The present invention relates to, for example, a crimp connection terminal internally mounted in a connector housing and fit with a connection terminal of a counterpart connector.
With a recent reduction in size, reduction in weight and integration of an electric product, a smaller connection terminal has been required as a connection terminal used for connection of a circuit. For example, a rectangular insertion portion having a diameter smaller than that of an electric wire to be connected and an outer diameter of about 0.5 mm·0.5 mm is used as a rod-shaped insertion portion inserted into a counterpart connection terminal. In addition, there is a connection terminal used for a fiber wire having a large number of extremely thin core wires.
In a case in which a fiber wire is crimped to a connection terminal, since a conductor portion of the fiber wire is obtained by forming copper plating around an extremely fine fiber core wire and twisting a plurality of core wires together, the conductor portion is poor in extensibility and plasticity, and highly reliable connection to the fiber wire by the small connection terminal is fairly difficult. When the connection terminal is insufficiently fixed to the fiber wire, the fiber wire is easily pulled out of the connection terminal, and it is difficult to obtain excellent conductivity.
JP-A-2017-162792 is one conventional example for connecting the fiber wire in this way.
An object of the invention is to solve the above-mentioned problem, and provide a crimp connection terminal capable of reliably caulking and holding a conductor portion of a fiber wire by a conductor crimping portion having a unique structure and ensuring reliability of electric connection.
A crimp connection terminal according to the invention for achieving the object is a crimp connection terminal formed by punching and bending one conductive metal plate to caulk and fix an electric wire, wherein a connection portion connected to a connection terminal of a counterpart connecter is disposed at a front side, a conductor crimping portion to crimp and fix a conductor portion of the electric wire is disposed at a rear side, the conductor crimping portion has a pair of crimping pieces raised in a U-shape from a bottom portion, the crimping pieces of the conductor crimping portion have a lower layer plate and an upper layer plate formed by folding back from an end portion of the lower layer plate and stacking on the lower layer plate, and a void is formed inside the folded-back portion between the lower layer plate and the upper layer plate.
According to the crimp connection terminal according to the invention, it is possible to reliably crimp and connect a conductor portion of a fiber wire in which a plurality of core wires is twisted together to a conductor by a conductor crimping portion and to obtain excellent fixing force and conductivity.
The invention will be described in detail based on an illustrated embodiment.
A connection portion 1 corresponding to, for example, a male insertion portion connected to a connection terminal of a counterpart connecter is formed at a front of the crimp connection terminal, and an edge crimping portion 2, a conductor crimping portion 3, and a coated crimping portion 4 are successively disposed on a rear side thereof.
The connection portion 1 has a two-layered male insertion end structure in which the conductive metal plate is folded back from both sides and both edges of folded pieces 1a and 1b are butted to each other. However, the connection portion 1 may correspond to a male connection portion having another shape or a female connection portion.
In the edge crimping portion 2, a pair of crimping pieces 2a and 2b is raised in a U-shape obliquely upward from both sides of a bottom portion 2c.
In the conductor crimping portion 3, as illustrated in
In the coated crimping portion 4, similarly to the edge crimping portion 2, a pair of crimping pieces 4a and 4b is raised in a U-shape obliquely upward from both sides of a bottom portion 4c.
A stabilizer for stabilizing a posture in a connector housing, a locking portion for preventing coming off from the connector housing in a front-rear direction, etc. may be attached to an actual crimp connection terminal. However, illustration of these known mechanisms is omitted.
In the connection portion 1, to form an insertion end of a double structure, the folded pieces 1a and 1b serving as upper plates are provided on a bottom portion 1c serving as a lower plate from both sides.
In the edge crimping portion 2, side portions 2d and 2e serving as the crimping pieces 2a and 2b are projected on both sides of the bottom portion 2c.
The conductor crimping portion 3 includes the lower layer plate 3b disposed at a center and the upper layer plates 3a continuous with both sides of the lower layer plate 3b. A dotted line is an inner fold line at which the upper layer plate 3a is folded back in a forming press described later.
In the coated crimping portion 4, side portions 4d and 4e serving as the crimping pieces 4a and 4b are projected on both sides of the bottom portion 4c.
A feed piece 6 for connecting the crimp connection terminals connected in a punched state is provided further to a rear of the coated crimping portion 4, and the coated crimping portion 4 at a rear end of each crimp connection terminal is connected to the feed piece 6 by a connection piece 7. A pilot hole 8 provided in the feed piece 6 is used to convey the conductive metal plate 5 in a molding process.
The conductive metal plate 5 punched out as illustrated in
In the conductor portion 10b, the insulating covering portion 10a is cut and drawn out by a cutter in a circumferential shape, a rear end portion remains at the distal end of the conductor portion 10b, and a front end portion protruding from the conductor portion 10b is cut. Therefore, a remaining portion 10c, which is a part of the insulating covering portion 10a, is attached to the distal end of the exposed conductor portion 10b, and the conductor portion 10b does not come apart.
With regard to illustrative dimensions of each portion of the crimp connection terminal after crimping the electric wire 10, a width a of the edge crimping portion 2 is about 0.9 mm, a height b thereof is about 1.2 mm, a width c of the conductor crimping portion 3 is about 1.0 mm, a height d thereof is about 0.75 mm, a length e thereof is about 4.5 mm, a width f of the coated crimping portion 4 is about 1.1 mm, and a height g thereof is about 1.5 mm.
In a crimping process of the conductor portion 10b by the electric wire crimping device, as illustrated in a cross-sectional view of
Since the crimping pieces 3c and 3d have a two-layer structure of the upper layer plate 3a and the lower layer plate 3b stacked in two layers, and further have the void 3g contributing to elasticity, the crimping pieces 3c and 3d have a large elastic force. Further, when a strong crimping force is applied by the upper press mold Pu and the lower press mold Pd, as illustrated in
As described above, according to the crimp connection terminal of the present embodiment suitable for the fiber wire, the conductor portion 10b in which a large number of core wires is twisted together can be elastically reliably crimped and connected by the crimping pieces 3c and 3d having a two-layer structure and the void 3g.
In the coated crimping portion 4, in particular, the side portions 4d and 4e of the coated crimping portion 4 are crimped by being engaged with the insulating covering portion 10a by caulking an outer side of the insulating covering portion 10a of the electric wire 10 using the pair of crimping pieces 4a and 4b. In this way, the insulating covering portion 10a can be fixed to resist a pulling force acting on the electric wire 10.
Number | Date | Country | Kind |
---|---|---|---|
2018-202968 | Oct 2018 | JP | national |