Not Applicable
1. Technical Field of the Invention
The present disclosure generally relates to an air circulating device, and more specifically to an air circulating device for flushing dangerous gases, such as carbon dioxide, from a crib and supplying fresh oxygenated air into the crib.
2. Description of the Related Art
One of the primary concerns for parents is the health and safety of their child. The medical field is well aware of several health conditions which may afflict children, and in the case of most health conditions, the medical field has identified a root cause which triggers that particular health condition. However, one of the more worrisome health conditions that plague young children is Sudden Infant Death Syndrome (SIDS), which is associated with the sudden death of an infant and remains unexplained after a thorough autopsy and death scene investigation, as well as a review of the clinical history. In this regard, SIDS differs from several other medical conditions because the cause remains unknown.
Despite the causes of SIDS being unknown, recent studies have indicated that the addition of a fan within the child's nursery may help reduce the likelihood that an infant may suffer from SIDS. Researchers believe that fans may promote circulation of fresh air, which mitigates the chances of an infant breathing exhaled carbon dioxide, which could lead to suffocation.
Poor air circulation within the crib may be worsened when the crib is outfitted with crib bumpers. Typical crib bumpers range from about 6″ to about 10″ in height and are typically fabricated from a sponge, rubber or polymer material and having a covering of material such as fabric, polymer sheeting or the like. The bottom edge of the conventional crib bumper, in essence, creates a seal with the upper surface of crib mattress so that concentrations of dangerous heavy gasses, such as carbon dioxide, collect within the crib in the region where the infant will lie. In this regard, the bumper effectively forms a substantially confined space, similar to a shallow pool, such that if there is poor air circulation in the infant's room, the oxygen supply to the infant may be inadequate for optimum healthy conditions.
Conventional fans are well-known and are capable of circulating air. However, the conventional fan may cause more harm than good when placed in an infant's nursery. For instance, many commercially available fans are intended to cool a large area or an entire room, and thus, the use of such fans to circulate fresh air for purposes of reducing the incidence of SIDS may overcool the infant, thereby adversely impacting the baby's health. Moreover, the noise from many commercially available fans may disturb the sleeping infant. Another drawback to most conventional fans is that they include sharp blades which rotate at high speeds and pose a safety risk to the infant if the fan is located within or near a baby's crib. The sharp fan blades may cut or injure the baby's limbs, toes or fingers. Conventional fans may also raise a strangulation and/or an electrocution concern if the fan includes a power cord that is within reach of the infant. As such, conventional fans tend to be too powerful, too loud and tend to create too many safety concerns.
Accordingly, there is a need in the art for a device that can safely and effectively circulate air near an infant so as to flush carbon dioxide away from the infant without presenting sharp blades or dangerous power cords within reach of an infant located within a crib. Various aspects of the present invention are directed toward addressing these needs, as will be discussed in more detail below.
Various aspects of the present invention are directed toward a circulation unit configured and adapted to induce fluid circulation within a crib to flush out dangerous gases, such as carbon dioxide, which may accumulate near the surface of the crib mattress over time, and replenish that area with fresh air. The circulation unit is specifically configured and adapted to create the aforementioned circulation while minimizing injury concerns associated with the circulation unit.
According to one embodiment, the circulation unit includes a dual-fan unit including a first fan and a separate second fan. The first fan is configured to draw in fresh air from the ambient environment and direct the fresh air into the crib, while the second fan is configured to draw in potentially harmful/dangerous gas from the crib and expel the dangerous gas to the ambient environment. The dual fan unit is fluidly coupled to a venting unit via a pair of fluid conduits. The venting unit is placeable within the crib, while the dual fan unit is placeable outside of the crib so as to distance the infant from electrical components and potentially harmful mechanical components, such as the fans.
The circulation unit may include a microprocessor for enabling programmable operation of the circulation unit. The microprocessor may be in communication with a wireless communication module for enabling remote monitoring or operation of the circulation unit. The circulation unit may be configured to operate in connection with a software application downloadable onto a remote computing device to enable remote monitoring and operation. The microprocessor may also be in communication with one or more sensors which sense local environmental parameters.
The presently contemplated embodiments will be best understood by reference to the following detailed description when read in conjunction with the accompanying drawings.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which:
Common reference numerals are used throughout the drawings and the detailed description to indicate the same elements.
Referring now to the drawings, wherein the drawings are for purposes of illustrating a preferred embodiment of the present invention only, and are not for purposes of limiting the same, there is depicted a circulation unit 10 for circulating air within a crib 12 to reduce the likelihood that an infant laying within the crib 12 suffers from Sudden Infant Death Syndrome (SIDS). The circulation unit 10 is specifically configured and adapted to generate air circulation within the crib 12 without introducing sharp or unsafe blades within close proximity to the child within the crib 12. Furthermore, the circulation unit 10 is configured to mitigate any strangulation concern either by eliminating any electrical cord or distancing the electrical cord from the child within the crib 12, such that the electrical cord is out of reach.
Referring now specifically to
The dual fan unit 14 may be configured such that the first fan 18 and second fan 20 are stacked vertically, as shown in
The venting unit 16 is configured to deliver fresh air supplied by the first fan 18 into the crib 12 and draw in carbon dioxide from within the crib 12 and communicate that carbon dioxide to the second fan 20. In this regard, the venting unit 16 is complimentary to the dual fan unit 14, and comprises a first region 30 in communication with the first fan 18 and a second region 32 in communication with the second fan 20. According to one embodiment, the venting unit 16 is simply a structural member which delivers fresh air and draws in carbon dioxide or other undesirable gases. The venting unit 16 preferably includes a grate 34 so as to prevent large objects from becoming lodged within the venting unit 16 and inhibiting fluid flow through the system. The venting unit 16 preferably does not include any electrical components or moving components which may be dangerous to the child. In this regard, any electrical components or moving components (e.g., fan blades) are located in the dual fan unit 14, which is spaced from the interior of the crib 12 in a safe location out of the child's reach.
The venting unit 16 fluidly communicates with the dual fan unit 14 via a pair of conduits 36, 38. According to one embodiment, the conduits 36, 38 are preferably formed from flexible tubing so as to facilitate ease of routing of the conduits 36, 38 through the walls/slots of the crib 12. In another embodiment, the conduits 36, 38 may be formed from rigid, non-bendable tubing.
A first conduit 36 extends from the first outlet 24 on the dual fan unit 14 to the first region 30 of the venting unit 16 so as to communicate fresh air from the first fan 18 to the first region 30 of the venting unit 16. In this regard, the first conduit 36 is in fluid communication with the first fan 18 as well as the first region 30 of the venting unit 16. A second conduit 38 extends from the second region 32 of the venting unit 16 so as to communicate carbon dioxide drawn in to the second region 32 to the second fan 20 for exhausting outside of the crib 12. The second conduit 38 is in fluid communication with the second fan 20 and the second region 32 of the venting unit 16 so as to effectuate fluid communication therebetween.
The circulation unit 10 may optionally include one or more filters to purify the fluid exhausted by the circulation unit 10. In particular, a first filter may filter air expelled into the crib 12 from the first fan 18, while a second filter may filter air expelled away from the crib 12 from the second fan 20. The filter(s) may be located in the dual fan unit 14, the venting unit 16 or in the conduits 36, 38. The filter(s) may be a HEPA filter or other filter known by those skilled in the art.
Referring now specifically to
Power is preferably supplied to the dual fan unit 14 via a rechargeable battery. In other embodiments, the dual fan unit 14 may be solar powered, powered via replaceable batteries, or powered via a power cord that is plug connectable into a conventional wall socket.
According to various embodiments, the circulation unit 10 may be configured to operate in any one of several different operational modes. In one embodiment, the circulation unit 10 includes an ON/OFF switch 35 to allow for manual operation thereof. More specifically, by turning the switch to the ON position, the first and second fans 18, 20 are turned on and operate continuously until the switch is subsequently moved to the OFF position. The circulation unit 10 may include a single ON/OFF switch 35 for controlling operation of the first and second fans 18, 20 (i.e., the first and second fans 18, 20 always operate in concert with each other). Alternatively, the circulation unit 10 may include separate ON/OFF switches for enabling separate and independent operation of the first and second fans 18, 20. In this regard, the user may turn the first fan 18 on, while leaving the second fan 20 off, or vice versa. The ON/OFF switch(es) may also enable control of the first and second fans 18, 20 in several different fan speeds, for instance, low speed, medium speed, or high speed.
According to another embodiment, the circulation unit 10 may be more sophisticated to allow for advanced operational modes. In one implementation, the circulation unit 10 includes a microprocessor/controller in operative communication with the first and second fans 18, 20 for controlling operation of the fans 18, 20 in accordance with prescribed operational parameters.
According to one aspect of the invention, the microprocessor 44 is in operative communication with a programmable timing module 46, which enables the user to set the times which the fans 18, 20 operate. For instance, it may be desirable to operate the fans 18, 20 for a couple minutes every half-hour between a defined start time and a defined end time to flush carbon dioxide which may otherwise accumulate inside the crib 12. The timing module 46 may also have one or more pre-programmed operational modes which may be selected by the user.
According to another embodiment, the circulation unit 10 may be configured to operate autonomously (i.e., without input from the user) on an as-needed basis depending on the local environmental conditions within the crib 12. Along these lines, the circulation unit 10 may include one or more sensors for monitoring various local conditions. The sensors 48 are in operative communication with the microprocessor 44 which is programmed to operate the first fan 18 and/or second fan 20 when the sensors 48 sense a condition which exceeds a prescribed operational threshold. In other words, when the sensed local conditions within the crib 12 fall outside of acceptable limits, the circulation unit 10 begins to operate until the local conditions are within an acceptable range.
The sensors 48 incorporated into the circulation unit 10 may include, but are not limited to, a proximity sensor, an oxygen sensor, a carbon dioxide sensor, a temperature sensor, a light sensor. For instance, the oxygen sensor may be capable of sensing the oxygen levels within the crib 12. If the oxygen level is acceptable, the circulation unit 10 may remain off. However, if the oxygen sensor detects a low oxygen level, the microprocessor may communicate a signal to the fans 18, 20 to initiate operation. As the fans 18, 20 operate, the oxygen levels should begin to rise, and once the oxygen sensor detects an acceptable oxygen level, the microprocessor may communicate a signal to the fans 18, 20 to cease operation.
According to another aspect of the invention, the circulation unit 10 may be configured to enable remote monitoring and/or operational control through a wireless communication module 50 in communication with the microprocessor 44. The wireless communication module 50 may be capable of communicating in several different wireless communication protocols, such as Bluetooth™, WiFi, or other wireless communication protocols known by those skilled in the art. In this regard, a user may monitor operation of the circulation unit 10 on a remote computing device, such as a smartphone, tablet computer, PDA, desktop computer, laptop computer or other computing devices known in the art.
Given the widespread use of smartphones and tablet computers, the circulation unit 10 may be associated with a software application (“app.”) (i.e., a set of computer executable instructions) that is downloadable on the smartphone or tablet computer to enable monitoring and operation of the circulation unit 10 via the smartphone or tablet computer. The software application may be capable of displaying the local conditions detected by the sensors 48, send alerts when the local conditions exceed prescribed thresholds, provide alerts as to the baby's movement (or lack thereof), provide power level updates (i.e., when the battery needs to be charged), provide updates as to when operational cycles begin and end. The software application may also be capable of serving as a baby monitor to provide visual or audible signals detected from within the crib 12. Along these lines, the circulation unit 12 may include a microphone 52 and/or a video camera 54 to detect audible and/or visual occurrences from within the crib 12. The microphone 52 and/or video camera 54 may be directly mounted to the venting unit 16 or the dual fan unit 14. Alternatively, the microphone 52 and/or video camera 54 may be separate units remote from the venting unit 16 and dual fan unit 14, and may be in operative communication with the microprocessor 44, such as via the wireless communication module 50, to allow for remote monitoring and operational control.
The software application may allow the user to control the circulation unit 10 remotely. For instance, the software application may provide a user interface on the remote computer (i.e., smartphone or tablet computer), which allows the user to control operation of the circulation unit 10. In particular, the user may turn the circulation unit 10 on or off, as well as modify programmed operational parameters.
It is also contemplated that the circulation unit 12 may include a heating element 56 in thermodynamic communication with the first fan 18 to enable heating of the fresh air blown into the crib 12. The heating element 56 is preferably located in the dual fan unit 14, and is thus located outside of the crib 12 and out of the child's reach. The heating element 56 may be in operative communication with a temperature sensor to automatically turn on when the sensed temperate falls below a prescribed threshold. The heating element 56 may also be remotely controlled by the user through the software application.
Referring now specifically to
The circulation unit 110 may be mounted on the crib 12 or placed on a supporting structure adjacent the crib 12, such as a nightstand or the like, and aimed such that the crib facing side 114 faces the crib 12 and the outwardly facing side 116 faces away from the crib 12. The circulation unit 110 is preferably arranged such that the crib facing side 114 faces the crib 12 with the second inlet 120 located adjacent the top surface of the crib mattress 42 to allow the second fan to draw in carbon dioxide or other undesirable gases which may accumulate within the crib 12. The first outlet 118 is located on top of the second inlet 120 to direct fresh air into the crib 12.
The circulation unit 110 is preferably powered by a rechargeable battery, although replaceable batteries or a power cord may also be used.
Referring now to
Referring now to
The circulation unit 210 is unique in that it includes an elongate first fluid bar 214 in fluid communication with a first fan in the dual-fan unit 212 to supply fresh air into the crib 12, and an elongate second fluid bar 216 in fluid communication with a second fan in the dual-fan unit 212 to draw in dangerous gases which have accumulated within the crib 12. The first and second fluid bars 214, 216 may be placed along opposed edges of the crib 12, preferably within the crib along opposed longitudinal edges of the crib 12, although the fluid bars 214, 216 may also be placed along opposed latitudinal edges of the crib 12 or outside of the crib 12 without departing from the spirit and scope of the present invention. Each fluid bar 214, 216 includes a plurality of apertures 218, 220 which either delivery fresh air into the crib 12, or draw in dangerous gases from the crib 12. The elongate nature of the first and second fluid bars 214, 216 creates a fluid flow along a length of the crib mattress 42, rather than creating circulation from a single location. Furthermore, the opposed locations of the first and second fluid bars 214, 216 induces a planar fluid flow across the surface of the mattress 42 in a plane preferably within which the infant is located.
Referring now to
The cover 306 is adapted to fit around the lower portion of the housing 304 (i.e., that portion of the housing including the fans 308, 310) and to engage with the crib 12. The cover 306 may include one or more attachment straps 315 which may wrap around a portion of the crib 12, such as a vertically extending crib bar. The cover 306 includes a grate or vents on the crib facing side 312, as well as the outwardly facing side 314 to allow for fluid communication through the circulation unit 302. In this respect, the cover vents are preferably positioned adjacent the fans 308, 310 to optimize fluid flow through the circulation unit 302. The cover vents are preferably small in size to prevent an infant from inserting their finger(s) into the vents.
The housing 304 and cover 306 are complimentary in shape so as to allow the housing 304 to be easily received within the cover 306. According to one embodiment, the housing 304 includes an enlarged upper section having a lower lip 320 which is complimentary in shape to a corresponding upper lip 322 formed on the cover 306. The housing 304 may be inserted into the cover 306 until the lower lip 320 of the housing 304 engages with the upper lip 322 of the cover 306.
The housing 304 and cover 306 may include one or more locking mechanisms which prevent a child from removing the housing 304 from the cover 306. For instance, the housing 304 may include a tab or button 324 which extends through a corresponding opening 326 formed in the cover 306. The button 324 and opening 326 may be sized and configured such that when the housing 304 is completely inserted into the cover 306, the button 324 snaps through the opening 326. In order to remove the housing 304 from the cover 306, the user simultaneously presses the button 324 and pulls up on the housing 304.
The circulation unit 302 may be powered by a rechargeable battery, and thus, the circulation unit 302 may include a port 328 for recharging the battery. The port 328 may be a USB port, a micro USB port or other ports known by those skilled in the art. In addition to charging the battery, the port 328 may be connectable to a cable (such as a USB cable) to connect the circulation unit 302 to a computer to enable programming of the circulation unit 302. For instance, a user may program several operational settings or preferences. The cover 306 may include a corresponding port opening 330 which is formed in the cover 306 such that when the housing 304 is completely inserted within the cover 306, the port opening 330 is aligned with the port 328 so as to enable insertion of a charging cable or programming cable into the port 328 through the port opening 330.
According to one embodiment, the circulation unit 302 additionally includes a user interface 332 which displays environmental information, operational information, and additionally allows a user to adjust various settings. In this respect, the circulation unit 302 embodies several of the components shown and described above in relation to
Referring now to
The mobile computing device 362 is capable of downloading a software application including a set of computer executable instructions for configuring the mobile computing device 362 to interface with the circulation unit 302 via wireless communication. In this respect, the mobile computing device 362 and circulation unit 302 may each include wireless transceivers capable of communicating in at least one of several different wireless communication protocols, including Bluetooth™, WiFi, or other protocols known by those skilled in the art.
According to one embodiment, the software application configures the mobile computing device 362 to operate as a remote user interface. As such, once the software application is downloaded onto the mobile computing device 362, the mobile computing device 362 may be capable of performing all of the functions of the user interface 332 described above. In this respect, software application may configure the mobile computing device 362 to include a temperature display 340a, an Oxygen display 342a, a settings button 344a, an “UP” button 346a, a “DOWN” button 348a, and a “MENU” button 350a. Although a power button, calendar, and clock are not shown on the mobile computing device 362, it is contemplated that the mobile computing device 362 may also display those features.
The mobile computing device 362 shown in
This disclosure provides exemplary embodiments of the present invention. The scope of the present invention is not limited by these exemplary embodiments. Numerous variations, whether explicitly provided for by the specification or implied by the specification, such as variations in structure, dimension, type of material and manufacturing process may be implemented by one of skill in the art in view of this disclosure.
This application claims the benefit of U.S. Provisional Application No. 61/918,580, filed Dec. 19, 2013, the contents of which are expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61918580 | Dec 2013 | US |