The present invention relates to cribs and other usable objects (e.g., child or infant objects) More particularly, the present invention pertains to crib attachments and other breathable apparatus that, for example, protect infants or young children from harm, such as, getting limbs extended and caught between crib slats. In addition, such attachments can allow air to flow into, out of or around the interior of the crib.
Conventional baby cribs typically include side rails that are made up of top and bottom horizontal bars interconnected by a series of spaced supports (e.g., vertical slats). Frequently, babies and toddlers, while sleeping or playing in their cribs, intentionally or accidentally extend their limbs out of the crib between the slats and have difficulty drawing them back into the crib. If this occurs when the child is sleeping, the extended limbs will remain uncovered and become cold, and the child will be ultimately awakened or harmed. Many cribs also have headboards and footboards (i.e., endboards) that are also made with spaced-apart supports and the baby may also extend its arms or legs out of the crib between these slats.
Although various types of apparatus have been used to prevent such problematic situations (e.g., extension of limbs outside of the crib through the spaced-apart supports), many of such apparatus exhibit their own problems. For example, as described herein, ventilation may be problematic (e.g., such as that leading up to and resulting in suffocation). For example, crib bumpers are widely used in cribs for protecting a child from injury caused by bodily impact of the child against the sides of the crib that define the interior boundary of the crib. However, in many cases, such bumpers do not allow for adequate ventilation, or air flow, within the crib and also obstruct viewing of the child.
Infants usually breathe through their nasal passages. However, during crying or in the event their nasal passages are blocked, infants may breathe through their oral cavities. Mechanical resistance suffocation takes places when respiration is interrupted if these passages are both blocked externally by an object. When respiration is interrupted, CO2 levels in the blood rise. The body's response to this elevation in CO2 levels is to attempt more rigorous respiration. If the agent of suffocation is not removed, the incident may be fatal after two or three minutes. Further, the accumulation of CO2 or other dangerous gases inside the crib or around the infant may be a possible cause of sudden infant death syndrome (SIDS). Existing crib apparatus, such as crib bumpers, tend to trap dangerous gases inside the crib. Further, such apparatus may block the passages of infants under certain circumstances. Therefore, improvements are desirable.
Various types of other crib apparatus have been described and attempt to reduce one or more of the above problems. For example, such apparatus are described in U.S. Pat. No. 5,881,408 to Bashista et al., entitled “Mesh Crib Liner,” issued 16 Mar. 1999, and U.S. Pat. No, 6,178,573 to Wagner et al., entitled “Ventilation Upgrade Kit for a Crib Bumper and Method of Using It.”
The present invention, as described herein, addresses the problems described above and other problems of prior art systems and methods that will become apparent to one skilled in the art from the description below. For example, in a first aspect, a crib liner, suitable for use with a crib, wherein the crib has a first, second, third and fourth side configured for receiving a mattress is disclosed. The crib also includes four corners, wherein each corner is constructed as part of where two adjacent sides meet; wherein at least one first, second, third or fourth sides has a horizontal top bar and a plurality of vertical spaced support elements. The crib liner includes at least a first panel configured to cover a portion of the vertical spaced support elements. The first panel includes a breathable body portion, a bottom border, a top border and side borders and at least a first and second fastener at each end to attach the first panel to the crib. The breathable body portion includes a first material having a front layer and a back layer attached to each other and having different fabric weaves; the breathable body portion having an air permeability of between 385 CFM to 1530 CFM and a light permeability of between 47 and 99%.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed. Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
In general, the present invention is related to a crib liner that allows air to flow through it and provides for some protection from limbs getting entangled in crib slats. The crib liner can be made from any airflow material, such as mesh, and can be one or more panels for attachment to a crib. The crib liner may also allow air flow primarily in the area of an infant's head and can provide less in other areas not as critical to the infant, such as the borders of the liner. Since, in general, crib liners are removed from the crib as the infant gains the ability to sit or stand, the primary area of airflow concern is from the crib mattress surface up 4 or 5 inches in height, where the infant's head lies during sleeping. As such, for example, a crib liner that has a bottom border of 0.5 to 1 inches, a middle area of 4 to 5 inches of mesh in height and a top border of any length, say for example 10 inches can allow air flow even though the total amount of mesh makes up only 4 inches of the total 15 inches. In other words, only 26.7% of the above crib liner is mesh but it is about 100% mesh where the infant's head is resting during sleep.
In general, a crib liner, suitable for use with a crib, wherein the crib has a first, second, third and fourth side configured for receiving a mattress is disclosed. The crib also includes four corners, wherein each corner is constructed as part of where two adjacent sides meet; wherein at least one first, second, third or fourth sides has a horizontal top bar and a plurality of vertical spaced support elements. The crib liner includes at least a first panel configured to cover a portion of the vertical spaced support elements. The first panel includes a breathable body portion, a bottom border, a top border and side borders and at least a first and second fastener at each end to attach the first panel to the crib. The breathable body portion includes a first material having a front layer and a back layer attached to each other and having different fabric weaves; the breathable body portion having an air permeability of between 385 CFM to 1530 CFM and a light permeability of between 47 and 99%.
Various embodiments of crib liners shall be described with reference to
The mattress 2.6 is supported within the crib 10 by various structure not shown in
The side rail 12 generally includes a top bar 22 and a bottom bar 24 positioned approximately parallel to one another. A plurality of generally vertically-spaced side support elements 20 (i.e. slats) extend between the horizontal top bar 22 and horizontal bottom bar 24. Although less prevalent due to crib regulation, the side rail 12 in some older cribs is moveable from a raised state to a lowered state. For example, the moveable side rail 12 allows a user to lower the side rail 12 in order to have easier access to a child lying on mattress 26. As shown in
Of course, typical cribs today do not have a moveable side rail. In addition, cribs may or may not have slats on one or more sides as the current trend in cribs is to have a crib that is convertible to a toddler bed, using one or more of the crib sides (or foot and head boards) as the foot and/or headboard of the toddler bed. In some cribs typical corner posts are not apparent. Therefore reference to a corner post herein does not strictly refer to a structural member at the corner of the crib and can also simply include where two sides meet.
Side rail 14 may be similarly configured like that of side rail 12. In other words, side rail 14 may be moveable from a lowered to a raised state, and vice versa. However, side rail 14 may also be in a stationary position fixedly attached to corners 36, 31. Likewise, side rail 12 may be moveable or in a fixed position. As moveable side rails are conventional configurations, no further description is provided with respect to the mechanisms for allowing such movement thereof. In addition, any of the sides of the crib may or may not include slats and the crib may or may not include corner posts. The crib shield systems described herein also work with various mechanisms for moving side rails, e.g., side and bottom latch systems and gliding side mechanisms, fixed rails, rails with no slats, or cribs with no corner posts.
Generally, headboard 18 of crib 10 includes an upper bar 32 (e.g., in a decorative curved shape) as well as a bottom horizontal element 43, each connected in a fixed position to corners 36, 38. In a similar manner to the side rails 12, 14, generally vertically-spaced support elements 34 extend between the top bar 32 and the horizontal element 43. It will be recognized that many cribs may or may not have spaced support elements that define a part of the footboard 16 or headboard 18. For example, the headboard and footboard may be solid materials as opposed to spaced-apart supports. The footboard 16 is configured in a manner like that of headboard 18 and includes corners 31, 33. Of course, in certain cribs there may or may not be corner posts, e.g. the convertible crib. Therefore the term “corner post” could simply be where two sides meet.
As shown in
As used herein, the term mattress may include any structure disposed within crib 10 and upon which objects and/or human beings may be placed. In other words, mattress refers to any structure and not just a soft sleeping apparatus. For example, the crib could be configured into a playpen-type structure with a solid hard and/or flat bottom that is, for example, lowered very close to the floor. As such, and as used herein, a crib can be equated to and encompasses the various structures similar to a crib, such as those for containing a small child (e.g., playpens, portable cribs, basinets, convertible cribs, round cribs, or other structures including, for example, spaced-apart side supports that require an apparatus or system such as that described herein).
As further shown in
In another embodiment of the crib shield of
The fasteners 114 and 116 may be located anywhere along the vertical height of the crib shield 111 or perimeter of the crib 10.
The crib shield of
The various wrap types are illustrated in
In many embodiments, the body portion 46 has a width (e.g., W panel 1) that is less than a length (e.g., L support as shown in
Preferably, the crib liner is configured to be secured to a crib such that a portion of the liner, e.g., a bottom border 62, is located approximately between the mattress and the crib, and as such, the breathable material of the liner exposed to an infant in the crib is not significantly reduced by the bottom border 62, which may be composed of less breathable materials. Typically, the bottom border may range from 0.25 inches to 1.5 inches in height. Of course, if the bottom border is above the surface of the mattress, the crib liner is still very breathable. For example, a crib liner that has a bottom border of 1 inches, a middle area of 4 inches of mesh in height and a top border of any length, say for example 10 inches can allow air flow even though the total amount of mesh makes up on 4 inches of the total 15 inches. In other words, only 26.7% of this crib liner is mesh but it is still about 80% mesh where the infant's head is resting during sleep if the bottom border is above the surface of the mattress.
In many embodiments, the crib liner is configured to provide breathable material along the 4 sides of the crib such that the head of an infant lying in the crib is exposed to mainly breathable material. In preferred embodiments, the panel will have approximately a four (4) inch height of breathable material, or greater, above the bottom border 62, such that an infant resting against a side rail or endboard will mainly be exposed to the breathable material. It is less relevant if top and bottom boarders are breathable as they are not significantly in the area of the infant's head. Therefore, it is possible that a liner be 12 or more inches in height as long as there is approximately 3 or 4 inches or more of breathable material in the area of the infant's head when the infant is lying down resting her head against the mattress. In this example embodiment, the mesh may be only 25% of the total height of the liner, but it is substantially mesh near the infant's head where breathability matters most. In
In many embodiments, the breathable material will be configured to provide between five inches to eight inches or more of breathable material. It should be understood that the portion of breathable material may be adjusted based upon the average head size of an infant, which may be determined using available Center of Disease Control (CDC) data (e.g., average infant head circumference data). In most embodiments, the critical width of breathable material is the portion that extends from the top edge of the crib mattress and extends upward to the top of an average baby's head. In this area, the liner should include a majority or more of breathable material.
Preferably, the first side panel 42 includes a first fastening apparatus 52 at the first end 48 of the first side panel 42 and a second fastening apparatus 54 at the second end 50 of the first side panel 42. Fastening apparatus 52 includes fastening portions 53, 55, such as hook and loop closures (e.g., Velcro). In one embodiment, fastening apparatus 54 is the same as fastening apparatus 52, however, such closure structures may also be different.
Various fastening apparatus may be used to attach the first side panel as well as the other panels as described herein to a crib. For example, various types of fastening apparatus may include hook and loop closures (e.g., Velcro), snaps, buttons/buttonholes, ties, straps, buckles, zippers, etc. Although hook and loop fasteners are preferable, any other closure or fastener apparatus suitable for attaching panels to crib 10 may be used.
In one embodiment, a finishing edge material 58, or border, is provided along the periphery of the body portion 46. For example, as shown in
Further, second side panel 44 includes fastening apparatus 76 at first end 72 of the second side panel 44 and fastening apparatus 78 at the second end 74 of the second panel 44. Such fastening apparatus 76, 78 are substantially similar to the hook and loop fasteners described with respect to first panel 42. Further, in a like manner, finishing edge material 80 may be used around the perimeter of the body portion 70 as shown by the finishing material 80 along edges 81-84.
The breathable material of the body portion 46 of first side panel 42 and body portion 70 of second side panel 44 may include any suitable material that provides breathable functionality such as a mesh type material. Breathable functionality refers to the ability of the material to allow air to move effectively therethrough. As used herein, when air is indicated as moving effectively through a material, it is meant that the material includes openings (e.g., mesh openings, open-framework, spaces between elements thereof, or even those that may not be visually perceivable openings but still allow a breathable function to occur) that do not impede air movement to an extent that would prevent a human being from breathing through (e.g., when a human's respiratory openings (e.g., nose/mouth) are in direct contact with a material) such a material in order to help prevent suffocation and further that such openings are too small to permit an infant to insert a finger or toe therethrough. For example, such materials may include cotton, silk, polyester, nylon, modal/semi-cellulose based fabrics, etc.
In one embodiment, the mesh-type material may include a mesh available from Apex Mills, Inc. under the trade designation TA1 Mesh. However, other various similar mesh materials (e.g., mesh material having suitable openings) are available. A Suffocation Hazard Assessment was performed by RAM Consulting (Oak Brook, Ill.) (e.g., the Assessment is further described herein and for which protocol is available from RAM Consulting) on the TAI Mesh resulting in average readings of 1.6 cm H2O and, for an upper specification limit of 5 cm H2O, a Z-value of 9.0 was obtained.
In one example embodiment, the breathable material is a breathable mesh-type material 300 (e.g., a padded spacer mesh), such as that shown generally in
The meshes or other fabrics shown in
It will be recognized that the thickness of the padded mesh material may vary, as well as for other materials described herein. For example, more padding may create a softer more plush effect with slightly different breathability/ventilation properties and more opaqueness (e.g., less light transmissive) whereas less padding may create more breathability and buoyancy with less opaqueness (e.g., more light transmissive). Preferably, the panels described herein are at least somewhat transparent such that at least motion of the child in the crib can be seen.
Yet further, the padded mesh material is collapsible. As such, when installed or uninstalled, should a child stand on it, the material will collapse. This reduces the risk of the mesh material being leverage to a climbing infant (unlike most conventional bumpers).
The breathable material may be a woven polymeric fiber mesh material that is integrated with or attached to a front and/or back substructure 391, 392. The front substructure 391 may include larger openings on the front substructure 391 than on the back substructure 392. In one example embodiment, the padded mesh material 300 may be integrated with or attached to the front and back substructures 391, 392 by weaving the fibers that are provided as part of the pile substructure 393 through the front and back substructure 391, 392 as shown in
In one embodiment, for example, the breathable padded mesh material 300 may include a padded spacer mesh available from Apex Mills, Inc. under the trade designation DNB27 Spacer Mesh. However, other various similar padded spacer mesh materials are available.
In another embodiment, the mesh-type material is a breathable padded mesh material in combination with one or more other material layers. For example, the breathable padded mesh material may be used in combination with one or more layers of other material adjacent to (e.g., one material laid flat against the other) either the front substructure and/or back substructure of the breathable padded mesh material. In various embodiments of such a combination, one or more layers of material may be used adjacent the front substructure, one or more layers of material may be used adjacent the back substructure, or one or more layers of material may be used adjacent the front substructure and the back substructure. For example, such additional layers may be layers of cotton material, knit jersey material, etc. Such additional material layers may provide additional benefits such as, for example, thermal properties with breathability.
Further, for example, the breathable material when used alone, or in combination with one or more additional layers, may be a breathable material (e.g., a breathable padded mesh material, such as a spacer mesh) that has a suffocation resistance level of less than about 15 cm H.sub.2O, and preferably less than about 5 cm H2O. Such a suffocation resistance is determined according to the RAM Consulting Virtual Child Suffocation Hazard Assessment Model which is a physical model and testing methodology that quantitatively assesses the potential suffocation hazards posed by various types of materials. The details of this Model are available from RAM Consulting (Oak Brook, Ill.) Further, according to this Model, Z-values are determined that are statistical measurement tools that describe and predict product performance in relation to its specification limit (e.g., such as those described below). For example, the suffocation resistance limit of 5 cm H.sub.2O is an upper specification limit for materials or products that foreseeably are used and/or intended for young infants with high accessibility; and further, the suffocation resistance limit of about 15 cm H2O is an upper specification limit for other materials or products (e.g., those for toddlers). A Z-value of 4.0 or greater with the corresponding upper specification limit for each applicable testing technique is required for a product to be classified as a very low suffocation risk. The details regarding the determination of Z-values are available from RAM Consulting (Oak Brook, Ill.).
Suffocation Hazard Assessment was performed by RAM Consulting (Oak Brook, Ill.) on various configurations using the breathable padded mesh material available from Apex Mills, Inc. under the trade designation DNB27 Spacer Mesh.
1 Configuration 1: Single Layer of Padded Spacer Mesh Configuration 2: Layer 1: Padded Spacer Mesh Layer 2: Cotton Configuration 3: Layer 1: Knit Jersey Layer 2: Padded Spacer Mesh Layer 3: Cotton Configuration 4: Layer 1: Cotton Layer 2: Padded Spacer Mesh Layer 3: Cotton Configuration 5: Layer 1: Knit Jersey Layer 2: Padded Spacer Mesh Layer 3: Knit Jersey Configuration 6: Layer 1: Padded. Spacer Mesh Layer 2: Flannel Fabrics tested: Knit Jersey Manufacturer: NATEX Content: 50% Polyester/50% Cotton Knit Jersey Style#: INT Cotton Manufacturer: SOUTHERN BELLE Content: 100% Cotton Style#: L93N67 Flannel Manufacturer: QUILTERS CORNER Content: 100% Cotton Style#: RN41324.
A screening was performed on all configurations in both a dry and wet state. The spacer padded mesh when layered with fabrics resulted in a satisfactory reading based on values in cm H2O, wherein the specification upper limit for products young children are intended to lie on is equal to 5 cm H2O (e.g., mattress pads or items young infants are intended to have their face on) and wherein the specification for products young children are not intended to lie on is equal to 15 cm H2O.
Four individual readings were performed with an average being determined. Dry state readings did not register, thus presenting very low hazard when the configurations were dry (i.e., under the 5 cm H2O specification limit). In the wet state (after application of 8 ml of sprayed on water), the average readings for the configurations were between 4.6 cm H2O and 6.2 cm H2O.
For the individual single layer of spacer padded mesh, average readings of 1.7 cm H2O were taken. Further, for an upper specification limit of 5 cm H2O, a Z-value of 9.5 was obtained.
As shown in
In at least one embodiment, the first side panel 42 is configured to cover at least a portion of the first side rail 12 and to extend along the length of the crib 10. As used herein when a panel extends along the length of the crib 10, it will be recognized that the panel may not extend completely along the entire length, but may end proximate the headboard and footboard. For example, depending upon the fastening techniques used, the panel may be attached a short distance from the corners of the crib (see panel 42 as shown in
In a like manner, second side panel 44 is attached to the crib 10. For example, the second end 74 of the second side panel 44 is wrapped about spaced support element 35 of headboard 18. Fastening apparatus 78 (e.g., Velcro closures) is used to fasten the second end 74 about the support element 35.
Further, as shown in
One will recognize that the second side panel may be attached to any number of different support elements, may be fed around and/or to the outside of one or more spaced support elements, and, as with the first side panel 42, is pulled taut prior to fastening to keep the second side panel 44 in position. Further, the weaving of the second side panel 44 around the corners and/or around one or more of the spaced support elements also assists in maintaining the second side panel 44 in position (e.g., in a position higher on the crib 10 when the mattress is raised relative to the floor and lower in the crib 10 when the mattress is lowered to the floor). In addition, any of the panels may be positioned such that a portion of the panel is below the upper surface of the mattress (e.g., a few centimeters below the surface along the side of the mattress) to assist in securing the crib and preventing arms and legs from going under the panel.
In another embodiment, the crib shield system may comprise a single side panel. As contemplated herein, the crib shield system or crib liner may be one or more panels and may or may not include a bottom panel (that lies under the mattress). As shown in
The single side panel 111, as shown in
Further, as shown in
In one embodiment as shown in
Further, as shown in
As shown in the exemplary embodiment of
The illustrated embodiment of crib shield system 100 includes a first side panel 102 and a second side panel 104 for attachment to respective side rails 12, 14. Further, the crib shield system 100 includes a first end panel 106 for attachment to the footboard 16 and a second end panel 108 for attachment to the headboard 18.
The body portion 120 extends along a length (L panel 1) extending from a first end 122 of the first side panel 102 to a second end 124 thereof. Further, the laid flat first side panel 102 has a width (W panel 1) that is sized to cover at least a majority portion of side rail 12. However, the first side panel may cover less than a majority portion.
The first side panel 102 further includes a fastening apparatus 126 that extends along an entire edge 144 of the side panel 102 for use in attaching the side panel 102 to the top bar 22 of the side rail 12, as is shown in further detail in
In various embodiments, the fastening apparatus 126 may be a series of straps or ties intermittently disposed along the edge 144 of the side panel 102 for use in attaching the side panel 102 to the top bar 22 of the side rail 12. Each of the straps or ties of fastening apparatus 126, at least in one embodiment, includes first and second fastening portions 147, 148 that are both for mating with one another in order to hold the first side panel 102 in a fixed position relative to side rail 12.
As shown in
In another embodiment, the padded portion 150 may be removably attached to the fastening apparatus 126. For example, the padded portion 150 may comprise a strip of padded material with one fastening side, the fastening side designed to be removably attached to the fastening apparatus 126 using hook and loop fasteners, snaps, zippers, or other appropriate fastening apparatus. The padded material may be any suitable material, not just the aforementioned mesh-type material.
For example, as shown in
The rail cover 103 may include multiple layers of material.
One skilled in the art will recognize that many types of closures may be used to provide the attachment functionality, such as those described previously herein with respect to crib shield system 40. In one particular embodiment, all of the closures are provided with hook and loop fasteners (e.g., Velcro fasteners). In such a manner, no ties are necessary, which eliminate additional material that could be grabbed by a small child and pulled upon.
It will be readily understood that second side panel 104 is substantially similar to that of first side panel 102. In addition, the attachment of second side panel 104 to side rail 14 is performed in substantially the same manner as the attachment of first side panel 102 to side rail 12 of crib 10.
At least one other fastening apparatus, such as fastening apparatus 176, are provided at one or more positions along an edge 184 opposite edge 183 to allow a user to pull the panel taut across the headboard 118 when fastening apparatus 166 has been attached to support element 37. Such fastening apparatus 176 can be thereafter used to secure the end panel 108 around support element 35 and maintain the end panel 108 in a taut position adjacent the support elements 34. In one embodiment, the fastening apparatus 176 includes hook and loop fasteners 177-179 (e.g., Velcro closures) positioned along edge 184 using a body of material 193 that can be wrapped about support element 35.
It will be readily understood that a second end panel 106 may be substantially similar to that of first end panel 108. In addition, the attachment of second end panel 106 to the footboard 16 is performed in substantially the same manner as the attachment of first end panel 108 to headboard 18 of crib 10.
Both the side panel 102 and the end panel 108 may be provided with associated finishing material for functional or decorative purposes (e.g., to prevent the fraying of mesh material of body portion 120, to provide further padding, etc.). For example, as shown in
In another embodiment, the crib shield system may comprise a crib liner with two side panels 106,108, two end panels 102,104, and a bottom panel 428, where the side and end panels are attached to the bottom panel.
The air permeability of breathable materials 900, 920, and 940 may allow the breathable material to be layered with other breathable material (e.g., 900, 920, 940, etc.) to create a layered crib liner, while still maintaining air permeability (CFM).
Testing was conducted by Bureau Veritas in accordance with ASTM D737 standards to determine the air permeability (CFM) of a single layer of textile materials. Additionally, various combinations of layered materials 900, 920, and 940—such as those described in paragraph 0129—were also tested to determine air permeability. For example, The single layer of breathable material 900 with a thickness of 0.13 inches provided an air permeability of 1013.1 CFM, similar to the 1.6 cm H2O discussed in paragraph 0067 above. Adjusting the properties (e.g., thickness, weave pattern, etc.) of the single layer of a breathable material may allow the air permeability to achieve an air permeability of at least 1250 CFM. Adjusting the properties (e.g., thickness, weave pattern, etc.) of the layered breathable material may allow the air permeability to achieve an air permeability of at least 900 CFM.
The breathability of the body portion 46 of a crib liner can be measured using a variety of methodologies, including air permeability, mesh coverage (both location and cover factor measurement via light microscopy), light permeability as measured by photodetector, spectrophotometer or by transmittance or blocking of ultraviolet radiation, or other suitable tests. Preferably, the body portion 46 has an air permeability of between 385 CFM to 1530 CFM. Of course, the higher the air permeability the more breathable the material is. Preferably, the body portion 46 has a mesh coverage of between 32% and 91%. Mesh coverage is measure of the holes versus material in a mesh material. Preferably, the body portion 46 has a light permeability by photodetector of between 47% and 99%, by spectrophotometer of between 4 and 71%, and by ultraviolet radiation of between 47% and 100%. The tested samples may have one or more layers that compose the crib liner and may or may not be “padded”. The below chart illustrates tests performed on various samples of materials that could comprise the body portion 46:
In contrast, competing crib bumpers provide a CFM of less than 100 CFM.
As illustrated in
The top portion 410a and the bottom portion 410b of the crib liner 410 may be similar materials or different materials. In one embodiment, the top portion 410a and the bottom portion 410b may be fabric material provided for aesthetic purposes to improve the appearance of the mesh fabric 410c. According to another embodiment, the top portion 410a and the bottom portion 410b may be a cushioning material, such as fabric material filled with padding.
The crib liner 410 may be weaved in and out of each of the slats 404 as shown in
According to one embodiment, the crib liner 410 may be a one-piece liner wrap design. The crib liner 410, when a one-piece liner wrap design, may be adjusted for different crib sizes by wrapping the liner 410 multiple times around the slats 404 to consume a portion of the liner 410 in excess length that the perimeter of the crib 402. According to other embodiments, the crib liner 410 may be a multi-piece liner. For example, the crib liner 410 may include several lengths of shorter material, which may be assembled together to form an appropriate length for the crib 402. Thus, the crib liner 410 may be adapted for use on cribs of different sizes.
Additional detailed illustrations of the crib liner 410 are shown in
Further details of the crib liner 410 are described below with reference to
The crib slat pads 420 may be attached to the slats 404 through attachment mechanisms such as, for example, sewing, snapping, tying, zipping, Velcroing, buttoning, free form molding, clipping, and/or strapping the slat pads 420 to the slats 404. According to one embodiment, the slat pads 420 are separate pieces that are inserted between the slats. According to another embodiment, the slat pads 420 line the inside of the crib 402 and adhere to the slats 404.
In certain embodiments, such as that of
Other configurations of the crib liner 410 with one or more fabric layers in the mesh are possible. According to one embodiment, the mesh 410 may include two or more cotton or poly-breathable outer layers with a breathable spaces mesh in-between the two or more outer layers. According to another embodiment, the mesh 410 may include two or more cotton or poly-breathable outer layers with a breathable poly foam in-between. According to yet another embodiment, a breathable poly foam may be placed in-between a thin mesh and a spacer mesh. Each of these configurations may comprise the entire liner 410 or may be added to the crib liner 410 as additional layers. Further, these configurations may be applied to any of the embodiments described in this disclosure.
In an alternative example embodiment,
In another alternative example embodiment,
In another alternative example embodiment,
In another alternative example embodiment,
In another alternative example embodiment,
In yet another alternative embodiment,
As is apparent from
In some exemplary embodiments, the panels are formed substantially of a breathable material (e.g., mesh-type material). However, in some configurations, the panels may be formed of less than substantially of a breathable material. For example, a majority of the area of a panel may be formed of a breathable material. In other configurations, less than a majority of a panel may be formed of a breathable material, such as some of the configurations discussed herein.
The panels formed of the mesh-type material may be used in combination with one or more layers of other material adjacent to the mesh-type material. For example, in one embodiment the body portion of the panels may be formed with strips of padded material attached to the mesh-type material on one side. The strips of padded material may be disposed such that when the panels are attached to a crib, the padded materials line up with the vertical support elements of the crib and offset the mesh-type material from the vertical support elements, thus providing additional padding. The padded material may be any suitable material, not just the aforementioned mesh-type material.
The breathable materials allow for air circulation. When a padded, soft breathable mesh material is utilized, further protection is provided to a child from bodily harm. When using one or more of the breathable mesh materials described herein, it is preferred that little rebreathing of carbon dioxide occur when a child's face is in direct contact with the material.
One skilled in the art will recognize that various types of padding may be used in addition to the breathable material in order to form one or more of the shapes of the objects previously described herein. Further, for example, such padding materials may be the breathable padded mesh material itself and/or other breathable materials, such as cotton, jersey, flannel, polyester, nylon, rayon, gabardine, terry cloth, etc.
The preceding described embodiments are illustrative of the practice of the invention. It is to be understood, therefore, that other expedients known to those skilled in the art or disclosed herein may be employed without departing from the invention or the scope of the appended claims. For example, various apparatus or steps of one embodiment described herein may be used with one or more other embodiments described herein to form various combinations of methods, systems, or apparatus contemplated by the present invention. As such, the present invention includes within its scope other methods, systems and apparatus for implementing and using the invention described herein.
This application is a continuation of U.S. patent application Ser. No. 15/729,514, filed on Oct. 10, 2017, which claims the benefit of U.S. Provisional Patent Application No. 62/559,117, filed Sep. 15, 2017. The contents of the aforementioned applications are incorporated herein in their entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62559117 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15729514 | Oct 2017 | US |
Child | 16699675 | US |