The present invention relates generally to creel systems. More particularly, the present invention relates to a creel threader and method of use for use in conjunction with a creel system so as to facilitate transfer of filamentary material from any number of spools to another manufacturing station. More specifically, the present invention relates to a creel threader and method of use which automates the transfer of the filamentary material from a spool mounted on the creel to an organizer maintained at an output end of the creel for further use or manufacturing steps.
Filamentary materials include, but are not limited to, fibers in single and multiple strands, flat bands, or tubing produced in long lengths and conveniently wound on spools. The various filamentary materials may be either natural or synthetic fibers, glass or metal. Filamentary materials may also be referred to as wire, cords or coiled strands. Such materials are commonly utilized as reinforcements for plastic or elastomeric compounds or may themselves be fabricated into integral items as in the textile industry, hose industry or the tire industry. In order to have available in a manageable form substantial lengths of cord, it is commonly known to employ spools upon which the filamentary material is mounted for storage and from which the filamentary material may be paid out by rotation of the spools about the longitudinal axis thereof. Regardless of the application, it is customary to withdraw the filamentary material from the spool at or near the location it is being used. To facilitate such removal, the spool is customarily mounted on a spindle or let-off device which permits the spool to rotate as the filament is withdrawn.
There are various types of manufacturing processes which involve the combination of a plurality of filamentary strands of material which during processing are combined with each other, with other materials or both. Where it is necessary to combine a plurality of such strands of material during either continuous or intermittent manufacturing operations, it is frequently convenient that the strands be coiled such as to provide the capability of continuously feeding out substantial lengths of the strands. One such example of the employment of spools to store and pay out strands is involved in the rubber industry where it is common to simultaneously employ a plurality of steel cords which are stored on and dispensed from spools. The spools are normally mounted in an array which is commonly referred to as a creel. While creels may differ in various details they commonly consist of an array of spindles which are mounted in a substantially vertical frame work having spindles which may project in one or both directions therefrom. The spools typically have a diameter of approximately ten inches and a longitudinal dimension of a foot, although other dimensions may be employed in some instances. The spools have a hollow core which inwardly receives a creel spindle and which outwardly carries steel cord or other filamentary material repetitively coiled within the confines of the spool flanges. Creels commonly array the spindles in rectangular configurations projecting from the framework in arrangements which may conveniently have six spindles high and a multitude of spindles long or in some instances five spindles high and a multitude of spindles long. This type of arrangement places spindles from a position just above the ground to approximately six feet off the ground taking into account the necessary spacing between spindles as a result of the diameter of the spools which may be on the order of ten inches and of the necessary spacing between spindles to effect requisite control over pay out and tensioning of the strands. Spools employed for steel cord are normally of a construction such that, while the spool is of relatively light metal material, the full spool with its capacity of steel cords approaching the radially outer extremity of the flanges may weigh on the order of forty to one hundred pounds.
In order to set up a manufacturing run using prior creel systems, the technician will load all of the spools onto the appropriate spindles. Next, the filamentary material that is maintained on each spool is threaded through a tension controller and then manually pulled to an end of the creel to a filamentary material organizer. The user must ensure that the filamentary material is delivered to the correct position on the organizer so as to ensure that the next manufacturing processes are completed as desired. This process is repeated for all the spools loaded onto the creel. After the filamentary materials are fully loaded into the organizer, they are then taken to a calender or like machinery for further processing.
The current machinery and method of use is problematic for a number of reasons. The primary problem is the manual transfer of the material from the spool to the organizer. Skilled artisans will appreciate that this is a time consuming operation, especially if there are a large number of spools maintained by the creel. In view of this time consuming operation, it is customary for manufacturers to maintain two creel systems side-by-side. Accordingly, as one creel is fully set up and operating, the other creel is loaded and threaded so as to maintain continuous operation of the calender or other similar manufacturing station. In any event, the current manual method of pulling filamentary material from the spools is also problematic in that the steel cords, also referred to as wires, are sometimes misplaced or tangled while being transferred from the spool to the organizer. It is known to use comb-like devices to transfer the filamentary materials from several spools to the organizer. However, only a few wires can be transferred at any one time. This method also is still problematic in that the wires may become tangled or the operator may mis-locate the filamentary material in the comb which later results in the filamentary material being misplaced in the organizer. It will further be appreciated that the pull-off forces of the filamentary material can become substantial which results in difficulty in pulling the cords from the spools maintained on the row closest to the floor and for those spools that are maintained on a top row, which is in most instances is commonly six feet in height.
In view of the shortcomings of the current creel systems, there is a need in the art for an automated creel threader that simplifies the filamentary material organization process, wherein it is desired for the process to be faster, provide less tangling for the filamentary material, provide safety features and improve the overall operation of the creel system. Indeed, there is a need in the art for automated creel systems that reduce labor, and remove difficult and tedious operation.
In light of the foregoing, it is a first aspect of the present invention to provide a creel threader and method of use.
Another aspect of the present invention is to provide a creel threader for use with a creel system that holds a plurality of spools wherein each spool carries a filamentary material, the creel threader comprising a guide supported by the creel, an endless loop carried by the guide, a drive assembly coupled to the endless loop, and at least one gripper carried by the endless loop, the at least one gripper receiving the filamentary material from at least one of the spools, and the drive assembly moving the at least one gripper and the received filamentary material from the spool to an output end of the creel system for further processing.
Yet another aspect of the present invention is to provide a method of transferring filamentary material carried on spools maintained by a creel to an organizer, the method comprising loading a plurality of spools that carry filamentary material on to a creel, securing the filamentary material from at least one of the spools to at least one gripper, moving the at least one gripper with a drive assembly, and releasing the filamentary material from the at least one gripper.
These and other features and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings wherein:
Referring now to all of the drawings, it can be seen that a creel system is designated generally by the numeral 20. The creel system 20 includes a frame 22 which is made up of horizontal and vertical members connected to one another wherein the entire assembly is secured to a factory floor F. The frame 22 may be otherwise configured. In one embodiment, the frame 22 carries a plurality of spools 24 wherein the spools may be maintained in uniform levels or rows. The number of levels and number of spools maintained by those levels is dependent upon the configuration of the desired end product. Associated at an output end of each level may be an organizer designated generally by the numeral 28. Further downstream from the organizer may be a calender 30 or other piece of processing equipment.
As best seen in
A creel threader 50 is secured to the frame 22 by a plurality of mounting brackets 52. The mounting brackets 52 may be constructed so as to allow for attachments to the horizontal and vertical members of the frame 22 without requiring modification to the frame. The mounting brackets 52 include at least one substantially perpendicularly extending support arm 54 which extends into the space between the respective rows of spools and in a space above a top row of spools or, in some embodiments, in a space below a bottom row of spools. Each row of support arms 54 carry a chain guide 56. In particular, an underside of the support arms carry the chain guide 56 which may be provided in a number of mating sections along the entire length of the row of spools. Skilled artisans will appreciate that, in most embodiments, one creel threader 50 is maintained for each row of spools and that the creel threader is positioned to be aligned in proximity to a top edge of each row of spools. In some embodiments the creel threader 50 may be positioned underneath a row of spools if so desired. In such an embodiment, the wire let-off of the controller is on the bottom in relation to the spool instead of the top. As a result, the creel threader would be inverted and the associated gripping devices, also referred to as grippers,—to be discussed—will be provided on a top front edge of the creel threader instead of a bottom lower edge.
As best seen in
An attachment chain 66 is maintained between the motor drive assembly 60 and the return sprocket assembly 64. The attachment chain 66, as used herein, is a continuous endless loop or endless cable driven by the motor drive assembly 60 and returned by the return sprocket assembly 64. The attachment chain 66 carries at least one wire cam gripper designated generally by the numeral 70. In most embodiments, the attachment chain 66 carries a plurality of grippers 70 that correspond to the number of spools maintained in a row on the creel. Moreover, the grippers may be spaced in a manner similar to the center-to-center spacing of the spindles maintained in a row. A controller 74 (best seen in
Generally, the creel threader 50 operates in the following manner. A technician or operator will load a spool of filamentary wire onto each spindle. Once the spool is loaded onto the spindle, the filamentary material is threaded according to the particular tension controller, if required, associated with each spindle. Next, the filamentary wire is inserted into and secured by the gripper 70 associated with the spindle. This process, or variations thereof, is repeated for each spool and for each row of the creel. Once this loading process is completed, the grippers and secured filamentary materials are automatically forwarded to the output end of the creel. Particular details of each component of the creel threader are set out below.
As best seen in
The attachment chain 66, which may also be referred to as a loop, is provided in an appropriate length depending upon the length of the rows carrying the spools. In any event, as best seen in
Referring now to
As noted previously, the return sprocket assembly 64 is maintained at the end of the chain guide 56 opposite the motor drive assembly 60. In a manner similar to the drive assembly, the sprocket assembly 64 may be carried by the adjacent bracket and arm assembly 62 and/or the frame 22.
As best seen in
A tension plate 160 is maintained adjacent to and in bearing contact with the base plate 140. Moreover, the tension plate 160 is secured to the bracket and arm assembly 62 and/or the frame 22. The tension plate 160 includes a bearing opening 164 so as to allow the bearing assembly 152 to extend therethrough. The tension plate also includes a number of slots 168 which may extend in a direction substantially parallel to the length of the chain guide. A tension flange 172 may extend substantially perpendicularly from the plate 160 in the same direction that the base flange 144 extends from the base plate 140. The tension flange 172 may include an unthreaded flange hole 176 extending therethrough that aligns with the flange hole 148. A plurality of locking screws 182, which may include a number of washers, extend through the slots 168 and are received in corresponding openings maintained by the base plate 140. The locking screws 182 hold the tension plate 160 adjacent the base plate 140. A chain tension fastener 186, which is typically in the form of a threaded screw, extends through the flange hole 176 into the flange hole 148. Skilled artisans will appreciate that an end of the chain in an unassembled condition is fed through the chain cavities 98 and then assembled onto the drive sprocket and then wrapped around the chain sprocket 156. The ends of the chain are then connected to form an endless loop. Once the chain is installed, the locking screws 182 are directed through the slots 168 and received in the corresponding fastener holes in such a manner so as to secure the tension plate 160 to the base plate 140. Prior to securement of the tension plate to the base plate, the chain tensioner fastener 186 is positionally adjusted so as to provide the proper tension force to the attachment chain between the motor drive assembly 60 and the return sprocket assembly 64. This is done so as to allow for repeatable and accurate movement of the grippers as the chain moves from the pull side 86 to the return side 90.
Associated with the return sprocket assembly 64 is a cam entry ramp 190 which engages the cam gripper 70 as will be discussed. Associated with the cam entry ramp 190, in proximity to the pull side of the chain guide, may be a proximity sensor 200 which generates a sensor output 204 that is sent to and received by the controller 74. In the present embodiment the proximity sensor is an inductive sensor which senses the presence and passing of each gripper 70. Of course, other types of sensors may be employed to detect the presence and/or passing of the cam gripper.
Referring now to
A cam 224 may be rotatably secured to the cam plate 216. The travel plate 210 maintains a wire ledge 228 on a side of the travel plate opposite the wear guide 220. In some embodiments, at least one upwardly extending guide lip 232 extends from the wire ledge 228 so as to facilitate retention of the filamentary material that is received between the cam 224 and the wire ledge 228. The cam 224 may include a curved, ridged or serrated grip surface 236 that faces the wire ledge 228. A pivot fastener 240 extends through the cam 224 and is attached to the cam plate 216 so as to allow for retained and pivotable movement of the cam 224. The pivot fastener 240 serves as a pivot point or rotatable center for the cam 224 and as a center point in relation to the grip surface 236. As will be discussed further, with the ledge 228 serving as a reference point, the distance from the pivot point to the grip surface changes as the cam rotates. In other words, the distance between the pivot point and the grip surface varies depending upon the angular orientation of the cam. Extending from the cam 224 is a lever arm 244. A stop lever 248 extends from the cam 224 in a direction opposite the lever arm 244. Extending substantially perpendicularly from the lever arm 244 is a handle 252. A spring 260 provides one end connected to a pin 261 extending from the lever arm 244 and an opposite end connected to a pin 262 extending from the wire ledge 228. A stop pin 264 may also extend substantially perpendicularly from the cam plate 216 in such manner that full rotation of the cam 224 is blocked by contact of the stop lever 248 with the stop pin 264. In some embodiments indicia 266 may be provided on the cam gripper 70 and, in particular on the travel plate 210 and/or the cam plate 216. Use of the marking indicia 266 may facilitate loading of the filamentary wire into the gripper and may also facilitate association of the gripper 70 with a particular location in the row of spools and/or with a particular spool in a row.
As best seen in
As seen in
Referring now to
Based on the foregoing description, the operation of the creel threader is readily apparent. The cam grippers 70 are moved into a predetermined position, such that each gripper is associated with a corresponding spool. To ensure proper organization of the filamentary material into the organizer, the indicia 266 on each gripper is used in aligning each gripper with a corresponding spool. Next, the technician loads the wire from the spool, through the appropriate tension controller 38, if required, and axially into the cam gripper 70 between the space between the stop pin 264 and the wire ledge 228. In the alternative, the technician may lift the handle and laterally insert the wire into the cam gripper. Either way, the handle is then moved counter-clockwise to fully grasp the filamentary material between the gripper surface 236 and the wire ledge 228. The loading operation is then completed for all of the spools along a row or it may be completed for all of the rows in the entire creel. Next, the operator actuates the advance button 270 for a selected row or rows and the controller initiates movement of the grippers so as to deliver the filamentary material closest to the organizer to the organizer first. Accordingly, each filamentary material from the spool will be advanced the required distance. The technician will then take the filamentary material, after it has been manually or automatically released from the gripper, and then loads each filamentary material into its proper position into the organizer. This is repeated for each row if desired, or all the grippers in all the rows may be incrementally loaded into the organizer after each incremental stop. In any scenario mentioned, after the first wire is loaded in the organizer, the technician then advances the grippers incrementally or for a single row, continuously and then receives the next wire from the next cam gripper and loads it into its proper position in the organizer. The incremental or continuous movement of the cam grippers continues until all filamentary materials are loaded into the organizer. The technician will then move the filamentary materials form the organizer to the calender or other manufacturing equipment for loading and processing in the normal fashion. Once the calender or other processing equipment is started, then the filamentary materials are pulled from the spools through the organizer in a well known manner. Prior to the operation of the calender, movement of the cam grippers may be disabled and do not interfere with movement or operation of the filamentary materials.
The advantages of the present invention are readily apparent. The creel threader provides for an automated system which precludes the need for manual movement of each wire from a spool to the organizer. This maintains a clear organization of the filamentary materials and facilitates their loading into the organizer. This saves significant amounts of operational set-up time and it is believed may eliminate the need for a second creel to be maintained by the manufacturer. In other words, with the automated process, it is believed that a creel can be quickly loaded, thus obviating the need to have an operator manually thread an organizer while the other creel is supplying materials to the calender. Further advantages of the present invention allow for the servo-motor to maintain and monitor the pulling forces utilized by each creel threader. As such, any significant changes in the pulling forces can be detected and allow for investigation as to any tangling or operational difficulties.
Thus, it can be seen that the objects of the invention have been satisfied by the structure and its method for use presented above. While in accordance with the Patent Statutes, only the best mode and preferred embodiment has been presented and described in detail, it is to be understood that the invention is not limited thereto or thereby. Accordingly, for an appreciation of the true scope and breadth of the invention, reference should be made to the following claims.
This application claims priority of U.S. Provisional Application Ser. No. 61/866,695 filed Aug. 16, 2013, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61866695 | Aug 2013 | US |