CRII: SHF: A New Foundation for Attack Trees Based on Monoidal Categories

Information

  • NSF Award
  • 1565557
Owner
  • Award Id
    1565557
  • Award Effective Date
    3/1/2016 - 8 years ago
  • Award Expiration Date
    2/28/2018 - 6 years ago
  • Award Amount
    $ 70,271.00
  • Award Instrument
    Standard Grant

CRII: SHF: A New Foundation for Attack Trees Based on Monoidal Categories

Title: CRII:SHF: A New Foundation for Attack Trees Based on Monoidal Categories <br/><br/>Attack trees are a modeling tool used to assess the threat potential of a security critical system. They have been used to analyze the threat potential of the cybersecurity of power grids, wireless networks, and many others. Attack trees for real-world security scenarios can grow to be quite complex and manipulating such large and complex trees without a formal semantics can be dangerous. The intellectual merits of the research are twofold: 1) It develops, using the power of linear logic and category theory, a new mathematical semantics of attack trees that is more general than existing models; 2) It designs a new domain-specific programming language for conducting threat analysis using attack trees. The language is specifically designed for not only the construction and manipulation of attack trees, but also for the ability to verify properties of attack trees. The project's broader significance and importance are improvement of security and reliability of software, training of a diverse group of undergraduate students at Georgia Regents University in principles of programming languages and security, and exposing them to research.<br/><br/>The project's first step is to give attack trees a categorical semantics in symmetric monoidal categories. Then based on this semantics, and the connection between linear logic and symmetric monoidal categories, the project develops a new<br/>statically-typed linear functional programming language called Lina (Linear Threat Analysis). Types in Lina correspond to attack trees, and programs between attack trees correspond to semantically valid transformations of attack trees. Therefore, designing and manipulating complex attack trees in Lina provides a higher confidence that the resulting analysis is correct.

  • Program Officer
    Anindya Banerjee
  • Min Amd Letter Date
    2/4/2016 - 8 years ago
  • Max Amd Letter Date
    2/4/2016 - 8 years ago
  • ARRA Amount

Institutions

  • Name
    AUGUSTA UNIVERSITY RESEARCH INSTITUTE, INC.
  • City
    Augusta
  • State
    GA
  • Country
    United States
  • Address
    1120 Fifteenth Street
  • Postal Code
    309120004
  • Phone Number
    7067212592

Investigators

  • First Name
    Harley
  • Last Name
    Eades III
  • Email Address
    heades@augusta.edu
  • Start Date
    2/4/2016 12:00:00 AM

Program Element

  • Text
    CRII CISE Research Initiation

Program Reference

  • Text
    SOFTWARE & HARDWARE FOUNDATION
  • Code
    7798
  • Text
    PROGRAMMING LANGUAGES
  • Code
    7943
  • Text
    CISE Resrch Initiatn Initiatve
  • Code
    8228