This application claims the benefit of German patent application 10 2004 032 514.6, filed Jul. 6, 2004, herein incorporated by reference.
The invention relates to a creel loading and relieving device for a winding device of a textile machine producing cross-wound bobbins.
Creel loading and relieving devices of this type substantially fulfill two objects during the production of a take-up bobbin. On the one hand, at the beginning of the bobbin travel, they should ensure minimum contact pressure of the tube or the still relatively light take-up bobbin on the associated drive roller, and on the other hand, during the bobbin travel, they should counteract the bobbin weight that is growing as the take-up bobbin becomes larger.
As the contact pressure, in addition to the thread tension, determines the density of the take-up bobbin, generally a cross-wound bobbin, the aim is to keep the contact pressure as constant as possible during the entire bobbin travel.
A creel loading and relieving device is known from German Patent Publication DE 25 18 646 C2, in which a creel mounting the cross-wound bobbin is arranged above a drive roller in such a way that the weight of the creel and the weight of the cross-wound bobbin act in the direction of the drive roller. The contact pressure of the cross-wound bobbin on the drive roller is additionally amplified at the beginning of the bobbin travel by a combined loading and relieving element, preferably by a compression spring which engages on a lever lug of the creel and is supported on an adjustment bracket.
In other words at the beginning of the bobbin travel, the action line of the compression spring is located behind the creel shaft in such a way that an additional torque in the sense of “increasing the contact pressure” firstly becomes effective on the creel. As the diameter of the cross-wound bobbin becomes larger, the creel pivots into a position, in which the action line of the compression spring points precisely through the pivot axis of the creel. In this position, the spring force of the loading and relieving element is neutralized. As the diameter grows, the action line of the compression spring then migrates in front of the pivot axis of the creel, in other words, the creel is now acted upon with a torque in the sense of “relieving the creel.”
The described creel loading and relieving device has been successful, in a slightly modified embodiment, in practice and a large number have been used for a long time.
The drawback in this device is, however, that the contact pressure of the individual winding heads is adjusted centrally via a continuous adjustment rail, which constantly slightly elongates or shortens on temperature fluctuations. It is thus hardly possible to adjust uniform contact pressures at the individual winding heads of the textile machine with a continuous adjustment rail of this type, which pivots an adjustment bracket for the compression springs arranged there in the region of the winding heads.
Furthermore, creel loading and relieving devices are known, for example from German Patent Publications DE 39 11 854 C2, DE 41 21 775 A1 or DE 41 11 617 A1, and operate in each case with a pneumatically loadable thrust piston gearing.
German Patent Publication DE 39 11 854 C2 describes a contact pressure control device, which has a take-up bobbin diameter detection device, a contact pressure correction determining device and a pneumatic drive device. In other words, in this known winding device, the instantaneous diameter of the cross-wound bobbin is initially determined by calculation from the rotational speed ratio of the drive roller and cross-wound bobbin and the known diameter of the drive roller. Taking into account a predetermined contact pressure correction curve, the contact pressure of the cross-wound bobbin on the drive roller is then adjusted by means of a pneumatic thrust piston gearing, which engages on an arm of the creel.
Various, different embodiments for a control device for adjusting the contact pressure of a winding device are known from German Patent Publication DE 41 21 775 A1. In all the embodiments, both a mechanical loading element and a pneumatic cylinder engage on the creel. One embodiment, in this case, describes, for example, a double-acting pneumatic cylinder, which is connected to two compressed air ductwork systems, which in each case have a different pressure level. By targeted loading of the pneumatic cylinder, in other words, depending on the piston side, which is loaded with pressure, and on the level of the pressure, which is provided on the piston, the creel can then be more or less loaded or relieved.
German Patent Publication DE 41 11 617 A1 describes a device for controlling the contact pressure in a winding device, which has a length-adjustable lever arm fixed to the creel. The piston rod of a working cylinder is articulated to this lever arm via a joint, which is equipped with jockey rollers. The jockey rollers are provided, in each case in a replaceable control link, via the shape of which the contact pressure of the take-up bobbin can be adjusted on its drive roller.
A creel loading and relieving device is also known from German Patent Publication DE 195 34 333 A1, which has both a thrust piston gearing and a mechanical force introduction means engaging on the creel. The trust piston gearing, in this case, acts as a damper cylinder during the normal winding operation and can also be used if necessary as a drive to lift the cross-wound bobbin from the drive roller. The mechanical force introduction means acting on the creel consists of a first tooth segment which is connected so as to be rotationally engaged with the creel and meshes with a second tooth segment, which is in turn arranged on a lever element, which is mounted so as to be rotatable to a limited extent in the winding head housing. A tension spring, which is connected with prestressing to an adjustment lever, which can be fixed in various positions on the winding head housing, engages on this lever element. In other words, the direction of action of the tension spring and therefore the level of loading of the creel or the contact pressure, can be adjusted via the position of the adjusting lever, for example to produce soft, average or hard cross-wound bobbins.
The above-described creel loading and relieving devices are either very complex and therefore expensive or were not completely convincing in practice with regard to their function.
Proceeding from creel loading and relieving devices of the type described above, the invention is based on the object of improving devices of this type. In other words, providing a creel loading and relieving device, which is configured such that the contact pressure of each winding head can be adjusted easily and with precision in a simple manner and in that, in addition, a correction of the adjusted contact pressure is possible at any time, if necessary, without problems.
This object is achieved according to the invention by a creel loading and relieving device for a winding device of a textile machine producing cross-wound bobbins, adapted for adjusting the contact pressure of a take-up bobbin mounted in a creel on a drive roller. The device comprises a creel, which is pivotally mounted by a creel shaft, and a force introduction means, which engages on the creel and can be adjusted via an adjusting element. According to the invention, the creel loading and relieving device has an actuator which can be positioned by means of an electromotive drive. A force introduction, which acts upon the creel and is configured as a pneumatic spring, is arranged on the actuator. The pneumatic spring is articulated to a first lever arm that is connected to a creel yoke and the loading or relieving moment to be applied to the creel by the pneumatic spring can be adjusted with precision by positioning the actuator accordingly.
Advantageous further configurations, features and advantages of the invention are described more fully hereinafter.
The embodiment according to the invention of a creel loading and relieving device thus offers the advantage that the size and also the direction of action of an additional moment, which is applied to the creel by a force introduction means supported on the actuator, can be adjusted in a simple and very precise manner by a defined displacement of an actuator. In a preferred embodiment, the force introduction means is configured as a pneumatic spring. In other words, a pneumatic thrust piston gearing is articulated, for example, by its cylinder housing to an abutment of the actuator and by its piston rod to a lever arm which is connected so as to be rotationally engaged with the creel.
With the embodiment according to the invention, it is not only possible to adjust the contact pressure according to the present material and the desired density of the take-up roller with precision and to keep it virtually constant during the entire bobbin travel, but it is also possible to work with a bobbin contact pressure which changes in the course of the bobbin travel. In this case, only the position of the actuator, to which the force introduction means is fastened, has to be adjusted. Preferably, the actuator in this case can be positioned without problems in any desired position by means of an electromotive drive within a predetermined adjustment range and therefore the additional loading or relieving moment, which is to act on the creel, in each case, can be adjusted sensitively and so that it can be reproduced. This means, that the bobbin contact pressure can be flexibly adapted to the respective existing winding conditions by the device according to the invention and hard, average or soft cross-wound bobbins can selectively be produced if necessary.
According to one feature of the invention, the electromotive drive is preferably connected to the actuator via a self-locking worm gear. A self-locking worm gear of this type has the advantage, for example, that no electrical energy is necessary during the winding operation to fix the position of the actuator. Worm gears of this type, known per se, are also very compact with regard to their structure, which is important in view of the confined space conditions, operate virtually free of play and are distinguished, in addition, by a long service life.
In an advantageous configuration, the actuator, according to another feature of the invention, is configured as a segment of a circle-like, preferably hollow component and, on its outer region, has worm gear teeth. Arranged inside the actuator is an abutment, on which the force introduction means is supported when loading the creel. The worm gear teeth in this case mesh with a drive worm of the worm gear which is fixed so as to be rotationally engaged on the motor shaft of the electromotive drive. As worm gears of this type are generally self-locking and have a high transmission ratio of, for example 40:1, the drive can be relatively small and therefore economical to position the actuator despite the high moment, which is transferred to the creel via the force introduction means. In other words, a conventional commercial stepping motor with a relatively small size is sufficient to position the adjusting member precisely, which is mounted so as to be rotatable to a limited extent about the pivot axis of the creel, and to fix it there.
According to a further feature of the invention, the thrust piston gearing acting as a pneumatic spring is connected to the machine's own compressed air ductwork system via a pneumatic line.
The connection here is designed such that the pressure, with which the pneumatic spring is prestressed, is constantly at a predeterminable, constant pressure level. In other words, the pneumatic line connected to the piston cavity of the pneumatic thrust piston gearing has a check valve, which ensures that the pressure, with which the pneumatic spring is prestressed, is always at a predeterminable, constant pressure level. The pneumatic thrust piston gearing thus loads the creel, depending on the position of the adjusting member, with a moment, which can be easily adjusted via its direction of action both with regard to its size and also with regard to its basic action (loading or relieving) and can optionally be connected at any time.
According to another feature of the invention, a so-called damper cylinder engages on a further lever arm of the creel. A damper cylinder of this type already very substantially suppresses in the initial stages, oscillations, which occur owing to the cross-wound bobbin revolving on the drive roller and this has a very advantageous effect overall on the running quietness of the winding device and therefore on the bobbin structure of the cross-wound bobbin.
The damper cylinder may also be activated in a defined manner if necessary. The entering piston rod of the damper cylinder then lifts the cross-wound bobbin from the drive roller.
The invention will be described hereinafter in more detail with the aid of an embodiment shown in the drawings, in which:
One half of a textile machine producing cross-wound bobbins, in the embodiment, an open end rotor spinning machine, is shown in
As indicated in
The open end spinning machine 1 also has a bobbin transporting device 12 arranged between the workstations 2 to dispose of finished cross-wound bobbins 8.
A movable service unit 16 is arranged at or on the spinning machine 1, on a guide rail 13 and on a support rail 15. Service units 16 of this type patrol along the open end spinning machine 1 and engage automatically when a handling requirement occurs at one of the workstations 2. A handling requirement of this type exists, for example, when a full cross-wound bobbin 8 has to be exchanged for a new empty tube 10 at one of the workstations 2 and then has to be repieced. The service unit 16, for this purpose, as known, has numerous handling devices, which allow a proper cross-wound bobbin/empty tube change.
The creel 9, as can be seen in particular from
As can be seen from
The actuator 33, apart from the abutment 32 for the pneumatic spring 29 also has a tooth segment 35 with worm gear teeth.
This tooth segment 35, with a worm 37, which is fixed on the motor shaft 41 of an electromotive drive, preferably a stepping motor 40, forms a worm gear 36, which, as is conventional in gearings of this type, has a relatively large ratio and is self-locking.
As can be seen from
Functioning of the device:
As the cross-wound bobbin diameter grows, the creel 9 pivots in the direction of the arrow S (
This means that after passing through the above-described neutral position (force component passes through the creel shaft 23), the force component of the pneumatic spring 29 again brings about a torque on the lever arm 25, which is now effective but in the anti-clockwise direction, however. This torque that is effective in the anti-clockwise direction on the lever arm 25 now ensures that a moment which is effective counter to the bobbin and creel weight is present at the creel 9. As the effective length of the lever arm 25 constantly becomes greater as the bobbin diameter grows, the effective torque also increases in the course of the bobbin travel, so the increasing weight of the cross-wound bobbin 8 is automatically compensated.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 032 514.6 | Jul 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/004373 | 4/22/2005 | WO | 00 | 12/14/2006 |