposers of the type used in the embossing wheel of U.S. Pat. No. 4,180,338. When a position on the horizontal line being embossed does not have a character to be embossed, the embossing wheel is rotated to circumferential position which does not have a punch and die pair so that the mechanism which continuously activates the pairs of punch and die wheels does not have to be stopped. This embosser does not synchronously drive the individual embossing wheels from a common power source. The axis of the power drive for the embossers is horizontally disposed which prevents the individual embossers from being closely spaced horizontally in line with respect to each other which deleteriously affects the throughput of the system because of the time required to transport cards between successive embossing stations. Commercial embossers for credit cards use a topper to apply a colored plastic coating to the top of the embossed characters for highlighting. These toppers heat fuse a layer of colored plastic borne on a foil to the embossed characters by the activation of a ram which drives a heated platen against the back surface of the foil to drive the front surface bearing the plastic coating into contact with the embossed characters. While these toppers produce a commercially acceptable topping, they have deficiencies. In the first place, the heated platen can cause the grease in the lubrication points of a ram which drives the platen to degrade because of the proximity of the platen to the ram which can necessitate shutdown for service. Moreover, the dissipation of heat from the platen to other mechanical parts can cause failure of these parts. The changing of the roll of plastic bearing foil is difficult because there is no access which permits a roll of foil to be threaded on the foil driving mechanism without feeding the leading edge of the foil sequentially over the foil guides along the path that the foil normally travels. Typically the foil is spliced onto the existing roll to avoid the threading process which is a time consuming and somewhat involved task. The present invention is a card embossing system which has a high throughput of embossed cards, is smaller in size than prior art embossers used for embossing cards such as credit and promotional cards that use multiple embossing units, has low energy consumption, high embossing accuracy and is lower in cost than prior art card embossers used for embossing credit and promotional cards. High throughput is achieved as a consequence of several attributes of the invention. Close spacing between multiple embossing units which each emboss a different line of characters minimizes transport time of cards between the successive embossing units. A single card transport mechanism is used to move cards between the multiple embossing units which eliminates the transferring of cards between successive belts which each move the card past a single embossing unit as in the prior art Data Card Corporation Model 15000. The card transport mechanism is synchronized with the operation of the multiple embossing units which eliminates wasted time that could be incurred from an asynchronous operation of the transport mechanism with respect to the embossing units. The movement of the transport unit from a current embossing position to the position of the closest next character to be embossed for all of the embossing units is the most time efficient manner of embossing which minimizes the time required to emboss multiple lines of characters on a card having characters of a different pitch or for multiple lines having a single pitch. The embossing of a plurality of lines of characters on a card with at least two pitches with the embossing units embossing different pitches being driven at different phases with respect to a common drive for the embossing units minimizes the time required to emboss different lines with different pitches. The driving of the individual embossers with a vertically disposed drive shaft permits the embossing units to be closely spaced horizontally together with an in line configuration. A horizontally disposed drive shaft used for each of the individual embossing units in the prior art embossers having multiple embossing units for embossing separate lines of characters on a single card prevents multiple embossers from being closely spaced horizontally together to minimize the distance that the individual cards must be transported between the units. Minimizing space between the multiple embossing units minimizes the transport time required for cards between the units which enhances throughput. Moreover, the embossing units have a mechanism that adjusts for embossing cards of varying thickness to maintain the uniform height of embossed characters while the units continue to operate. The topper of the present invention is easy to maintain and produces cards with a high quality topping. The mounting of a heated platen on a parallelogram suspension, which dissipates and conducts the heat from the platen away from the mechanism for driving the platen, lessens the frequency of service on the bearings of a ram for driving the platen which occurred in the prior art from grease being degraded by heating. The parallelogram suspension also provides for the positioning of the platen in a plane parallel with the face of the card being topped to produce a uniform high quality topping. Moreover, the control of the force applied by the topper as a function of the number of characters on a card to be topped insures that the amount of topping is uniform regardless of the number of characters on the card. A vertical opening between the platen and the surface at the topping station which supports the card during topping permits the changing of a roll of foil bearing plastic topping by moving a leader of a new roll through the opening sidewise between the heated platen and the surface at the topping station without requiring the leader of the new roll of foil to be fed over the foil guides along the path that the foil normally travels or requiring the new leader to be spliced to the existing roll of foil. An embossing system for embossing blank cards with a plurality of vertically separated horizontally disposed lines on which characters are to be embossed with at least one line being embossed with characters of a first pitch and at least one line being embossed with characters of a second pitch includes a card supply for feeding blank cards to be embossed; a card transport for receiving blank cards to be embossed from the card supply and for transporting the cards received from the card supply along a transport path to a plurality of separate embossing positions and to a position where embossing is completed; a plurality of embossing units each disposed at a separate one of the embossing positions disposed along the transport path, each embossing unit being vertically positioned with respect to the transport path to emboss a different one of the horizontally disposed lines of characters on each card, at least one of the card embossing units embossing a character set of a first pitch on one of the horizontally disposed lines and at least another of the card embossing units embossing a character set of a second pitch on another of the horizontally disposed lines; and a controller coupled to the card supply, the card transport and plurality of card embossing units for controlling the card supply to feed blank cards to the card transport, the transporting of the cards received by the card transport to the separate embossing positions along the transport path and the position where embossing is completed and the plurality of card embossing units to emboss the plurality of lines on each blank card. The controller compares a current longitudinal position of the cards being embossed by each of the card embossing units determined with respect to a datum point with a longitudinal position of a next character to be embossed on the cards being embossed by each of the card embossing units on each of the horizontally disposed lines to identify a longitudinal position of the one or more closest next characters to be embossed o any of the horizontally disposed lines which are closest to the current longitudinal position, causes the card transport to move to the longitudinal position of the closest one or more next characters to be embossed, and activates the one or more embossing units which are to emboss the closest one or more next characters to emboss the one or more closest next characters. Data records for each card to be embossed are sequentially transferred within a queue of buffers having a plurality of embosser buffers with each embosser buffer being associated with a separate embossing unit. Each embosser buffer has storage locations for storing a data record comprised of all of the characters of the vertically disposed lines to be embossed for a single card, each data record including a field of characters for each line of characters to be embossed on the card with each field to be embossed by a single associated card embossing unit. A means is provided for shifting the data records sequentially from an input through the queue of embosser buffers in the order in which the embossers are located along the transport path to an output. A means is coupled to each of the embossing buffers for sending a command to emboss the closest next character to its associated card embossing unit with each embossing unit receiving commands to emboss only characters in the field of characters associated with that embossing unit. The transport unit is movable in increments equal to a unit length divided by the product of the pitches being used for embossing. The closest next character to be embossed is displaced from the current longitudinal position of the transport unit by a distance equal to an integer times a unit length divided by the product of the pitches being used for embossing. The controller further comprises a comparator for comparing the current longitudinal position of the blank cards being embossed with the data records stored in each embosser buffer to identify the position of the next character to be embossed in each data record in the field of characters being embossed for each data record. Each embosser buffer stores the position along the transport path of the next character to be embossed by its associated card embossing unit which is determined by the comparator and a comparator is provided for comparing the current longitudinal position of the transport unit with the longitudinal position stored in each embosser buffer to identify the one or more closest next characters which are closest to the current longitudinal position of the transport unit. Each embossing unit described, supra, has a pair of rotatable wheels mounted on a common shaft which have a space through which a blank card to be embossed is moved by the transport unit, one of the wheels being a punch wheel carrying male embossing elements of each of the characters of the character set embossed by the punch wheel which are movable from a retracted position to an embossing position and the other wheel being a die wheel carrying female embossing elements of each of the characters of the character set embossed by the die wheel which are movable from a retracted position to an embossing position. The pair of wheels have embossing element of each of the characters to be embossed which are disposed at different circumferential positions along the wheels and a space without embossing elements at a circumferential position which is separate from the circumferential positions of characters which is the circumferential position of the wheels when a space is to be left on a blank card. A shaft encoder is provided for producing a signal encoding the circumferential position of the wheels with respect to a reference position; and a motor is provided for rotating the wheels to any one of the circumferential positions in response to a command from the controller to position the wheels for embossing a particular character which is a next character to be embossed by the embossing unit or to leave a space. Each embossing unit described, supra, further includes first and second rams which are movable from a first position to a second position, the first position of the first and second rams not causing the embossing elements of the wheels to emboss a character, the second position of the first ram extending to a position to contact one of the male embossing elements to cause the embossing of a character if the circumferential position having the space is not aligned therewith and the second position of the second ram extending to a position to contact one of the female embossing elements to cause the embossing of a character if the circumferential position having the space is not aligned therewith, the second position of the rams causing a single male-female pair of embossing elements of a character to move toward each other to emboss a blank card disposed therebetween. A mechanism is provided for continuously causing the rams to move from the first position to the second position and back to the first position independent of characters being embossed. The mechanism to cause the rams to continuously move comprises first and second pivotably mounted arms, each arm having first and second ends and a pivot point between the first and second ends, the first end of the first arm engaging an end of the first ram remote from an end of the first ram which engages a male element of the punch wheel and the first end of the second arm engaging an end of the second ram remote from the end of the second ram which engages a female element of the die wheel. Third and fourth pivotably mounted arms are provided each having a fixed pivot point with the third and fourth arms each having a cam follower mounted at a point offset from the fixed pivot point. A rotatably driven cam is provided having an integer number of pairs of diametrically spaced lobes which cyclically move the cam followers of the third and fourth arms, the cam having an axis of rotation which is perpendicular direction of movement of the card transport. The third arm has a mechanism for engaging the second end of the first arm when one of the diametrically spaced lobes is engaging the cam follower of the third arm to cause the first ram to move from the first position toward the second position and the fourth arm has a mechanism for engaging the second end of the second arm when one of the diametrically spaced lobes is engaging the cam follower of the fourth arm to cause the second ram to move from the first position towards the second position. A motor drive is provided for rotating the cam. Each of the cam followers is a rotatable wheel with its periphery being in rolling contact with the cam at least when the lobes are engaged and the mechanism of the third and fourth arms which respectively engages the second ends of the first and second arms is a cylindrical pin with the cylindrical surface of the pin engaging the second ends. Movement of a point of contact of the pin of the third and fourth arms respectively with the second end of the first and second arms is equally disposed about the centerline of the third and fourth arms defined by the pivot point, center of the cam follower and center of the pin when the centerline is fixed by it being orthogonal to the common shaft. Each of the embossing units, as described supra, has a height adjustment for adjusting the vertical position of the horizontally disposed line which is embossed on a card being transported by the transport unit. A mechanism is provided for rotating each of the cams from a drive powered by a single motor to maintain a constant rotational velocity and phase between each of the cams with respect to the drive. The means for rotating each of the cams is a gear wheel coupled to the cam. The gear wheels are coupled to a belt which is motor driven. The width of the gear wheel is sufficiently wide so that the belt completely engages the peripheral surface of each gear wheel of the plurality of embossing units regardless of the set vertical position of the embossing units. Each embossing unit which embosses a line of characters of a first pitch is activated by a cam having lobes rotated with a first phase and each embossing unit which embosses characters of a second phase is activated by a cam having lobes rotated with a second phase. Preferably, the first cam is rotated 90.degree. out of phase with the rotation of the second cam. The transport unit comprises a belt having a plurality of card grippers each holding a blank card to be embossed which are spaced apart by a uniform distance. The card embossing units are also spaced apart along the transport path from each other by the uniform distance. The transport unit further includes a motor having a pulley for driving the belt with a single revolution of the belt being equal to an integer multiple of the uniform distance. Preferably, the circumference of the pulley is an integer multiple of the uniform distance. Each card embossing unit has a pair of rotatable wheels mounted on a common shaft which have a space through which a blank card to be embossed is moved by the card transport, one of the wheels being a punch wheel carrying male embossing elements of each of the wheels of a character set embossed by that wheel which are movable from a retracted position to an embossing position and the other wheel being a die wheel carrying female embossing elements of each of that wheel which are movable from a retracted position to embossing position, the pair of wheels having embossing elements of each of the characters to be embossed which are disposed at different circumferential positions around the wheels and a space without embossing elements at a separate circumferential position which is the circumferential position of the wheels when a space is to be left on a blank. A shaft encoder is provided for providing a signal encoding the circumferential position of the wheels with respect to a reference position. A motor rotates the wheels to any one of the circumferential positions in response to a command to position the wheels for embossing a particular character of the character set or to leave a space. The controller controls the sending of commands, to emboss one or more characters of a first pitch or to leave a space of the first pitch and to emboss the one or more characters of a second pitch or to leave a space of the second pitch, to the respective card embossing units for embossing the characters in a timed relationship with respect to a control signal having a cycle comprised of a high and a low level. Commands for embossing characters of the first pitch or to leave a space of the first pitch are sent and embossed during intervals when the control signal is high and commands for embossing characters of the second pitch or to leave a space of the second pitch are sent and embossed during intervals when the control signal is low. Commands to emboss a character of a pitch or leave a space of that pitch are sent during a first cycle of the control signal and the embossing of the character which was commanded to be embossed during the first cycle is embossed during a second cycle of the control signal. A second control signal is generated synchronously with each level of the first signal with the second signal having high and low levels with the transport unit being moved toward the longitudinal position of the one or more next characters during the first level of the second control signal and the embossing the next one or more closest characters being embossed during intervals when the second control signal is at the second level. Means are provided for generating the first and second control signals which is driven synchronously with the mechanism for activating the card embossing units. Preferably, the means for generating the first and second control signals is a disk attached to one of the cams for activating the embossing units which has two concentric sectors each having alternating light and dark sectors and a sensor for respectively sensing a change in light reflected from the sectors. The transport unit has a belt having a plurality of card holding units each for holding a blank card to be embossed with are spaced apart by uniform distance. The card embossing units are spaced apart along the transport path from each other by the uniform distance; and the cycle of the first control signal is equal to or greater in duration than the time required for the embossing unit for each pitch to emboss a single character. An embossing unit for embossing blank cards with the line of characters extending along a line in accordance with the invention includes a pair of rotatable wheels mounted on a common shaft which have a space through which a blank card to be embossed is moved by a card transporting unit, one of the wheels being a punch wheel carrying male embossing elements of each of the characters of the character set to be embossed by the punch wheel which are movable from a retracted position to an embossing position and the other wheel being a die wheel carrying female embossing elements of each of the characters of the character set to be embossed by the die wheel which are movable from a retracted position to an embossing position. The pair of wheels have embossing elements of each of the characters to be embossed which are disposed at different circumferential positions around the wheels and a space at a circumferential position which is the circumferential position of the wheel when a space is to be left on a blank card. A shaft encoder provides a signal encoding the circumferential position of the wheels with respect to a reference position. First and second rams are provided which are movable from a first position to a second position, the first position of the first and second rams not causing the embossing elements of the wheels to emboss a character, the second position of the first ram extending to a position to contact one of the male embossing elements to cause the embossing of a character if the circumferential position having the space is not aligned therewith and the second position of the second ram extending to a position to contact one of the female embossing elements to cause the embossing of a character if the circumferential position having the space is not aligned therewith. The second position of the rams causes a single male-female pair of embossing elements of a character to move toward each other to emboss a blank card disposed therebetween. First and second pivotably mounted arms are provided each having first and second ends and a pivot point between the first and second ends, the first end of the first arm engaging an end of the first ram remote from an end of the first ram which engages a male element of the punch wheel and the first end of the second arm engaging an end of the second ram remote from the end of the second ram which engages a female element of the die wheel. Third and fourth pivotably mounted arms are provided each having a fixed pivot point, the third and fourth arms each having a cam follower mounted at a point offset from the fixed pivot point. A rotatably driven cam having an integer number of diametrically spaced lobes cyclically moves the cam followers of the third and fourth arms to cause the third and fourth arms to pivot about the fixed pivot points. The cam has an axis of rotation which is orthogonal to a direction of motion of the card held in card transport unit. The third arm has a mechanism for engaging the second end of the first arm when one of the diametrically spaced lobes is engaging the cam follower of the third arm to cause the first ram to move from the first position towards the second position and the fourth arm has a mechanism for engaging the second end of the second arm when one of the diametrically spaced lobes is engaging the cam follower of the fourth arm to cause the second ram to move from its first position towards its second position. A motor is provided for rotating the cam. The embosser further includes a mechanism for embossing blank cards of various thickness with characters of uniform height. The mechanism for embossing blank cards of varying thickness preferably includes a pivot shaft functioning as the pivot point for one of the first and second arms; a support member having a slot having first and second ends, the pivot shaft of the one of the first and second arms extending through the slot and is movable between the first and second ends of the slot; a mechanism for applying a biasing force to the one arm which forces the arm toward the embossing wheels by movement of the pivot shaft within the slot to force the pivot shaft to contact the first end of the slot; the biasing force opposing a reaction force applied to the rams during embossing of a blank card so that a reaction force exceeding the biasing force causes the pivot shaft to move toward the second end. The force is preferably applied by a compressed spring. Preferably the support member is contained in a part of the common shaft for the punch wheel and die wheel with the slot being cut axially in the common shaft; and the pivot point for the remaining one of the first and second arms extends through another part of the common shaft. A topper for applying a topping to embossed cards in accordance with the invention includes a card transporting unit for moving cards from a wait station to a topping station where topping is applied to characters on embossed cards; a support surface having a first end and a second end the support surface being rigid with respect to force applied between the first and second ends which is orthogonal to a surface of the card having the embossed characters; a flat surface for rigidly supporting a back surface of an embossed card located at the topping station and connected to the first end of the support surface, the back surface being the surface of the embossed card to which the topping is not applied; a heated platen which is movable from a first position remote from the surface of the card which has the embossed characters to be topped to a second position at which a surface of the platen forces a topping bearing foil into contact with the embossed characters to heat fuse the topping to the embossed characters, the platen having a face which contacts the topping bearing foil in the second position and which is substantially parallel to the flat surface in moving from the first position to the second position; a suspension for supporting the platen including a base having first and second ends and first and second parallel flexible members which have a cross section with an elongated dimension being orthogonal to the direction of motion between the first and second positions and which have first and second ends, the first ends of the first and second flexible members being connected respectively to the first and second ends of the base; an attachment plate carried by the platen having first and second parallel ends, the first and second ends of the attachment plate being respectively connected to the second ends of the first and second flexible members; a mechanism for moving the platen from the first position to the second position which causes the flexible members to bend while maintaining a parallel relationship with each other and the surface of the platen substantially parallel to the support surface during movement from the first position to the second position, the means for moving the platen having a movable member which is connected to the platen and being connected to the second end of the support surface; and a source for providing topping bearing foil between the surface of the platen and support surface. Preferably, the flexible members are metallic and function to radiate and conduct heat from the heated platen. The topper further includes a rotatable support for a roll of topping bearing foil; a first foil guide mounted below the heated platen and support surface; a second foil guide mounted above the platen and set back from the support surface to cause the foil to form an acute angle between the card and surface of the foil between the second guide and the card at the time the heated platen has been withdrawn to its second position after the topping is fixed to the embossed characters of the card by the heated platen; and a foil take up for causing the foil to be unwound from the roll of foil, moved over the first foil guide, past the platen and support surface, over the second foil guide and to the take up. The topper further includes a slot which extends between the first and second foil guides and the support surface on one side of the platen to permit a continuous strip of foil to be routed over the guides from the one side and; an intermediate section joining the first and second ends of the support surface is disposed on the other side of the platen. The intermediate section may be narrower than the first and second ends in a direction orthogonal to the direction of motion of the platen. The second foil guide may be spring biased in a first position and is pivotable from the first position in a direction toward the second end of the support surface to a second position, the acute angle being greater for the second position of the second foil guide than the first position, the second foil guide being pivoted toward the second position when the foil take up is activated to cause the foil to be peeled away from contact with the embossed characters by the increase in the acute angle. The motor for driving the platen is controlled to cause a force to be applied by the platen against the embossed card to be topped which is proportional to the number of characters which are embossed on the embossed card. The take up may be programmed to set the amount of foil to be taken up after topping each card. A transport mechanism is provided for moving embossed cards from the wait station to the topping station including a channel extending from the wait station to the topping station which engages an edge of an embossed card during movement from the wait station to the topping station and a drive unit for driving an edge of the card to be topped opposed to the edge engaged by the channel for moving an embossed card from the wait station to the topping station. The drive unit for engaging an edge opposed to the edge engaged by the channel comprises a plurality of driven rollers having their axes of rotation mounted in a line when contacting an edge of a card disposed above the channel. Each driven roller has a peripheral surface which engages the edge of an embossed card being driven from the wait station to the topping station and a drive mechanism for rotating each driven roller. Each driven roller has its axis of rotation mounted in a first position vertically spaced from the channel in a suspension which permits vertical deflection of its axis upward from the first position to a second position to permit cards of varying width to be moved from the wait station to the topping position without adjustment. An embossing system for embossing blank cards with a plurality of vertically separated horizontally disposed lines on which characters are to be embossed in accordance with the invention includes a card hopper for holding blank cards to be embossed; a mechanism for removing a single card from the card hopper and moving the card to a card insertion position located before a pickup position at which the cards are held in a fixed position; a card transport for receiving blank cards at the card insertion position and for transporting the blank cards held in a fixed position at the pickup position along a transport path to a plurality of embossing positions and to a position where embossing is completed, the transporting mechanism having a driven belt having a plurality of evenly spaced card gripping units attached thereto for receiving successive cards at the insertion position and during driving of the belt the individual card gripping units moving along the transport path to move cards held thereby in a straight line; each card gripping unit including a leading edge gripper and a trailing edge gripper which are attached to the belt at spaced apart locations, each card gripper having a slot having an opening for receiving an edge of a card being moved by the mechanism for removing and moving having two opposed spaced apart sides and a surface connecting the sides, at the pickup position the surface connecting the sides of each of the edge grippers being substantially in line with a retainer extending orthogonally outward from one of the sides of each of the edge grippers toward the other opposed spaced apart side, each retainer being biased to a first position at which a card is held in the fixed position and movable from the first position to a second position at which a card engages the surface connecting the two sides; a mechanism for causing the retainer of each pair of a leading edge card gripper and a trailing edge card gripper to move to their second position when the pair of a leading edge card gripper and a trailing edge card gripper are moved to the card insertion position at which the mechanism for removing and moving a single card pushes an edge of the card into engagement with each surface connecting the two sides of each of the edge grippers of a pair of a leading edge and a trailing edge gripper and for causing the retainers to move to their first position when each pair of a leading edge gripper and a trailing edge gripper moves to the pickup position; a plurality of embossing units located at separated embossing positions to emboss cards held by each pair of a leading edge and a trailing edge card gripper as the cards move through the embossing positions; and a controller to control the mechanism for removing and moving, the card transport and the card embossing units to control the movement of the cards from the hopper to the card insertion position, the movement of the card transport to move the cards to the embossing positions and the plurality of embossers to emboss characters on the cards as the cards are positioned at the embossing positions. The trailing edge card gripper has a mechanism for pushing a card to a reference position with respect to the transport path while the leading edge and trailing edge card grippers are at the card insertion position. Preferably, the mechanism for pushing the card to the reference position is a member which projects orthogonally outward from the trailing edge gripper through a plane contained within the slot of the leading edge and trailing edge card grippers. The member is mounted on the trailing edge card gripper at a point upstream of the surface connecting the spaced apart sides. The controller causes the mechanism for moving the card into contact with the surface connecting the two sides of the leading edge gripper and the trailing edge gripper to apply a predetermined force. The predetermined force is produced by a motor which pushes the card into contact with the surface connecting the two sides the leading edge gripper and the trailing edge gripper to stall the motor with a constant torque. The mechanism for causing the retainers of each pair of a leading edge card gripper and a trailing edge card gripper to move to the second position comprises a cam located at the card insertion position; and a cam follower carried by each pair of a leading edge card gripper and a trailing card gripper which engages the cam to move the retainers to their second position as long as the cam engages the cam followers. The embossing system further includes a mechanism located at the position where embossing is completed to cause the retainers of each pair of a leading edge gripper and a trailing edge gripper to move to their second position to release a card from engagement of the pair of leading and trailing edge grippers. The mechanism located at the position where embossing is completed includes a cam located at the position where embossing is completed which engages the cam followers carried by each pair of a leading edge card gripper and a trailing edge card gripper to move the retainers to the their second position as long as the cam engages the cam followers. The embosser further includes a flat reference surface which is parallel to the straight line of the transport path and each pair of a leading edge gripper and a trailing edge gripper is pushed into contact with the reference surface when the mechanism for removing and moving positions the card at the card insertion position so as to insure that the card engages the surface connecting the sides. Each of the leading edge and trailing edge grippers has a mechanism for suspending the grippers with rolling contact on the reference surface to minimize friction. An embossing system for embossing blank cards with a plurality of vertically separated horizontally disposed lines on which characters are to be embossed in accordance with the invention includes a card supply for feeding blank cards to be embossed; a card transport for receiving blank cards to be embossed from the card supply and for transporting the cards received from the card supply along a transport path to a plurality of separate embossing positions and to a position where embossing is completed; a plurality of card embossing units each disposed at a separate one of the embossing positions along the transport path, each card embossing unit being vertically positioned with respect to the transport path to emboss a different one of the horizontally disposed lines of the characters on each card; and a controller coupled to the card supply, the card transport and the plurality of card embossers for controlling the card supply to feed blank cards to the card transport, the transporting of the cards received by the card transport to the separate embossing positions along the transporting path and the position where embossing is completed, the plurality of card embossing units to emboss the plurality of lines on each blank card, and comparing a current longitudinal position of the cards being embossed by each of the card embossing units determined with respect to a datum point of the transport unit with a longitudinal position of a next character to be embossed on the cards being embossed by each of the card embossing units on each of the horizontally disposed lines to identify a longitudinal position of one or more closest next characters to be embossed on any of the horizontally disposed lines which are closest to the current longitudinal position, moving the card transport to the longitudinal position of the closest one or more next characters to be embossed, and activating the one or more characters which are to emboss the closest one or more next embossers to emboss the one or more next closest characters.

US Referenced Citations (17)
Number Name Date Kind
RE27809 Drillick Nov 1973
3428158 Brown Feb 1969
3638563 Drillick Feb 1972
3820455 Henclay et al. Jun 1974
3861299 Drillick Jan 1975
4091910 Bolton et al. May 1978
4180338 LaManna et al. Dec 1979
4213714 Jones et al. Jul 1980
4216480 Buethner et al. Aug 1980
4255073 Schottlle Mar 1981
4276824 Schottle Jul 1981
4326813 Lomicua, Jr. et al. Apr 1982
4378733 Polad et al. Apr 1983
4459431 Hirochi et al. Jul 1984
4529600 Warwick et al. May 1985
4555191 Gojo Nov 1985
4686898 LaManna et al. Aug 1987
Foreign Referenced Citations (1)
Number Date Country
47018 Mar 1982 EPX
Continuations (1)
Number Date Country
Parent 820705 Nov 1986