Cremation is a funeral rite where the remains of a deceased loved one are turned into ashes. Often, the ashes are held in a decorative vessel such as an urn that can be displayed as a memorial for the deceased loved one. The manufacture of cremation urns can be labor intensive, time consuming, and expensive due to the many steps that are often required to create a finished decorative piece. Therefore, improvements are needed to reduce the labor and costs associated with the manufacture of cremation urns, while still producing decorative pieces of high artistic value.
The present disclosure relates generally to an urn, and a method of manufacturing the urn. In one possible configuration and by non-limiting example, the urn is a cremation urn manufactured by a modified cloisonné technique.
In one aspect, the present disclosure relates to an urn comprising: a container body having an internal cavity; a lid configured to cover the internal cavity; a plurality of filigree wires attached to at least one of the container body and the lid, the filigree wires delimiting a plurality of cells; and layers of enamel arranged in the plurality of cells and covering at least portions of the container body and the lid, the layers of enamel leaving exposed portions of the plurality of filigree wires that extend beyond the layers of enamel. In some examples, two layers of enamel are arranged in the plurality of cells, and the plurality of filigree wires extend beyond the two layers of enamel.
In some examples, the urn includes a lid fastening assembly that fastens the lid onto an opening of the container body to close the opening. In some examples, the lid fastening assembly includes a first threaded surface around the opening of the container body, and a second threaded surface on the lid that can thread onto the first threaded surface for closing the internal cavity.
In some examples, the exposed portions of the filigree wires that extend beyond exterior surfaces of the container body and lid are finished with a finishing. In some examples, the finishing is electroplated nickel.
In some examples, the urn further comprises transition surfaces above, between, and below a narrowed neck portion, a rounded middle portion, and a pedestal portion, and the transition surfaces are electroplated with nickel.
In certain examples, the urn is configured to hold cremation remains.
In another aspect, the present disclosure relates to a method of manufacturing an urn comprising: forming a container body and a lid; attaching filigree wires to at least one of the container body and the lid, forming a plurality of cells on at least one of the container body and the lid; filling first and second layers of enamel into the plurality of cells, leaving the filigree wires extending beyond the first and second layers of enamel; and applying a finish to the filigree wires.
In some examples, attaching filigree wires to at least one of the container body and the lid includes: using an adhesive to attach the filigree wires, sprinkling a powdered solder over the filigree wires, and baking the filigree wires and powdered solder in a furnace. In some examples, forming the container body and the lid includes cutting flat metal sheets into appropriate sizes, and shaping the flat metal sheets.
In some examples, the method further comprises installing a lid fastening assembly for connecting the lid to the container body. In certain examples, installing the lid fastening assembly includes: assembling a first threaded surface around an opening of the container body; and assembling a second threaded surface onto the lid.
In some examples, applying the finish to the filigree wires includes electroplating the filigree wires with nickel. In certain examples, the filigree wires are not polished and are not flush with the first and second layers of enamel.
In some examples, the method further comprises using a dropper to apply the first and second layers of enamel into the plurality of cells. In some examples, the method further comprises applying first and second layers of enamel to an internal cavity of the container body and to an interior surface of the lid. In some examples, the method further comprises using a brush to apply the first and second layers of enamel to the internal cavity and to the interior surface of the lid.
A variety of additional aspects will be set forth in the description that follows. The aspects can relate to individual features and to combinations of features. It is to be understood that both the forgoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the examples disclosed herein are based.
The following drawings are illustrative of particular embodiments of the present disclosure and therefore do not limit the scope of the present disclosure. The drawings are not to scale and are intended for use in conjunction with the explanations in the following detailed description. Embodiments of the present disclosure will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements.
Various embodiments of the present invention will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the views. Reference to various embodiments does not limit the scope of the invention, which is limited only by the scope of the claims attached hereto. Any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the claimed invention.
In certain examples, the container body 102 can have a shape that has a narrowed neck portion 120, a rounded middle portion 118, and a bottom pedestal portion 116. In other examples, the container body 102 can have a simplified shape that does not include the narrowed neck portion 120 or the bottom pedestal portion 116.
The pedestal portion 116 can have an enlarged diameter that supports the weight of the narrowed neck portion 120 and the rounded middle portion 118. The pedestal portion 116 can allow the urn 100 to stand upright when placed on a flat surface.
The rounded middle portion 118 can shape a majority of the volume of the internal cavity 104. The internal cavity 104 can be used to store a variety of different items. In certain examples, the internal cavity 104 can be used to store cremation ashes. For example, cremation ashes contained within a bag can be stored inside the internal cavity 104. In certain examples, the cremation ashes are human cremation ashes. In other examples, the cremation ashes are pet animal cremation ashes.
The narrowed neck portion 120 includes the opening 121 into the internal cavity 104. The narrowed neck portion 120 allows items to enter through the opening 121 for storage inside the internal cavity 104 shaped by the rounded middle portion 118.
A lid fastening assembly 113 is installed onto the urn 100 so that the lid 110 can cover and/or seal the internal cavity 104 of the container body 102. In some examples, the lid fastening assembly 113 can include a first threaded surface 112 around the opening 121 of the container body 102, and the lid fastening assembly 113 can further include a corresponding second threaded surface 114 on the lid 110 that can thread onto the first threaded surface 112 for securely closing the internal cavity 104.
Still referring to
Layers of colored enamel 128 fill the various cells delimited by the pattern of filigree wires 122 to provide an ornamental design on the exterior surface 106. For example, the filigree wires 122 can define a decorative pattern of flowers, and various colors of enamel 128 can fill the cells in the decorative pattern. Additionally, the internal cavity 104 can also be coated with enamel 128. The enamel 128 provides a colorful aesthetic appearance to the urn 100. In some examples, the enamel 128 provides a glossy finish. In other examples, the enamel 128 provides a matte finish.
As shown in
As shown in
Thereafter, the method 200 includes a step 206 of filling cells formed by a pattern of the filigree wires 122 with the enamel 128. Step 206 of the method 200 will be described in more detail with reference to
Next, the method 200 includes a step 208 of applying a finish to the filigree wires 122 and the transition surfaces 124 on the container body 102 and lid 110. Step 208 will be described in more detail with reference to
Thereafter, the method 200 includes a step 210 of installing the lid fastening assembly 113 to the container body 102 and the lid 110. Step 210 of the method 200 will be described in more detail with reference to
Thereafter, step 202 can further include sub-step 202b of shaping the flat metal sheets. In some examples, the flat metal sheets are shaped using a lathe. For example, a die can be mounted to a lathe, and a flat metal sheet can also be mounted to the lathe so that the flat metal sheet is spun on the lathe. While the flat metal sheet is spinning on the lathe, a bar can be used to pull the flat metal sheet over the die so that the flat metal sheet is shaped. In other examples, the flat metal sheets are shaped using a press. In preferred examples, the flat metal sheets are copper because copper is soft and easy to shape.
In some examples, the container body 102 has separate sections assembled together. In certain examples, the pedestal portion 116, rounded middle portion 118, and narrowed neck portion 120 are separate sections, each separately formed. Similarly, in some examples, the lid 110 includes sections that have been separately formed.
In the examples where the container body 102 and lid 110 have sections that are separately formed, step 202 of the method 200 can further include sub-step 202c of assembling the separate sections. In some examples, the separately formed sections are welded together. In other examples, the separately formed sections are soldered together.
As shown in
In some examples, step 204 includes sub-step 204a of sketching the decorative pattern. In some examples, the decorative pattern is sketched using pencil and paper. In other examples, computers can be used to create the decorative pattern.
Next, step 204 can include sub-step 204b of applying an outline of the decorative pattern to the exterior surfaces of the container body 102 and lid 110 to help guide the attachment of the filigree wires 122. In some examples, the outline can be transferred to the exterior surfaces using carbon paper or similar techniques.
Thereafter, step 204 can include sub-step 204c of bending and cutting the filigree wires 122 to create decorative geometric shapes. In some examples, hand tools such as needle-nose pliers and dowels can be used to bend the filigree wires 122 into curves, circles, right angles, and other types of geometric shapes.
After bending and shaping the filigree wires 122, step 204 includes sub-step 204d of attaching the filigree wires 122 to the exterior surfaces of the container body 102 and lid 110 using an adhesive. In some examples, the adhesive is a glue.
Next, step 204 can include sub-step 204e of applying solder to the filigree wires 122 after the adhesive used to attach the filigree wires 122 to the exterior surfaces of the container body 102 and lid 110 has dried. In a preferred example, the solder is in powdered form and is sprinkled over the exterior surfaces of the urn 100 and the filigree wires 122 that have been glued thereto.
Thereafter, step 204 can include sub-step 204f of baking the container body 102 and lid 110 along with the attached filigree wires 122 and solder in a furnace. In some examples, the temperature of the furnace is raised to about 1000° C. for about 2 minutes. Sub-step 204f strengthens the attachment of the filigree wires 122 to the exterior surfaces of the container body 102 and lid 110, and can also further strengthen the assembly of the sections of the container body 102 and lid 110 (see step 202).
The furnace used in sub-step 204f can be an electric or coal furnace. In a preferred example, an electric furnace is used because the temperature can more easily be controlled, and also because an electric furnace does not produce sulfur and other byproducts and contaminants (which is in contrast to coal furnaces which naturally produce sulfur and other byproducts due to the burning coal). Thus, an electric furnace can provide more consistent results than a coal furnace.
As shown in
A significant advantage of the method 200 is that the enamel 128 grips better onto the filigree wires 122 due to the beaded surface of the filigree wires 122. This can help maintain the enamel 128 within the cells 130 formed by the decorative pattern of filigree wires 122 so that the enamel 128 does not unintendedly run across the exterior surface of the urn 100 and cross over into adjacent cells 130.
During sub-step 206a, a first layer of the enamel 128 can also be applied to the internal cavity 104 of the container body 102 and to the interior surfaces of the lid 110 using brushes, knives, spatulas, etc. The enamel 128 can be applied to the internal cavity 104 of the container body 102 and to the interior surfaces of the lid 110 without having to use the dropper which can speed up the process. During sub-step 206a, the enamel 128 is not applied to the filigree wires 122 or the transition surfaces 124.
Next, step 206 can include sub-step 206b of baking the container body 102 and lid 110, and the first layer of enamel 128 in a furnace. The temperature of the furnace is raised to about 850° C. for about 2 minutes. The furnace can be an electric or coal furnace. In a preferred example, the furnace is an electric furnace for the reasons discussed above.
Thereafter, step 206 includes sub-step 206c of applying a second layer of the enamel 128 to the cells 130. The second layer of the enamel 128 can be applied to the cells 130 using the dropper. The second layer of the enamel 128 can follow the pattern of the first layer of the enamel 128, and can make the enamel 128 thicker and less transparent. Also, the second layer of the enamel 128 can fill empty areas where air bubbles have popped in the first layer of the enamel 128.
In some examples, sub-step 206c can also include applying a second layer of the enamel 128 to the internal cavity 104 of the container body 102 and to the interior surfaces of the lid 110 using the brushes, knives, spatulas, etc. During sub-step 206c, the enamel 128 is not applied to the filigree wires 122 or the transition surfaces 124.
Next, step 206 can include sub-step 206d of baking the second layer of the enamel 128 in a furnace. The temperature of the furnace is raised to about 850° C. for about 2 minutes. The furnace can be an electric or coal furnace. In a preferred example, the furnace is an electric furnace for the reasons discussed above.
As shown in
A significant advantage of the method 200 is that only two layers of the enamel 128 are applied to the urn 100. This is less than would be required during a traditional cloisonné technique that uses flat metal wires because the cloisonné technique requires many layers of enamel (i.e., more than two) to be baked into cells formed by the flat metal wires in order to fill the cells to the top edges of the flat metal wires. In contrast, the enamel 128 in the method 200 does not need to be filled to the top edges of the filigree wires 122 because the edges of the filigree wires 122 will protrude (e.g., stand out) from the exterior surface of the urn 100 when the method 200 is complete.
As shown in
A significant advantage of the method 200 is that the exposed edges of the filigree wires 122 do not need to be polished to be flush with the enamel 128 because the exposed edges of the filigree wires 122 have a smooth, beaded texture. Similarly, the enamel 128 also does not need to be polished because the enamel 128 is not filled at or past the filigree wires 122. Thus, less enamel 128 is used, and no polishing of the filigree wires 122 or the enamel 128 is required during the method 200.
In contrast, traditional cloisonné wires are flat wires that have sharp exposed edges that must be polished. Also, the enamel can be filled past the traditional cloisonné wires. Thus, the traditional cloisonné process requires that both the traditional cloisonné wires and the enamel be polished. Polishing the traditional cloisonné wires and the enamel so that they are flush with one another requires the use of additional machinery such as various grinding and polishing equipment, and can be very labor intensive. Thus, by using the filigree wires 122, the method 200 significantly reduces the machinery and labor needed to create a finished cloisonné product.
As shown in
In some examples, sub-step 208b is a standard electroplating process where the container body 102 or lid 110 (i.e., the parts to be plated) are the cathode of a circuit, and the metal to be plated onto these parts is the anode. Both the cathode and anode can be immersed in a solution containing ions that permit the flow of electricity. A power supply generates a direct current to the anode, oxidizing its metal atoms, and allowing them to dissolve in the solution. At the cathode, the ions in the solution are reduced at the interface between the solution and the cathode, such that they plate onto the cathode. During sub-step 208b, the cells covered by the layers of the enamel 128 are not plated.
Referring back to
Sub-step 208c can further include inspecting the cells 130 to identify areas where the enamel 128 may have unintentionally crossed from one cell 130 into another cell 130 in the decorative pattern defined by the filigree wires 122.
Additionally, sub-step 208c can include inspecting the exterior surfaces of the container body 102 and lid 110 to identify areas where the filigree wires 122 are loose. When one or more filigree wires 122 are identified as loose, sub-step 208c can include applying additional glue or solder where needed to securely attach the filigree wires 122 to the exterior surfaces of the container body 102 and lid 110.
Furthermore, sub-step 208c can include inspecting the exterior surface of the container body 102 and lid 110 to identify areas that are rough or unpolished. When it is detected that one or more areas are rough, sub-step 208c include additional wire cutting, trimming, and grinding as may be needed or desired to ensure that all of the surfaces of the urn 100 are smooth and polished.
Thereafter, step 210 can include a sub-step 210b of assembling the corresponding second threaded surface 114 (see
Once the lid fastening assembly 113 is installed, the second threaded surface 114 can thread onto the first threaded surface 112 for sealing the internal cavity 104 of the urn 100. In certain examples, cremation remains can be stored inside the internal cavity 104, and the second threaded surface 114 can be threaded onto the first threaded surface 112 for sealing the internal cavity 104 with the cremation remains therein.
Upon completion of the method 200, it can be appreciated that the urn 100, as depicted in the drawings, is a decorative piece of high artistic value that can be produced using a modified cloisonné technique with significantly reduced labor and associated costs. As described herein, the method 200 provides many significant advantages over traditional techniques, including, but not limited to (1) using the filigree wires 122 that better grip the enamel 128 to the exterior surfaces of the urn 100; (2) only two layers of enamel are applied to the urn 100; and (3) the exposed edges of the filigree wires 122 do not need to be polished to be flush with the enamel 128.
Various modifications and alterations of this disclosure will become apparent to those skilled in the art without departing from the scope and spirit of this disclosure, and it should be understood that the scope of this disclosure is not to be unduly limited to the illustrative examples set forth herein.
This application is a divisional of U.S. patent application Ser. No. 16/144,734 filed on Sep. 27, 2018, which is hereby incorporated by reference in its entirety. To the extent appropriate, a claim of priority is made to the above-disclosed application.
Number | Date | Country | |
---|---|---|---|
Parent | 16144734 | Sep 2018 | US |
Child | 17132535 | US |