The subject matter herein relates generally to terminal crimping devices for crimping electrical terminals to wires.
Terminal crimping machines have long been used in the connector industry to effect high-speed mass termination of various cables. It is common practice for the terminal crimping machine to have an interchangeable tooling assembly called an applicator. In general, such terminal crimping machines are referred to as a terminator or press; however other types of terminal crimping machines may similarly be used, such as a lead maker, a bench machine, or a hand crimping tool. The terminal crimping machines includes a movable tool that is moved towards a base component during a crimping stroke to crimp a terminal on the base component to an end of a wire, producing an electrical lead.
The electrical lead is typically assembled into an electrical connector, which may be part of a wire harness. Some electrical connectors are expected to be exposed to harsh environmental conditions in use, such as for connectors on automobiles, trains, boats, and the like. The harsh environmental conditions, such as the presence of dirt, sand, debris, liquids, radiation, heat, cold, corrosive elements, vibration, pressure, or the like, have a proclivity to interfere with the crimped connection between the terminal and the wire, possibly resulting in a faulty connection between the wire and the electrical connector. To protect the crimped connection from the harsh environmental conditions, the leads on some electrical connectors have compression seals that are designed to seal the wire of the lead to the housing of the electrical connector to prevent debris, contaminants, and other harsh environmental conditions from affecting the crimped connection within the housing, thus preserving the electrical connection between the wire and the electrical connector. The seals are typically sandwiched between the wire and a portion of the terminal during the crimping operation to fix the seal in place on the electrical lead.
Known terminal crimping machines are not without disadvantages, especially when used to produce electrical leads that have compression seals. For instance, as the movable tool moves towards the terminal on the base component to form the terminal around the wire and the compression seal, the forces at play may cause the compression seal to move axially along the wire away from the distal end of the wire, to roll back onto itself, to twist, to move radially, or the like. Such movement of the compression seal is undesired because it may prevent the terminal from crimping properly to the seal and wire, it may damage the compression seal, and/or it may misalign the seal with the wire. Each situation may compromise the effectiveness of the compression seal at sealing the wire to the housing of the electrical connector, resulting in a leak path across the seal that could allow the harsh environmental conditions to interfere with the crimped connection of the lead.
A need remains for terminal crimping machine that does not damage or misalign the compression seals on the wires during the crimping process.
In one embodiment, a terminal crimping device is provided that crimps a terminal to a wire assembly. The wire assembly includes a wire and a compression seal on the wire. The terminal crimping device includes crimp tooling and a seal depressor fixed to the crimp tooling. The crimp tooling is on a movable ram. The crimp tooling moves with the movable ram along a crimp stroke towards and away from a base that receives the wire assembly thereon. The crimp tooling crimps the terminal to both the wire and the compression seal of the wire assembly during the crimp stroke. The seal depressor moves with the crimp tooling along the crimp stroke. The seal depressor has a contact tab that engages and at least partially depresses the compression seal of the wire assembly during the crimp stroke to hold the compression seal in place as the crimp tooling crimps the terminal to the wire assembly.
Optionally, the seal depressor is adjustable relative to the crimp tooling along a ram axis from a first operative position relative to the crimp tooling to a second operative position relative to the crimp tooling to adjust a bottom dead center position of the seal depressor along the crimp stroke.
In another embodiment, a crimping system is provided that includes a wire assembly and a terminal crimping device. The wire assembly has a wire and a compression seal on the wire. The terminal crimping device crimps a terminal to the wire assembly. The terminal crimping device includes a base, crimp tooling, and a seal depressor. The base receives the wire assembly thereon. The crimp tooling is on a movable ram. The crimp tooling moves with the movable ram along a crimp stroke towards and away from the base. The crimp tooling forms the terminal around both the wire and the compression seal of the wire assembly during the crimp stroke. The seal depressor is fixed to the crimp tooling. The seal depressor moves with the crimp tooling along the crimp stroke. The seal depressor has a contact tab that engages and at least partially depresses the compression seal of the wire assembly during the crimp stroke to hold the compression seal in place as the crimp tooling forms the terminal around the wire assembly.
In the illustrated embodiment, the terminal crimping device 102 includes an applicator 108 and a terminal feeder 114. The applicator 108 is the termination tool that mechanically forms a terminal 106 around a corresponding wire assembly 104 during each crimping operation. The applicator 108 is coupled to a frame 110 of the terminal crimping device 102. Alternatively, the frame 110 may be a component of the applicator 108 instead of a separate component to which the applicator 108 is coupled. The applicator 108 defines a crimping zone 112. One terminal 106 and one wire assembly 104 are each independently fed to the crimping zone 112 for each crimping operation, and the terminal 106 is crimped to the wire assembly 104 in the crimping zone 112. The applicator 108 may be removed and replaced with a different applicator, such as when a different size/type of terminal 106 is used, when a different size/type of wire assembly 104 is to be terminated, when the applicator 108 is worn or damaged, or when an applicator having a different configuration is desired. For example, the applicator 108 in the illustrated embodiment has a side-feed configuration such that the terminals 106 are fed transverse relative to the direction the wire assemblies 104 are fed. The applicator 108 may be substituted with a different applicator having a longitudinal-feed configuration such that the terminals 106 are fed in a direction in-line with the wire assemblies 104. As such, multiple different applicators may be used with the terminal crimping device 102, and the different applicators may have different set-up configurations.
The terminal feeder 114 is coupled to the applicator 108 and is used to feed the terminals 106 to the crimping zone 112. The terminal feeder 114 may be an electrically actuated feeder, a pneumatic feeder, a cam and linkage feeder, or the like, depending on the type of terminal crimping device 102. The terminals 106 may be coupled to a carrier strip (not shown), forming a terminal strip 116. The terminal feeder 114 includes a feeder arm 118 that engages the terminal strip 116 to advance the terminal strip towards the crimping zone 112.
The wire assembly 104 includes a wire 120 and a compression seal 122. The compression seal 122 is on the wire 120 and located near a distal end 123 of the wire 120. The compression seal 122 at least partially surrounds the wire 120. In the illustrated embodiment, the compression seal 122 fully surrounds the perimeter of the wire 120 along the length of the compression seal 122. The compression seal 122 is used to seal the wire assembly 104 to a housing of an electrical connector (not shown). For example, the electrical connector may be designed to withstand harsh environmental conditions, such as dirt, sand, debris, liquids, radiation, heat, cold, corrosive elements, vibration, pressure, or the like. The seal 122 prevents (or at least prohibits) the harsh environmental conditions from interfering with the electrical connections between the wire 120, the terminal 106, and the connector. The wire assemblies 104 are advanced in a wire loading direction 129 along a wire axis 130 towards the crimping zone 112. Although not shown, a wire feeder may be used to advance each wire assembly 104 towards the crimping zone 112.
The applicator 108 of the terminal crimping device 102 includes a ram 124 and a base 126. During a crimping operation, the ram 124 is actuated or driven through a crimp stroke by a driving mechanism or actuator (not shown) of the terminal crimping machine (not shown). The actuator may be a motor having a crank shaft that moves the ram 124. Alternatively, the actuator may be a linear actuator, a piezoelectric actuator, a pneumatic actuator, or the like. The ram 124 is moved along a ram axis 127 in an advancing direction and a retracting direction relative to the base 126 during the crimp stroke. The base 126 receives the terminal 106 and the wire assembly 104 in the crimping zone 112, where the terminal 106 is crimped to the wire assembly 104. The base 126 at least partially defines the crimping zone 112. Optionally, at least part of the base 126 is stationary throughout the crimp stroke of the ram 124.
The terminal crimping device 102 further includes crimp tooling 128 on the ram 124. The crimp tooling 128 is coupled to the ram 124 such that the crimp tooling 128 moves with the ram 124 along the ram axis 127 during the crimp stroke towards and away from the base 126. The crimp tooling 128 is configured to mechanically crimp the terminal 106 in the crimping zone 112 to the wire assembly 104 during the crimp stroke. For example, the crimp tooling 128 engages the terminal 106 and forms or crimps the terminal 106 around the wire assembly 104 such that the terminal 106 locks onto the wire assembly 104. In an exemplary embodiment, the crimp tooling 128 crimps the terminal 106 to both the wire 120 and the compression seal 122 of the wire assembly 104, which fixes both the seal 122 and the terminal 106 to the wire 120.
During operation, the crimp tooling 128 in the released state is advanced downward toward the base 126 to an initial terminal contact position, in which the crimp tooling 128 initially contacts the terminal 106, such that the crimp tooling 128 enters the crimping state. The crimp tooling 128 continues downward in the advancing direction to a bottom dead center position, which is the bottom-most position along the crimp stroke. Throughout the crimp stroke, the crimp tooling 128 is most proximate to the base 126 at the bottom dead center position. As the crimp tooling 128 is advanced from the initial terminal contact position to the bottom dead center position, the crimp tooling 128 transitions through a crimp forming stage of the crimp stroke. The crimp tooling 128 changes the shape of the terminal 106, forming the terminal 106 around the wire assembly 104, during the crimp forming stage. The crimping of the terminal 106 to the wire assembly 104 occurs during the downward component of the crimp stroke. The crimp tooling 128 then returns upward to the top of the crimp stroke. At some point during the upward component of the crimp stroke, the crimp tooling 128 separates from the terminal 106, and the crimp tooling 128 enters the released state. In the illustrated embodiment, the crimp tooling 128 is in the crimp forming stage.
The terminal crimping device 102 further includes a seal depressor 132 that is fixed to the crimp tooling 128. The seal depressor 132 moves with the crimp tooling 128 along the crimp stroke. The seal depressor 132 has a contact tab 134 that engages and at least partially depresses the compression seal 122 of the wire assembly 104 during the crimp stroke to hold the compression seal 122 in place as the crimp tooling 128 crimps the terminal 106 to the wire assembly 104. For example, as the seal depressor 132 moves downward with the crimp tooling 128 in the advancing direction, the contact tab 134 initially contacts the compression seal 122 at an initial seal contact position of the seal depressor 132. Like, the crimp tooling 128, the seal depressor 132 continues downward in the advancing direction to a bottom dead center position, which is the bottom-most position along the crimp stroke for the seal depressor 132. Since the seal depressor 132 is fixed to the crimp tooling 128, the seal depressor 132 and the crimp tooling 128 both reach the respective bottom dead center positions at the same time during the crimp stroke, although the seal depressor 132 at the bottom dead center position may have a different vertical height relative to the frame 110 (shown in
The seal depressor 132 may capture the compression seal 122 between the contact tab 134 above and the base 126 below. As the seal depressor 132 moves from the initial seal contact position to the bottom dead center position, the contact tab 134 at least partially depresses the compression seal 122. The force from the seal depressor 132 on the compression seal 122 serve to hold the seal 122 in place relative to the wire 120, to the terminal 106, and to the terminal crimping device 102 during the crimping operation. The force from the seal depressor 132 assures that the seal 122 does not fold back, twist, or move axially along the wire 120 in response to the crimping forces. Thus, the seal depressor 132 holds the compression seal 122 in position during the crimping operation such that the terminal 106 can be properly crimped onto the seal 122, producing an electrical lead that meets specifications. At some point during the upward component of the crimp stroke, after the terminal 106 is crimped to the wire assembly 104, the contact tab 134 separates from the compression seal 122.
The seal depressor 132 has a top end 136 and a bottom end 138. As used herein, relative or spatial terms such as “top,” “bottom,” “front,” “rear,” “left,” and “right” are only used to distinguish the referenced elements and do not necessarily require particular positions or orientations in the crimping system 100 or in the surrounding environment of the crimping system 100. The bottom end 138 is more proximate to the base 126 than the top end 136. The contact tab 134 is disposed at least proximate to the bottom end 138. Optionally, the contact tab 134 is at the bottom end 138. The seal depressor 132 is coupled to a front 140 of the crimp tooling 128. The contact tab 134 extends rearward from the seal depressor 132 towards the crimp tooling 128 and/or the ram 124. A bottom surface 142 of the contact tab 134 engages the compression seal 122 during at least the crimp forming stage. The bottom surface 142 of the contact tab 134 is smooth and lacks any apertures or sharp points that could damage the material of the seal 122. In the illustrated embodiment, the contact tab 134 is flat. In an alternative embodiment shown in
In an embodiment, the seal depressor 132 has a planar body 144 that includes a front face 146 and an opposite rear face 148. The rear face 148 faces the crimp tooling 128. The contact tab 134 extends from a bottom edge 150 of the body 144. The contact tab 134 extends at least partially rearward out of the plane of the body 144. For example, the contact tab 134 may extend downward and rearward from the bottom edge 150, as shown in
The compression seal 122 includes a crimp segment 160 that extends to the second end 154 and a plug segment 162 that extends to the first end 152. The crimp segment 160 of the compression seal 122 is more proximate to the distal end 123 of the wire 120 than the plug segment 162. The crimp segment 160 is configured to be crimped to the terminal 106 during the crimping operation, such that a portion of the terminal 106 is formed around and engages the crimp segment 160. The plug segment 162 has a greater diameter than the crimp segment 160. The plug segment 162 is used for sealing the wire assembly 104 to an opening in a housing of an electrical connector. For example, the plug segment 162 engages edges of the opening in a connector to seal the space between the wire 120 and the edges of the opening. The plug segment 162 optionally includes multiple ribs 164 along an outer perimeter of the plug segment 162. During the crimping operation, the contact tab 134 of the seal depressor 132 (both shown in
The compression seal 122 may be formed of rubber or a rubber-like material or compound. The compression seal 122 is at least partially compressible. The wire 120 includes a conductive metal core 166 that is surrounded by an insulator layer 168. The insulator layer 168 does not cover (for example, is stripped from) the core 166 along the distal portion 158 of the wire 120, which allows for an electrical connection between the core 166 and the terminal 106 during the crimping operation.
The terminal 106 is electrically conductive and is at least partially formed of a conductive material, such as copper, silver, or other metals. The terminal 106 includes a mating interface portion 170 and a crimp barrel portion 172. The crimp barrel portion 172 of the terminal 106 is crimped around the wire assembly 104. The mating interface portion 170 is configured to engage and electrically connect to a conductor within the connector housing, such as to a mating contact of a mating connector or to a conductor on a circuit board. The mating interface portion 170 in the illustrated embodiment has a cylindrical shape, and may be a pin. In an alternative embodiment, the mating interface portion 170 may have a box-shape, a curled B-shape, or the like. During the crimping operation, the wire assembly 104 is loaded into or onto the crimp barrel portion 172 of the terminal 106, to the position shown in
The base 126, on which the wire assembly 104 (shown in
During the crimp stroke, the seal depressor 132 moves towards and away from the seal support surface 180 of the base 126. The compression seal 122 (shown in
In an embodiment, the base 126 includes an anvil 181 and a shear 183. The anvil 181 defines the wire support surface 178. The shear 183 defines the seal support surface 180. The anvil 181 is located rearward of the shear 183 (for example, relative to the wire loading direction 129 shown in
Optionally, the crimp tooling 128 includes a shear depressor 200. The shear depressor 200 includes a leg 202 extending downward from a bottom 204 thereof. During the crimping operation, the leg 202 strikes a portion of the carrier strip (not shown) and/or the shear 183 (
The components of the crimp tooling 128 are held together via a bolt 216. The bolt 216 extends rearward from the front side 208 of the crimp tooling 128 through defined apertures in the components of the crimp tooling 128. The bolt 216 is received in and fixed to an opening in the ram 124 (shown in
In an embodiment, the front side 208 of the crimp tooling 128 includes first and second side rails 210, 212. In the illustrated embodiment, the side rails 210, 212 are located on the shear depressor 200. In alternative embodiments, the side rails 210, 212 may be located on another component of the crimp tooling 128. The side rails 210, 212 extend parallel to the ram axis 127 (shown in
The rear face 148 of the seal depressor 132 may be configured to abut the front side 208 of the crimp tooling 128, such as a front surface 222 of the shear depressor 200. The contact tab 134 extends rearward from the seal depressor 132 under the bottom 204 of the shear depressor 200. Optionally, the seal depressor 132 may be stamped and formed out of a panel of metal or the like. For example, the outline of the seal depressor 132 may be stamped in one plane, and the contact tab 134 is subsequently bent out of plane from the body 144 of the seal depressor 132. In an alternative embodiment, the seal depressor 132 may be formed by a molding process instead of being stamped and formed, and the seal depressor 132 may be molded from a metal, a plastic, or another moldable material.
In
In an embodiment, the seal depressor 132 is adjustable relative to the crimp tooling 128 when the terminal crimping device 102 is not actively being used for a crimping operation. For example, the seal depressor 132 may be adjusted during set-up based on a known type and/or size of the wire assembly 104 that is going to be used in an upcoming crimping operation. Once the operative position of the seal depressor 132 relative to the crimp tooling 128 is selected, the seal depressor 132 is fixed to the crimp tooling 128 such that the seal depressor 132 moves with the crimp tooling 128 (and not relative to the crimp tooling 128) during the crimping operation.
Optionally, the seal depressor 132 and/or the crimp tooling 128 includes markings 230 that indicate pre-defined operative positions of the seal depressor 132 for use with different wire assemblies 104. For example, the front face 146 of the seal depressor 132 may include a marker set 234, such as a measurement scale, and the first side rail 210 of the crimp tooling 128 includes a reference marker 232. The marker set 234 may be calibrated with the height of the crimping zone 112 between the base 126 and the contact tab 134 of the seal depressor 132 and the diameters of known wire assemblies 104. For example, knowing the size and/or type of the first wire assembly 104A, the seal depressor 132 in
In an embodiment, the seal depressor 132 is configured to be manually adjusted relative to the crimp tooling 128, such as by an operator while setting up a crimping operation. In an alternative embodiment, the seal depressor 132 may be adjusted relative to the crimp tooling 128 automatically or autonomously via an electrical actuator. For example, the operator may input set-up information, such as the type of wire assembly 104, the size of the wire assembly 104, and/or the size of the seal 122, into a user interface device that communicates with an electrical actuator to autonomously adjust the position of the seal depressor 132 relative to the crimp tooling 128 to a pre-defined position associated with the input information.
In the illustrated embodiment, the seal depressor 132 is adjustably fixed to the crimp tooling 128 by a releasable locking fastener 236. The locking fastener 236 is movable between a locked state and an adjustable state. In the locked state, the locking fastener 236 fixes the seal depressor 132 in place relative to the crimp tooling 128. Thus, during the crimping operation, the locking fastener 236 is in the locked state such that the seal depressor 132 moves along the crimp stroke with the crimp tooling 128. In the adjustable state, the locking fastener 236 allows the seal depressor 132 to move relative to the crimp tooling 128. For example, when the locking fastener 236 is in the adjustable state, the seal depressor 132 may be adjustable vertically (along the ram axis 127) relative to the crimp tooling 128 to select a different operative position of the seal depressor 132. The seal depressor 132 may be adjusted by sliding the seal depressor 132 along the track 214 defined between the side rails 210, 212.
The releasable locking fastener 236 extends rearward through an elongated slot 238 in the body 144 of the seal depressor 132. The slot 238 may extend parallel to the ram axis 127. The locking fastener 236 extends from the front face 146 of the seal depressor 132, through the slot 238, and into a hole 240 (shown in
As shown in
As described above, the seal support surface 180 of the base 126 that receives the compression seal 122 thereon, may be defined by a floatable shear 183 (shown in
In an alternative embodiment, even if the crimp tooling 128 does not include the shear depressor 200 and the base 126 does not include the shear 183, the portion of the base 126 that defines the seal support surface 180 may be configured to be depressible similar to the floating shear 183. In another alternative embodiment, the seal depressor 132 itself may include a biasing member that allows the seal depressor 132 to be depressible or deflectable to reduce compressive forces exerted on the seal 122. For example, the seal depressor 132 may include a top component and a bottom component that are coupled together via a biasing member, such as one or more compression springs, accordion-style ridges, or the like. The top component may include the slot 238 that receives the locking fastener 236, and the bottom component includes the contact tab 134. During the crimping operation, as the contact tab 134 engages the compression seal 122, the biasing member allows the bottom component to move relative to the top component, which reduces the forces applied on the compression seal 122 by the contact tab 134. Optionally, instead of or in addition to the biasing member, the contact tab 134 may be formed of, or at least the bottom surface 142 may be covered in, a soft and/or compressible material to reduce the forces applied on the compression seal 122.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
Number | Name | Date | Kind |
---|---|---|---|
5295865 | Endo et al. | Mar 1994 | A |
20010045008 | Fukase | Nov 2001 | A1 |
20020069520 | Erisman et al. | Jun 2002 | A1 |
Number | Date | Country |
---|---|---|
1196402 | Nov 1985 | CA |
07312813 | Nov 1995 | JP |
H07 312813 | Nov 1995 | JP |
07326457 | Dec 1995 | JP |
H07 326457 | Dec 1995 | JP |
Entry |
---|
Original document and Machine translation of JP07326457A are attached. |
Original document and Machine translation of JP07312813A are attached. |
International Search Report, International Application No. PCT/US2015/066629, International Filing Date, Dec. 18, 2015. |
Number | Date | Country | |
---|---|---|---|
20160226208 A1 | Aug 2016 | US |