The present disclosure relates to a control system for controlling creep torque in a vehicle dependent on a terrain mode. Aspects of the invention relate to a vehicle, a method and to a non-transitory computer readable medium.
Automatic transmissions are frequently used in road vehicles and sports utility vehicles (SUVs). The automatic transmission often contains a torque converter to allow launch from rest. A benefit of the torque converter is that a facility known as “creep” is available—when drive is selected in the automatic transmission and the brakes are released, a small drive torque is produced at the road wheels accelerating the vehicle to a creep speed of around 4 kph, even without accelerator input by the driver. In a vehicle with an internal combustion engine (ICE), this creep speed is a function of the engine idle speed, the torque converter characteristic, the gear ratio selected, the gradient, and the surface resistance.
Because the torque converter is not controlled to provide creep, the driver experiences variation of creep speed when driving on gradients or on irregular or soft surfaces. Also, the general characteristic of a torque converter is for maximum torque to be generated when moving away from rest and this may exceed the available surface friction on a low friction surface such as wet grass or ice.
It is an aim of the present invention to address one or more of the disadvantages associated with the known art.
Aspects and embodiments of the invention provide a control system, a method, a vehicle and a non-transitory computer readable medium as claimed in the appended claims.
According to an aspect of the present invention there is provided a control system for a vehicle having a prime mover, the control system comprising one or more controllers, the control system configured to:
The controllers may collectively comprise:
Optionally the speed of the vehicle may be controlled to a target speed while maintaining drive torque at or below the selected relationship between torque and speed.
Optionally the speed of the vehicle may be controlled by accelerating the vehicle from stationary to the target speed.
Optionally the control system may be further configured to maintain the target vehicle speed once said target vehicle speed is reached.
Optionally the terrain on which the vehicle is driving may be determined in dependence on a manual selection of a terrain mode by the vehicle driver/operator or on an automatic determination of the terrain based on inputs from one of more vehicle sensors.
Optionally the selected relationship between torque and speed is dependent on an intended direction of travel of the vehicle and/or a current direction of travel of the vehicle.
Optionally the selected relationship between torque and speed is dependent on a terrain gradient.
Optionally the control system may be further configured to determine the target vehicle speed based on the selected relationship between torque and speed.
Optionally the control may be further configured to:
Optionally the control system may be further configured to provide control of drive torque to the user when the torque demand from the user exceeds the selected relationship between torque and speed.
Optionally the creep control mode may be reinstated when the vehicle speed passes below the target speed and the driver demand falls below the selected relationship between torque and speed.
Optionally the control system may be further configured to control a torque applied to each wheel or each axle of the vehicle based on the selected relationship between torque and speed.
Optionally the control system may be further configured to implement the selected relationship between torque and speed by applying a braking torque opposing drive torque from the prime mover, such as an internal combustion engine and/or traction motor. This is beneficial where a low friction surface is present, and the creep torque provided without braking may exceed the available friction. This could polish the surface and make restarting even more difficult.
Optionally the braking torque may be provided by the traction motor opposing drive torque from the internal combustion engine.
Optionally the control system may be configured to receive a creep control indication from the user for operating in the creep control mode.
Optionally the vehicle is an electric vehicle, a hybrid vehicle or a range-extended electric vehicle.
According to another aspect of the invention, there is provided a vehicle comprising the control system described above.
According to another aspect of the invention, there is provided a method comprising:
Optionally, determining a terrain mode of the vehicle may comprise determining which of a plurality of terrain modes is selected by a driver of the vehicle. By way of example, the plurality of terrain modes may include modes for driving on one or more of grass, gravel, snow, mud, sand or rocks. Alternatively, or in addition, determining the terrain mode of the vehicle may comprise automatically determining a terrain on which the vehicle is operating based on inputs from one or more vehicle sensors.
According to another aspect of the invention, there is provided a non-transitory computer readable medium comprising computer readable instructions that, when executed by a processor, cause performance of the method above.
The term “creep” is well understood in the art and, throughout this disclosure, the term “creep control mode” is intended to refer to a mode in which the vehicle is operating at creep speed. In general, this may correspond to a so-called “all hands off” driving or operating mode in which neither the driver/operator nor an automated driving system, such as a cruise control system or the like, supplies a torque demand to the prime mover. In a vehicle having an ICE as the prime mover, for example, creep control mode may correspond to the engine operating at idle speed, with no application of the accelerator pedal by the driver and all automated driving systems being deactivated. In an electric vehicle, in which the prime mover comprises one or more electric motors, creep control mode may correspond to a mode in which the or each motor is controlled to simulate the operation of an automatic transmission having a torque converter so as to drive the vehicle at the creep speed.
Within the scope of this application it is expressly intended that the various aspects, embodiments, examples and alternatives set out in the preceding paragraphs, in the claims and/or in the following description and drawings, and in particular the individual features thereof, may be taken independently or in any combination. That is, all embodiments and/or features of any embodiment can be combined in any way and/or combination, unless such features are incompatible.
The applicant reserves the right to change any originally filed claim or file any new claim accordingly, including the right to amend any originally filed claim to depend from and/or incorporate any feature of any other claim although not originally claimed in that manner.
One or more embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
In an embodiment of the invention;
A control system for a vehicle in accordance with an embodiment of the present invention is described herein with reference to the accompanying figures.
The control system 300 comprises an engine control module (ECM) 310 which accepts signals from an accelerator pedal 314 to indicate a driver demand for torque and an engine speed sensor 312. These are used by the controller to determine fuel injection and, in a gasoline engine, the ignition timing. The engine speed and pedal position signals are sent to the vehicle supervisory controller (VSC) 320.
The vehicle supervisory controller (VSC) 320 receives signals from other controllers and from a terrain mode switch 322 which allows the driver to indicate the terrain over which the vehicle is travelling. This switch may have an automatic mode which allows the controller to select an appropriate mode depending on sensor inputs. A creep mode switch 323 also provides an input to the VSC for the driver to select or de-select creep mode, this may be a physical switch or may be provided by a multipurpose input device such as a touch screen. The VSC provides an output to a traction motor controller 324 and the traction motor controller provides control signals to an inverter 326 which controls power flow between a battery 327 and the traction motor 328. The inverter can control the motor to provide drive torque by supplying battery power to the motor or to provide regenerative braking by taking motor power to charge the battery.
In this embodiment an anti-lock braking system (ABS) controller 330 is shown which receives signals from wheel speed sensors 332, 334, 336 and 338. From these signals a vehicle speed is calculated which is sent to the VSC 320. The ABS controller also controls braking of the wheels through brakes 342, 344, 346 and 348 and braking is provided both from a driver input from a brake pedal and on command from the VSC without driver input.
Line 430 shows a braking torque which may be applied by the friction brakes or by the traction motor (where provided) during creep control mode. This provides 300 Nm of braking (negative torque) at rest (point 432) ramping to 0 Nm at 3 kph (point 434). Line 440 shows the combination of lines 420 and 430 and is the net creep torque experienced by the vehicle. The net creep torque at rest is 300 Nm ramping up to 425 Nm at 3 kph (point 444) then following curve 420 to achieve the same creep speed of 4.8 kph. This modification allows a gentler acceleration from rest when the driver releases the brake pedal which is appropriate for a terrain surface which has a low coefficient of friction. Advantageously this open loop control method can prevent wheel slip which is known to polish a surface and thereby further reduce the available friction. While this embodiment shows an ICE with a torque converter, it will be appreciated that an electric drive system may be able to provide the same output line 440 without the need for braking torque, since the traction motor controller and inverter can control the electric motor to generate substantially any desired drive torque from zero.
During engine warmup the ICE may be controlled to a higher engine speed which would affect the creep speed. This invention would allow regenerative braking to control the creep torque relationship produced to maintain a consistent creep speed despite an elevated idle speed.
Line 520 shows the creep torque for a “general” terrain mode and this may be the unmodified torque converter characteristic at idle.
Line 530 shows the creep torque for a sand terrain mode which has several features which differ from the general mode. At rest, the creep torque has increased from 600 Nm (point 522) to 775 Nm (point 532) in order to overcome the higher surface friction due to the soft sand terrain. The creep speed has also increased from 4.8 kph (point 526) to 6.9 kph (point 536). Although the higher surface resistance of sand is not shown, this creep speed may be 6.5 kph if the surface resistance were 300 Nm. A higher creep speed is possible because travelling on sand rarely requires tight manoeuvring and it makes acceleration from the creep speed more convenient as the wheels are less likely to dig into the surface from the higher creep speed. The additional torque required to achieve curve 530 may be provided by the traction motor using battery power or by increasing the engine idle speed. In some instances, both may be applied to achieve the desired curve. The VSC may provide control signals to the ECM, TMC and ABS to achieve the most efficient method of providing the required torque. This may depend on the state of charge of the battery and the driveline configuration. At speeds above 7 kph the curve 530 provides a lower overrun torque 538 than the general curve 520. This is again due to the higher surface resistance of sand, so the desired vehicle deceleration does not require as much overrun torque. This modification may be provided by the traction motor as before.
Line 540 shows the creep torque for a grass, gravel & snow (GGS) terrain mode. Grass, gravel and snow generally have a lower surface friction coefficient than sand and thus in this case the creep torque at rest is lower than the general mode at point 542 to provide a gentle pull away from rest without wheel spin. The torque then approaches the general curve and achieves the same creep speed at point 526. The curve may alternatively be calibrated to achieve a lower creep speed because it may be advantageous to manoeuvre more slowly on an icy surface. In this case the negative torque required to achieve curve 540 (i.e. a reduced net drive torque compared to the general curve 520) may be provided by the traction motor using battery power, by application of the brakes or by decreasing the engine idle speed. The VSC may provide control signals to the ECM, TMC and ABS to achieve the most efficient method of providing the required torque.
When the creep mode is off 620 the drive torque depends on driver demand. When creep torque is on the drive torque depends on the selected creep torque map which, as explained above, may depend on the determined terrain mode. Within the creep mode on state the selection of creep torque maps is made according to the terrain mode 630 from a range of maps shown 632.
It will be appreciated that various changes and modifications can be made to the present invention without departing from the scope of the present application.
Number | Date | Country | Kind |
---|---|---|---|
2015025.6 | Sep 2020 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/076121 | 9/22/2021 | WO |