Crimping devices and methods

Information

  • Patent Grant
  • 11963871
  • Patent Number
    11,963,871
  • Date Filed
    Tuesday, December 13, 2022
    2 years ago
  • Date Issued
    Tuesday, April 23, 2024
    8 months ago
Abstract
Devices and methods for crimping a prosthetic heart valve onto a delivery device are described. In some embodiments, valves are crimped over an inflatable balloon and between proximal and distal shoulders mounted on a shaft inside the balloon. Crimping methods can include multiple compression steps with the valve located in different axial positions relative to the crimping jaws at each different step. In some methods, the valve may extend partially outside of the crimping jaws during certain crimping steps, such that the crimping force is only applied to the part of the valve that is inside the jaws. Exemplary crimping devices can include two or more adjacent sets of jaws that close down to different inner diameters, such that different parts of a valve get compressed to different outer diameters at the same time during a single crimping step.
Description
FIELD

This application is related to crimping devices and methods for prosthetic heart valves, stents, and the like.


BACKGROUND

Crimping a prosthetic heart valve onto a catheter-based delivery system is typically done using crimping devices that have a set of jaws that form a single continuous face as they close, which compresses the valve equally along its length to a smaller diameter. Typically, the entire valve is positioned within the jaws as jaws close, which applies crimping forces uniformly across the axial length of the valve and uniformly reduces the whole valve at the same rate to the same final crimped diameter.


SUMMARY

Disclosed herein are novel devices and methods for crimping a prosthetic heart valve onto a delivery device. In some embodiments, valves are crimped over an inflatable balloon and between proximal and distal shoulders mounted on a shaft inside the balloon. Crimping methods disclosed herein can include multiple compression steps with the valve located in different axial positions relative to the crimping jaws at each different step. In some methods, the valve may extend partially outside of the crimping jaws during certain crimping steps, such that the crimping force is only applied to the part of the valve that is inside the jaws. Exemplary crimping devices disclosed herein can include two or more sets of side-by-side jaws that close down to different inner diameters, such that different parts of a valve get compressed to different outer diameters at the same time during a single crimping step.


Exemplary methods can comprise any combination of the following steps: inserting a prosthetic heart valve into a crimping device in a radially expanded state such that the valve is positioned within crimping jaws of the crimping device; positioning an inflatable balloon of the delivery device within the valve; positioning the valve and the delivery device in a first axial position where the valve and at least part of the distal shoulder of the delivery device are within the jaws between the proximal and distal ends of the jaws, and where the entire proximal shoulder is outside of the jaws proximal to the proximal end of the jaws; closing and opening the jaws with the valve and delivery device in the first axial position, such that the valve is at least partially crimped onto the balloon between the proximal shoulder and the distal shoulder; repositioning the valve and delivery device from the first axial position to a second axial position where a first distal portion of the valve and at least part of the distal shoulder are within the jaws, and where a first proximal portion of the valve and the proximal shoulder are outside of the jaws proximal to the proximal end of the jaws; closing and opening the jaws with the valve and delivery device in the second axial position; repositioning the valve and delivery device from the second axial position to a third axial position where a second distal portion of the valve and at least part of the distal shoulder are within the jaws, and where a second proximal portion of the valve and the proximal shoulder are outside of the jaws proximal to the proximal end of the jaws, wherein the second distal portion is axially shorter than the first distal portion, and the second proximal portion is axially longer than the first proximal portion; closing and opening the jaws with the valve and delivery device in the third axial position; repositioning the valve and delivery device from the third axial position to a fourth axial position where the entire valve and at least part of the proximal shoulder are within the jaws, and where the entire distal shoulder is outside of the jaws distal to the distal end of the jaws; and closing and opening the jaws with the valve and delivery device in the fourth position.


Exemplary crimping devices can comprise: first jaws having an open position and a fully closed position, wherein the first jaws have a first inner diameter in the fully closed position, and second jaws having an open position and a fully closed position, wherein the second jaws have a second inner diameter in the fully closed position, and wherein the second inner diameter is smaller than the first inner diameter. The first jaws and the second jaws can be axially side-by-side, and/or in contact with each other. The first jaws can have a greater axial dimension than the second jaws, such as at least two time or at least five times greater. The first inner diameter and the second inner diameter can be selected to correspond to desired outer diameters of prosthetic heart valve that is crimped by the device. The first jaws and the second jaws can be actuated at the same time using a common actuator, such as a handle that the user pulls.


The foregoing and other objects, features, and advantages of the disclosed technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A shows an exemplary prosthetic heart valve in a radially expanded state.



FIG. 1B shows the valve of FIG. 1A in a radially compressed state.



FIG. 2 is a cross-sectional view of a distal end of an exemplary delivery device that includes a valve in a radially compressed state mounted over an inflatable balloon.



FIG. 3 shows an exemplary crimping device in an open position.



FIG. 4 shows the crimping device of FIG. 3 in a closed position.



FIG. 5 is a cross-sectional view of a crimping device in an open position with a radially expanded valve and the delivery device inside the crimping jaws in a first axial position.



FIG. 6 shows crimping jaws of FIG. 5 in a closed position having radially compressed the valve onto the delivery device in the first axial position.



FIG. 7 shows the valve of FIG. 5 in a second axial position where a distal portion of the valve is in the jaws and a proximal portion of the valve is outside the jaws.



FIG. 8 shows the valve of FIG. 5 in a third axial position where a shorter distal portion of the valve is in the jaws and a longer proximal portion of the valve is outside the jaws.



FIG. 9 shows the valve of FIG. 5 in a fourth axial position where the entire valve is in the jaws and a distal shoulder of the delivery device is outside the jaws.



FIG. 10 shows an exemplary crimping device that has two sets of crimping jaws that closed to two different diameters.



FIG. 11 is a cross-sectional view of the device of FIG. 10 in a closed position.



FIG. 12 is another cross-section view of the device of FIG. 10.



FIG. 13 is yet another cross-sectional view of the device of FIG. 10.





DETAILED DESCRIPTION

General Considerations


It should be understood that the prosthetic heart valves described herein can be adapted for delivering and implanting in any of the native annuluses of the heart (e.g., the aortic, pulmonary, mitral, and tricuspid annuluses), and can be used with any of various delivery devices for delivering the prosthetic valve using any of various delivery approaches (e.g., retrograde, antegrade, transseptal, transventricular, transatrial, etc.). Crimping devices disclosed herein can be used with any suitable types of prosthetic heart valves, including those described herein, and can be used in conjunction with any of various delivery devices for delivering the prosthetic valve using any of various delivery approaches.


For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatus, and systems should not be construed as being limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved. The technologies from any example can be combined with the technologies described in any one or more of the other examples. In view of the many possible embodiments to which the principles of the disclosed technology may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosed technology.


Although the operations of some of the disclosed embodiments are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth herein. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “provide” or “achieve” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.


As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” As used herein, “and/or” means “and” or “or”, as well as “and” and “or”. Further, the terms “coupled” and “connected” generally mean electrically, electromagnetically, and/or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.


Directions and other relative references (e.g., inner, outer, upper, lower, etc.) may be used to facilitate discussion of the drawings and principles herein, but are not intended to be limiting. For example, certain terms may be used such as “inside,” “outside,”, “top,” “down,” “interior,” “exterior,” and the like. Such terms are used, where applicable, to provide some clarity of description when dealing with relative relationships, particularly with respect to the illustrated embodiments. Such terms are not, however, intended to imply absolute relationships, positions, and/or orientations. For example, with respect to an object, an “upper” part can become a “lower” part simply by turning the object over. Nevertheless, it is still the same part and the object remains the same.


The valves and frames disclosed herein are described using an axial direction defined by the centerline of the annular frame and the overall blood flow direction from an inflow end to an outflow end, a radial direction that is defined as radiating perpendicularly from the centerline of the frame, and a circumferential direction that is perpendicular to the axial and radial directions and extends around the centerline of the frame. The crimping device and crimping jaws disclosed herein are described using axial and radial directions that are defined by the axial and radial dimensions of a valve that is crimped by the device. The term “inner” refers to objects, surfaces, and areas proximal to the centerline of the frame or device and the term “outer” refers objects, surfaces and areas that are farther from the centerline of the frame or device.


In view of the many possible embodiments to which the principles of the disclosed technology may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the technology and should not be taken as limiting the scope of the technology. Rather, the scope of the disclosed technology is at least as broad as the appended claims.


Examples of the Disclosed Technology


It is sometimes desirable to compress certain regions of a valve, stent, or similar device to a smaller diameter, such as to protect apexes from snagging or to create a football-like shape and aid insertion into a catheter. Some crimping devices disclosed herein include stacked side-by-side jaw sets which are able to move independently or together as one to crimp a device to different diameters along its length. The use of stacked jaw sets which are capable of independent motion has several advantages to current designs. Some embodiments can allow for a continuous unified jaw face through a portion of the crimping process, which can be critical to prevent frame damage due to snags during axial expansion, while allowing a section of the jaws to compress a region to a smaller diameter at the end of the process. This allows a user to do things like tuck in apexes to prevent snagging, or create a football-like shapes to aid insertion or device loading. Some crimping devices can achieve this motion without requiring any additional action from the operator beyond the basic actions used in a normal crimper. As the handle is rotated, the crimper jaws can start their motion together and end at different stopping positions. These features can improve device performance without requiring complex multi-stage crimping procedures.


In addition to novel crimping devices, novel methods described herein that can also be used to crimp a device in a more desirable manner using a conventional crimper having only one set of jaws. In a conventional crimping method, an expanded device is placed inside the crimping aperture and the uniform jaws compress the device uniformly to a compressed state, such that all parts of the device are radially compressed at the same rate and to the same diameter, and then the jaws are released. The resulting shape of the crimped device may not be uniform, as some parts of the device may deform more than other or recoil more than others. Thus, the final shape of the crimped device is inherent based on the structure of the device (e.g., the amount of material inside a valve frame, thicknesses of the frame, outer skirts, etc.). However, this conventional approach can result in the crimped device having undesirable shape properties, which can lead to harmful outcomes for a patient. For example, parts of the device that project too far outwards can catch on the sheath, vessels, or native valve region and can prevent the device from successfully travelling to the implant location.


Some methods disclosed here include purposeful shaping of device through multi-stage crimping processes, which can allow a person to target a more desirable crimped profile for the device for passing through the anatomy to the implant location. This changes the crimped device shape from being dependent solely on the device design and shifts it to being controlled also by an optimized preparation procedure. This can decrease the likelihood of an adverse event due to the valve catching on the sheath, vessels, or annulus, for example.


A desirable crimped profile is one in which the leading edge of the device is most protected. Such protection can result from a combination of how large the diameter is of the distal end of the delivery system compared to how small the diameter is of the distal edge of the device crimped onto the delivery system. Targeted crimping in certain portions of the device can help achieve such a desirable crimped profile. For example, using a prosthetic heart valve as an exemplary device to be crimped, targeted crimping can be performed by placing only certain axial sections of the valve within the crimping jaws such that one axial portion receiving compressing force while portions that are distal to the jaws and/or proximal to the jaws receive no direct crimping force from the jaws. This can concentrate the crimping forces over only one axial portion of the valve, rather than being spread evenly across the whole axial length of the valve. This can result in smaller crimped diameters in the targeted portions of the valve, such the distal or leading edge of the valve. Crimping the leading edge to a smaller diameter can help the leading edge be more protected by distal portions of the delivery device, which can help the crimped valve better pass through a sheath, vessels, etc., without catching.



FIG. 1A shows an exemplary prosthetic heart valve 2 that can be used with the herein disclosed crimping devices and crimping methods. The valve 2 is just one example, and many other implantable device can be used as well, including stents, valves, frames, and any other radially compressible device. Such device can include annular frames, such as the frame 4, that are radially compressible to be mounted on a delivery device and later radially expandable within a patient's body. Such frames can include self-expandable frames (e.g., made of superelastic materials) and balloon-expandable frames (e.g., made of cobalt chromium or stainless steel). The crimped device can also include various other components, such as a leaflet structure 6, an inner skirt 8, and/or an outer skirt 10. The valve 2 can be configured for placement at a native aortic valve region of heart, while other subject devices can be configured for placement at other heart locations or other parts of the body. In the example of FIG. 1A, the outer skirt 10 is positioned at a blood inflow end of the valve 2, with the opposite end being a blood outflow end of the valve.



FIG. 1A shows the valve 2 in a radially expanded state, while FIG. 1B shows the valve in a radially compressed or crimped state. In the crimped state, the valve 2 has a smaller radial dimension (i.e., its outer diameter) and a longer axial dimension (i.e., its axial length). Some parts of the valve 2 can have slightly different outer diameters when in the crimped state. For example, in some circumstances the axial zone including the outer skirt 10 can be slightly bulkier and have a larger outer diameter compared to other portions of the valve. However, with the herein disclosed technologies, the final crimped state of a device can be better customized and controlled, such that the outer diameters at different axial locations along the valve are not just a result of the structure of the device itself, but also a result of the crimping method used and/or the type of crimping device used.



FIG. 2 shows a distal end portion of an exemplary delivery device with the valve 2 crimped onto it. Other delivery devices can also be used with the herein disclosed technology. In the example of FIG. 2, the valve is crimped onto a shaft 11 over an inflatable balloon 12 between a distal shoulder 14 and a proximal shoulder 16. The shoulders 14 and 16 can be positioned around the shaft 11 within the balloon 12. When the valve 2 is crimped onto the delivery device, the shoulders 14, 16 can provide protection to the ends of the valve 2 to help prevent the ends of the valve from snagging on a catheter wall, a vessel wall, or other structure while the valve is being delivered. The shoulders can also help keep the valve from migrating axially relative to the inner shaft 11. However, crimping the ends of the valve (particularly the distal end of the valve adjacent the distal stop 14) to a small outer diameter than the rest of the valve can also help keep the valve from snagging or migrating. When the valve 2 is delivered to the implantation location, the balloon 12 can be inflated to radially expand the valve and implant it in the aortic valve region (or other target location).



FIGS. 3 and 4 illustrate an exemplary crimping device, or crimper, 20 that is used to crimp a prosthetic heart valve onto a delivery device. The crimper 20 comprises an outer housing 22 and crimping jaws 24 with a central opening 26 and an actuation handle 28. A radially expanded valve is placed in the opening 26 with the jaws 24 open (FIG. 3). With a delivery device positioned within the expanded valve, the handle 28 is actuated to cause the jaws 24 to closed down (FIG. 4) and crimp the valve onto the delivery device. The jaws 24 comprise several individual pieces that all move inwardly in unison to uniformly reduce the diameter of the opening 26 and apply even crimping pressure around the valve. When the handle 28 is released, the jaws open up and the delivery device with the valve mounted thereon can be removed or repositioned for another round of crimping.



FIGS. 5-9 illustrate exemplary crimping steps. Various novel multi-stage crimping methods can include any combination of the steps illustrated in FIGS. 5-9 and/or other acts. For example, the steps in FIGS. 5-9 can all be performed sequentially. In some methods, the step of FIG. 7 may not be included, or the step of FIG. 8 may not be included, or the step of FIG. 9 may not be included. In other examples, additional crimping steps are performed in addition to, or in place of, the steps shown in FIGS. 5-9.


In FIGS. 5-9, the crimping jaws 40 are illustrated with simple rectangles that represent a typically annular array of crimping jaws, like those shown in FIGS. 3 and 4. The jaws 40 include a first axial end 70 and an opposing second axial end 72. A valve can be inserted into the jaws 40 from either axial end. While the jaws 40 comprise multiple individual jaw pieces that abut each other to form an annular structure, collectively the radially inner surfaces of the jaws 40 can be generalized as forming a smooth, uniform diameter, cylindrical inner surface extending between the axial ends 70 and 72.


In FIG. 5 the jaws 40 are open, similar to FIG. 3, while in FIGS. 6-9 the jaws are closed, similar to FIG. 4. In FIG. 5, a radially expanded valve 42 is positioned within the jaws 40 with a delivery device positioned within the valve. The valve is positioned such that a proximal end of the valve (right side) is about even with the first axial end 70 of the jaws, and the delivery device is positioned to match the position of the valve. The delivery device in this example includes an inner shaft 44, an inflatable balloon 46, a proximal shoulder 48, and a distal shoulder 50. The valve is oriented axially between the two shoulders. The distal shoulder 50 is at least partially positioned within the jaws 40, while the proximal shoulder 48 is positioned outside of the jaws, proximal to the first axial end 70 of the jaws.



FIG. 6 shows the configuration after the jaws 40 are closed down from the position of FIG. 5, radially compressing the valve around the inner shaft 44 and balloon 46, between the shoulders 48 and 50. In this crimping step, the whole valve is within the jaws and receives uniform crimping contact across the valve from the jaws. After reopening the jaws from the configuration of FIG. 6, the valve remains radially compressed due to the plastic deformation of the valve frame 60 (e.g., a cobalt chromium alloy frame).


In FIG. 7, the delivery device and valve have been shifted axially after the crimping step of FIG. 6. In the configuration of FIG. 7, a distal portion of the valve is still within the jaws while a proximal portion of the valve is outside the first axial end 70 of the jaws. The valve may be about half in and half out of the jaws in this position, for example. As shown in FIG. 7, the blood inflow end of the valve that includes the outer skirt 62 is within the jaws. This is also the distal end of the valve as mounted on the delivery device. In FIG. 7, the distal portion of the valve receives a second crimping from the jaws while the proximal portion of the valve does not. This can result in the distal portion of the valve having a smaller outer diameter than the proximal portion of the valve (though this difference in outer diameters is not shown in the figures).


In FIG. 8, the delivery device and valve have been shifted further axially after the crimping step of FIG. 7. In the configuration of FIG. 8, a distal portion of the valve is still within the jaws, though the axial length of the distal portion within the jaws is shorter than in the position of FIG. 7. Similarly, the axial length of the proximal portion of the valve that is outside the first axial end 70 of the jaws is longer than in the position of FIG. 7. The valve may be about one forth in and three fourths out of the jaws in this position, for example. As shown in FIG. 8, about half of the outer skirt 62 is within the jaws, and only that portion of the valve receives a crimping from the jaws. This can result in the distal end of the valve having an even smaller outer diameter.


In the crimping steps of FIGS. 6, 7, and 8, the distal shoulder may also be radially compressed by the jaws, depending on the size and configuration of the shoulders and how far the jaws close radially. In some embodiment, the shoulders can have slots or other features that allow them to radially compress. The shoulders can be comprised of elastic material that resiliently deforms under compression and then returns to its original shape when compression is released. This can allow the jaws to compress the distal end of the valve to a smaller outer diameter than the outer diameter of the distal shoulder, as the shoulder can re-expand to a slightly larger diameter than the distal end of the valve after the compression from the jaws is released. This can allow the distal end of the valve to be “tucked in” behind the distal shoulder so that the shoulder shields the distal end of the valve from snagging or catching during delivery. The same can be true for the proximal end of the valve and the proximal shoulder 48 in some embodiments.



FIG. 9 illustrates another crimping step where at least part of the proximal shoulder 48 is within the jaws and receives compression along with the proximal end of the valve. In the position of FIG. 9, the entire valve is within the jaws with the distal end of the valve is aligned with the second axial end 72 of the jaws. At least part of the proximal shoulder 48 is also within the jaws, while the distal shoulder 50 is outside the jaws. When the crimping step of FIG. 9 occurs after the previous crimping steps of FIGS. 6-8 (or at least after the step of FIG. 6), the whole valve may already be radially compressed, and so this step can be more of a finishing step to recompress the valve in case any part of the valve is sticking out or bulging, etc. For example, the parting crimping steps of FIGS. 7 and 8 can possible cause the free proximal end of the valve to expand a little, and the full crimping step of FIG. 9 can recompress the proximal end to ensure the valve is fully crimped as desired. In addition, compressing the proximal end of the balloon 46 while the distal end of the balloon is outside the jaws, as in FIG. 9, can beneficially cause fluid within the balloon to travel distally into the free distal end of the balloon and partially inflate the distal end of the balloon. Partially inflating the distal end of the balloon can cause the balloon to bulge out slightly beyond the diameter of the distal end of the valve and thereby help protect the distal end of the valve from snagging or catching during delivery.



FIGS. 10-13 illustrate an exemplary crimping device 100 that include two sets of jaws that close to two different minimum diameters. The device 100 can be used to crimp a valve onto a delivery device while compressing one section of the valve to a larger outer diameter and compressing a second section of the valve to a smaller outer diameter, using a single crimping action. The device 100 can comprise a support base 102, an outer housing 104 with a handle 122, an inner frame 108, a first set of jaws 110, and a second set of jaws 112. The base, outer housing, and inner frame can form a central opening 118 that passes through the device and is configured to receive a valve and delivery device. The two sets of jaws 110, 112 are positioned side-by-side as shown in FIG. 12 and align with the central opening 118.


The outer housing 104 includes slots 132 in a lateral face and projections 130 of the inner frame 108 extend into the slots 132. Similarly, lateral aspects of the jaws 110, 112 engage with the inner frame 108 via a series of projections and slots. When the handle 122 is actuated, the outer housing rotates relative to the base 102, causing the two sets of jaws to close at the same time.


The jaws 110 and 112 have an open configuration where they form a wide opening that aligns with the central opening 118, and the jaws also each have a closed configuration where they form smaller contracted openings, with the first set of jaws 110 forming a first contracted opening 114 and the second set of jaws 112 forming a second contracted opening 116 that has a smaller diameter than the first contracted opening.


When a valve is crimped onto a delivery device using the device 100, the part of the valve that is within the second set of jaws 112 gets compressed down to a smaller diameter than the part of the valve that is within the first set of jaws 110. For example, the distal or leading end of the valve when mounted on the delivery device can be crimped to a smaller diameter by the second set of jaws while the proximal portion of the valve is crimped by the first set of jaws. The benefits of having the distal leading end of the valve be crimped to a smaller diameter are described elsewhere herein, such as in relation to the multi-stage crimping methods. A benefit of using a multi jaw crimping to accomplish this is that it can be done in a single crimping step, with one compression step, as compared to multiple steps using a conventional crimper.


Additional Examples of the Disclosed Technology


In view of the above described implementations of the disclosed subject matter, this application discloses the additional examples enumerated below. It should be noted that one feature of an example in isolation or more than one feature of the example taken in combination and, optionally, in combination with one or more features of one or more further examples are further examples also falling within the disclosure of this application.


Example 1. A method of crimping a prosthetic heart valve onto a delivery device, comprising: inserting the valve into a crimping device in a radially expanded state such that the valve is positioned within crimping jaws of the crimping device, the crimping jaws having a proximal end and a distal end; positioning an inflatable balloon of the delivery device within the valve, the delivery device comprising a proximal shoulder and a distal shoulder positioned within the balloon; positioning the valve and the delivery device in a first axial position where the valve and at least part of the distal shoulder are within the jaws between the proximal and distal ends of the jaws, and where the entire proximal shoulder of the delivery device is outside of the jaws proximal to the proximal end of the jaws; closing and opening the jaws with the valve and delivery device in the first axial position, such that the valve is at least partially crimped onto the balloon between the proximal shoulder and the distal shoulder; repositioning the valve and delivery device from the first axial position to a second axial position where a first distal portion of the valve and at least part of the distal shoulder are within the jaws, and where a first proximal portion of the valve and the proximal shoulder are outside of the jaws proximal to the proximal end of the jaws; closing and opening the jaws with the valve and delivery device in the second axial position; repositioning the valve and delivery device from the second axial position to a third axial position where a second distal portion of the valve and at least part of the distal shoulder are within the jaws, and where a second proximal portion of the valve and the proximal shoulder are outside of the jaws proximal to the proximal end of the jaws, wherein the second distal portion is axially shorter than the first distal portion, and the second proximal portion is axially longer than the first proximal portion; closing and opening the jaws with the valve and delivery device in the third axial position; repositioning the valve and delivery device from the third axial position to a fourth axial position where the entire valve and at least part of the proximal shoulder of the delivery device are within the jaws, and where the entire distal shoulder of the delivery device is outside of the jaws distal to the distal end of the jaws; and closing and opening the jaws with the valve and delivery device in the fourth position.


Example 2. The method of any example herein, particularly example 1, wherein the first distal portion of the valve includes an outer skirt of the valve.


Example 3. The method of any example herein, particularly any one of examples 1-2, wherein the first distal portion of the valve comprises approximately one half of an axial length of the valve.


Example 4. The method of any example herein, particularly any one of examples 1-3, wherein the second distal portion of the valve includes a distal portion of the outer skirt.


Example 5. The method of any example herein, particularly any one of examples 1-4, wherein the second distal portion of the valve comprises approximately one fourth of an axial length of the valve.


Example 6. The method of any example herein, particularly any one of examples 1-5, wherein the valve is oriented around the delivery device with a blood inflow end of the valve adjacent the distal shoulder and a blood outflow end of the valve adjacent a proximal shoulder.


Example 7. The method of any example herein, particularly any one of examples 1-6, wherein closing and opening the jaws with the valve and delivery device in the first axial position comprises radially compressing and releasing the distal shoulder.


Example 8. The method of any example herein, particularly any one of examples 1-7, wherein closing and opening the jaws with the valve and delivery device in the second axial position comprises radially compressing and releasing the distal shoulder.


Example 9. The method of any example herein, particularly any one of examples 1-8, wherein closing and opening the jaws with the valve and delivery device in the third axial position comprises radially compressing and releasing the distal shoulder.


Example 10. The method of any example herein, particularly any one of examples 1-9, wherein closing and opening the jaws with the valve and delivery device in the fourth axial position comprises radially compressing and releasing the proximal shoulder.


Example 11. The method of any example herein, particularly any one of examples 1-10, wherein closing the jaws with the valve and delivery device in the fourth axial position compresses a proximal portion of the balloon and causes fluid in the balloon to travel distally into a distal portion of the balloon that is outside of the jaws distal to the distal end of the jaws.


Example 12. The method of example 11, wherein fluid travelling distally into the distal portion of the balloon causes the distal portion of the balloon to partially inflate and expand radially.


Example 13. The method of example 12, wherein the distal portion of the balloon expands radially to a diameter that is greater than a crimped diameter of the distal end of the valve.


Example 14. The method of any example herein, particularly any one of examples 1-13, further comprising, after closing and opening the jaws with the valve and delivery device in the fourth position, removing the delivery device and valve from the crimping device with the valve crimped over the balloon between the proximal and distal shoulders, and inserting the delivery device and valve into a patient.


Example 15. A method of crimping a prosthetic heart valve onto a delivery device, comprising: inserting the valve into a crimping device in a radially expanded state such that the valve is positioned within crimping jaws of the crimping device, the crimping jaws having a proximal end and a distal end; positioning an inflatable balloon of the delivery device within the valve, the delivery device comprising a proximal shoulder and a distal shoulder positioned within the balloon; positioning the valve and the delivery device in a first axial position where a first distal portion of the valve and at least part of the distal shoulder are within the jaws between the proximal and distal ends of the jaws, and where a first proximal portion of the valve and the proximal shoulder are outside of the jaws proximal to the proximal end of the jaws; closing and opening the jaws with the valve and delivery device in the first axial position, such that the valve is partially crimped onto the balloon between the proximal shoulder and the distal shoulder; repositioning the valve and delivery device from the first axial position to a second axial position where a second distal portion of the valve and at least part of the distal shoulder are within the jaws, and where a second proximal portion of the valve and the proximal shoulder are outside of the jaws proximal to the proximal end of the jaws, wherein the second distal portion is axially shorter than the first distal portion, and the second proximal portion is axially longer than the first proximal portion; closing and opening the jaws with the valve and delivery device in the second axial position; repositioning the valve and delivery device from the second axial position to a third axial position where a majority of the valve and at least part of the proximal shoulder of the delivery device are within the jaws, and where the distal shoulder of the delivery device is outside of the jaws distal to the distal end of the jaws; and closing and opening the jaws with the valve and delivery device in the third position; wherein closing the jaws with the valve and delivery device in the third axial position compresses a proximal portion of the balloon and causes fluid in the balloon to travel distally into a distal portion of the balloon that is outside of the jaws distal to the distal end of the jaws, wherein fluid travelling distally into the distal portion of the balloon causes the distal portion of the balloon to inflate and expand radially.


Example 16. The method of any example herein, particularly example 15, wherein fluid travelling distally into the distal portion of the balloon causes the distal portion of the balloon to expand radially to a diameter that is greater than a crimped diameter of a distal end of the valve.


Example 17. The method of any example herein, particularly any one of examples 15-16, wherein the first distal portion of the valve includes an outer skirt of the valve.


Example 18. The method of any example herein, particularly any one of examples 15-17, wherein the first distal portion of the valve comprises approximately one half of an axial length of the valve.


Example 19. The method of any example herein, particularly any one of examples 15-18, wherein the second distal portion of the valve includes a distal portion of the outer skirt.


Example 20. The method of any example herein, particularly any one of examples 15-19, wherein the second distal portion of the valve comprises approximately one fourth of an axial length of the valve.


Example 21. The method of any example herein, particularly any one of examples 15-20, wherein the valve is oriented around the delivery device with a blood inflow end of the valve adjacent the distal shoulder and a blood outflow end of the valve adjacent a proximal shoulder.


Example 22. The method of any example herein, particularly any one of examples 15-21, wherein closing and opening the jaws with the valve and delivery device in the first axial position comprises radially compressing and releasing the distal shoulder.


Example 23. The method of any example herein, particularly any one of examples 15-22, wherein closing and opening the jaws with the valve and delivery device in the second axial position comprises radially compressing and releasing the distal shoulder.


Example 24. The method of any example herein, particularly any one of examples 15-23, wherein closing and opening the jaws with the valve and delivery device in the third axial position comprises radially compressing and releasing the proximal shoulder.


Example 25. A device for crimping prosthetic heart valves, comprising: first jaws having an open position and a fully closed position, wherein the first jaws have a first inner diameter in the fully closed position; and second jaws having an open position and a fully closed position, wherein the second jaws have a second inner diameter in the fully closed position; wherein the second inner diameter is smaller than the first inner diameter.


Example 26. The device of any example herein, particularly example 25, wherein the first jaws and the second jaws are axially side-by-side.


Example 27. The device of any example herein, particularly any one of examples 25-26, wherein the first jaws and the second jaws are in contact with each other.


Example 28. The device of any example herein, particularly any one of examples 25-27, wherein the first jaws have a greater axial dimension than the second jaws.


Example 29. The device of any example herein, particularly any one of examples 25-28, wherein the first inner diameter and the second inner diameter are selected to correspond to desired outer diameters of prosthetic heart valve that is crimped by the device.


Example 30. The device of any example herein, particularly any one of examples 25-29, wherein the first jaws and the second jaws are actuated at the same time using a common actuator.


Example 31. The device of any example herein, particularly any one of examples 25-30, wherein the device is configured to crimp a valve with a blood outflow end of the valve in contact with the first jaws and a blood inflow end of the valve in contact with the second jaws, such that the blood inflow end of the valve is compressed to a smaller outer diameter than the blood outflow end of the valve.


Example 32. The device of any example herein, particularly any one of examples 25-31, wherein the device is configured to crimp a valve with a blood inflow end of the valve in contact with the first jaws and a blood outflow end of the valve in contact with the second jaws, such that the blood outflow end of the valve is compressed to a smaller outer diameter than the blood inflow end of the valve.


Example 33. The device of any example herein, particularly any one of examples 25-32, wherein the first jaws are at least two times as wide as the second jaws along an axial dimension.


Example 34. The device of any example herein, particularly any one of examples 25-33, wherein the first jaws are at least five times as wide as the second jaws along an axial dimension.


Example 35. The device of any example herein, particularly any one of examples 25-34, wherein the inner diameter of the first jaws is at least twice as large as the inner diameter of the second jaws.


Example 36. The device of any example herein, particularly any one of examples 25-35, wherein the second jaws in the fully closed position comprise a tapered inner surface that varies in inner diameter along at least part of its axial length.


Example 37. The device of any example herein, particularly any one of examples 25-36, wherein the first and second jaws in their open positions have equal inner diameters.

Claims
  • 1. A method of crimping a prosthetic heart valve onto a delivery device, comprising: inserting the valve into a crimping device in a radially expanded state such that the valve is positioned within crimping jaws of the crimping device, the crimping jaws having a proximal end and a distal end;positioning an inflatable balloon of the delivery device within the valve, the delivery device comprising a proximal shoulder and a distal shoulder positioned within the balloon;positioning the valve and the delivery device in a first axial position where the valve and at least part of the distal shoulder are within the jaws between the proximal and distal ends of the jaws, and where the entire proximal shoulder of the delivery device is outside of the jaws proximal to the proximal end of the jaws;closing and opening the jaws with the valve and delivery device in the first axial position, such that the valve is at least partially crimped onto the balloon between the proximal shoulder and the distal shoulder;repositioning the valve and delivery device from the first axial position to a second axial position where a first distal portion of the valve and at least part of the distal shoulder are within the jaws, and where a first proximal portion of the valve and the proximal shoulder are outside of the jaws proximal to the proximal end of the jaws;closing and opening the jaws with the valve and delivery device in the second axial position;repositioning the valve and delivery device from the second axial position to a third axial position where a second distal portion of the valve and at least part of the distal shoulder are within the jaws, and where a second proximal portion of the valve and the proximal shoulder are outside of the jaws proximal to the proximal end of the jaws, wherein the second distal portion is axially shorter than the first distal portion, and the second proximal portion is axially longer than the first proximal portion;closing and opening the jaws with the valve and delivery device in the third axial position;repositioning the valve and delivery device from the third axial position to a fourth axial position where the entire valve and at least part of the proximal shoulder of the delivery device are within the jaws, and where the entire distal shoulder of the delivery device is outside of the jaws distal to the distal end of the jaws; andclosing and opening the jaws with the valve and delivery device in the fourth position.
  • 2. The method of claim 1, wherein the first distal portion of the valve includes an outer skirt of the valve.
  • 3. The method of claim 1, wherein the second distal portion of the valve includes a distal portion of an outer skirt.
  • 4. The method of claim 1, wherein the valve is oriented around the delivery device with a blood inflow end of the valve adjacent the distal shoulder and a blood outflow end of the valve adjacent the proximal shoulder.
  • 5. The method of claim 1, wherein closing and opening the jaws with the valve and delivery device in the first axial position comprises radially compressing and releasing the distal shoulder.
  • 6. The method of claim 1, wherein closing and opening the jaws with the valve and delivery device in the second axial position comprises radially compressing and releasing the distal shoulder.
  • 7. The method of claim 1, wherein closing and opening the jaws with the valve and delivery device in the third axial position comprises radially compressing and releasing the distal shoulder.
  • 8. The method of claim 1, wherein closing and opening the jaws with the valve and delivery device in the fourth axial position comprises radially compressing and releasing the proximal shoulder.
  • 9. The method of claim 1, wherein closing the jaws with the valve and delivery device in the fourth axial position compresses a proximal portion of the balloon and causes fluid in the balloon to travel distally into a distal portion of the balloon that is outside of the jaws distal to the distal end of the jaws; wherein fluid travelling distally into the distal portion of the balloon causes the distal portion of the balloon to partially inflate and expand radially; andwherein the distal portion of the balloon expands radially to a diameter that is greater than a crimped diameter of a distal end of the valve.
  • 10. A method of crimping a prosthetic heart valve onto a delivery device, comprising: inserting the valve into a crimping device in a radially expanded state such that the valve is positioned within crimping jaws of the crimping device, the crimping jaws having a proximal end and a distal end;positioning an inflatable balloon of the delivery device within the valve, the delivery device comprising a proximal shoulder and a distal shoulder positioned within the balloon;positioning the valve and the delivery device in a first axial position where a first distal portion of the valve and at least part of the distal shoulder are within the jaws between the proximal and distal ends of the jaws, and where a first proximal portion of the valve and the proximal shoulder are outside of the jaws proximal to the proximal end of the jaws;closing and opening the jaws with the valve and delivery device in the first axial position, such that the valve is partially crimped onto the balloon between the proximal shoulder and the distal shoulder;repositioning the valve and delivery device from the first axial position to a second axial position where a second distal portion of the valve and at least part of the distal shoulder are within the jaws, and where a second proximal portion of the valve and the proximal shoulder are outside of the jaws proximal to the proximal end of the jaws, wherein the second distal portion is axially shorter than the first distal portion, and the second proximal portion is axially longer than the first proximal portion;closing and opening the jaws with the valve and delivery device in the second axial position;repositioning the valve and delivery device from the second axial position to a third axial position where a majority of the valve and at least part of the proximal shoulder of the delivery device are within the jaws, and where the distal shoulder of the delivery device is outside of the jaws distal to the distal end of the jaws; andclosing and opening the jaws with the valve and delivery device in the third position;wherein closing the jaws with the valve and delivery device in the third axial position compresses a proximal portion of the balloon and causes fluid in the balloon to travel distally into a distal portion of the balloon that is outside of the jaws distal to the distal end of the jaws, wherein fluid travelling distally into the distal portion of the balloon causes the distal portion of the balloon to inflate and expand radially.
  • 11. The method of claim 10, wherein fluid travelling distally into the distal portion of the balloon causes the distal portion of the balloon to expand radially to a diameter that is greater than a crimped diameter of a distal end of the valve.
  • 12. The method of claim 10, wherein the first distal portion of the valve includes an outer skirt of the valve.
  • 13. The method of claim 10, wherein the second distal portion of the valve includes a distal portion of an outer skirt.
  • 14. The method of claim 10, wherein the valve is oriented around the delivery device with a blood inflow end of the valve adjacent the distal shoulder and a blood outflow end of the valve adjacent the proximal shoulder.
  • 15. The method of claim 10, wherein closing and opening the jaws with the valve and delivery device in the first axial position comprises radially compressing and releasing the distal shoulder.
  • 16. The method of claim 10, wherein closing and opening the jaws with the valve and delivery device in the second axial position comprises radially compressing and releasing the distal shoulder.
  • 17. The method of claim 10, wherein closing and opening the jaws with the valve and delivery device in the third axial position comprises radially compressing and releasing the proximal shoulder.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT Application No. PCT/US2021/037738, filed Jun. 17, 2021, which application claims the benefit of U.S. Provisional Patent Application No. 63/041,050, filed Jun. 18, 2020, which is incorporated by reference herein in its entirety.

US Referenced Citations (302)
Number Name Date Kind
3409013 Berry Nov 1968 A
3548417 Kisher Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
RE30912 Hancock Apr 1982 E
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4441216 Ionescu et al. Apr 1984 A
4470157 Love Sep 1984 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4820299 Philippe et al. Apr 1989 A
4829990 Thuroff et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5558644 Boyd et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5591185 Kilmer et al. Jan 1997 A
5591195 Taheri et al. Jan 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5628792 Lentell May 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5800508 Goicoechea et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
6027525 Suh et al. Feb 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6338740 Carpentier Jan 2002 B1
6350277 Kocur Feb 2002 B1
6352547 Brown et al. Mar 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440764 Focht et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6527979 Constantz et al. Mar 2003 B2
6569196 Vesely May 2003 B1
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6652578 Bailey et al. Nov 2003 B2
6689123 Pinchasik Feb 2004 B2
6716244 Klaco Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6767362 Schreck Jul 2004 B2
6769161 Brown et al. Aug 2004 B2
6783542 Eidenschink Aug 2004 B2
6830584 Seguin Dec 2004 B1
6878162 Bales et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7096554 Austin et al. Aug 2006 B2
7225518 Eidenschink et al. Jun 2007 B2
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316710 Cheng et al. Jan 2008 B1
7318278 Zhang et al. Jan 2008 B2
7374571 Pease et al. May 2008 B2
7393360 Spenser et al. Jul 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7563280 Anderson et al. Jul 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7655034 Mitchell et al. Feb 2010 B2
7785366 Maurer et al. Aug 2010 B2
7959665 Pienknagura Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7993394 Hariton et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8075611 Millwee et al. Dec 2011 B2
8128686 Paul, Jr. et al. Mar 2012 B2
8167932 Bourang et al. May 2012 B2
8291570 Fidenschink et al. Oct 2012 B2
8348998 Pintor et al. Jan 2013 B2
8449606 Eliasen et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8474122 Melsheimer Jul 2013 B2
8652203 Quadri et al. Feb 2014 B2
8685055 VanTassel et al. Apr 2014 B2
8747463 Fogarty et al. Jun 2014 B2
9078781 Ryan et al. Jul 2015 B2
11224509 Dasi et al. Jan 2022 B2
20010021872 Bailey et al. Sep 2001 A1
20020026094 Roth Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020138135 Duerig et al. Sep 2002 A1
20020143390 Ishii Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20030014105 Cao Jan 2003 A1
20030040791 Oktay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030158597 Quiachon et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040024452 Kruse et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040078074 Anderson et al. Apr 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040260389 Case et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050075725 Rowe Apr 2005 A1
20050075728 Nguyen et al. Apr 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050188525 Weber et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20060004469 Sokel Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060108090 Ederer et al. May 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060183383 Asmus et al. Aug 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070112422 Dehdashtian May 2007 A1
20070162102 Ryan et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070208550 Cao et al. Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080183271 Frawley et al. Jul 2008 A1
20080208327 Rowe Aug 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080275537 Limon Nov 2008 A1
20080294248 Yang et al. Nov 2008 A1
20090118826 Khaghani May 2009 A1
20090125118 Gong May 2009 A1
20090157175 Benichou Jun 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090299452 Eidenschink et al. Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100004735 Yang et al. Jan 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100100176 Elizondo et al. Apr 2010 A1
20100168844 Toomes et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20110015729 Jimenez et al. Jan 2011 A1
20110022157 Essinger et al. Jan 2011 A1
20110066224 White Mar 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110319991 Hariton et al. Dec 2011 A1
20120030090 Johnston et al. Feb 2012 A1
20120089223 Nguyen et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120123529 Levi et al. May 2012 A1
20120259409 Nguyen et al. Oct 2012 A1
20130023985 Khairkhahan et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130190857 Mitra et al. Jul 2013 A1
20130274873 Delaloye et al. Oct 2013 A1
20130310926 Hariton Nov 2013 A1
20130317598 Rowe et al. Nov 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20140194981 Menk et al. Jul 2014 A1
20140200661 Pintor et al. Jul 2014 A1
20140209238 Bonyuet et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140277417 Schraut et al. Sep 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140277424 Oslund Sep 2014 A1
20140277563 White Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140330372 Weston et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350667 Braido et al. Nov 2014 A1
20150073545 Braido Mar 2015 A1
20150073546 Braido Mar 2015 A1
20150135506 White May 2015 A1
20150157455 Hoang et al. Jun 2015 A1
20160374802 Levi et al. Dec 2016 A1
20170014229 Nguyen-Thien-Nhon et al. Jan 2017 A1
20180028310 Gurovich et al. Feb 2018 A1
20180153689 Maimon et al. Jun 2018 A1
20180185183 Christakis Jul 2018 A1
20180325665 Gurovich et al. Nov 2018 A1
20180344456 Barash et al. Dec 2018 A1
20190159894 Levi et al. May 2019 A1
20190192288 Levi et al. Jun 2019 A1
20190192289 Levi et al. Jun 2019 A1
20220008235 Risch Jan 2022 A1
Foreign Referenced Citations (74)
Number Date Country
0144167 Sep 1903 DE
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
0103546 Mar 1984 EP
0850607 Jul 1998 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1570809 Sep 2005 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2056023 Mar 1981 GB
9933414 Jul 1999 NO
1271508 Nov 1986 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9724080 Jul 1997 WO
9829057 Jul 1998 WO
9930646 Jun 1999 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
0018333 Apr 2000 WO
0041652 Jul 2000 WO
0135878 May 2001 WO
0149213 Jul 2001 WO
0154624 Aug 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0047139 Sep 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
0249540 Jun 2002 WO
03047468 Jun 2003 WO
2005034812 Apr 2005 WO
2005055883 Jun 2005 WO
2005084595 Sep 2005 WO
2005102015 Nov 2005 WO
2006014233 Feb 2006 WO
2006032051 Mar 2006 WO
2006034008 Mar 2006 WO
2006111391 Oct 2006 WO
2006138173 Dec 2006 WO
2007047488 Apr 2007 WO
2007067942 Jun 2007 WO
2007097983 Aug 2007 WO
2008005405 Jan 2008 WO
2008015257 Feb 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008147964 Dec 2008 WO
2008150529 Dec 2008 WO
2009033469 Mar 2009 WO
2009042196 Apr 2009 WO
2009053497 Apr 2009 WO
2009061389 May 2009 WO
2009094188 Jul 2009 WO
2009116041 Sep 2009 WO
2009149462 Dec 2009 WO
2010011699 Jan 2010 WO
2010121076 Oct 2010 WO
2013106585 Jul 2013 WO
2015085218 Jun 2015 WO
Non-Patent Literature Citations (6)
Entry
H.R. Andersen, et al. “Transluminal Implantation of Artificial Heart Valve. Description of a New Expandable Aortic Valve and Initial Results with implantation by Cathether Technique in Closed Chest Pig,” European Heart Journal, No. 13. pp. 704-708. 1992.
H.R. Andersen “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009.
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994.
Al-Khaja, et al. “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, vol. 3. pp. 305-311. 1989.
Uchida, “Modifications of Gianturco Expandable Wire Stents,” American Journal of Roentgenology, vol. 150. pp. 1185-1187. 1986.
Walther T, Dehdashtian MM, Khanna R, Young E, Goldbrunner PJ, Lee W. Trans-catheter valve-in-valve implantation: in vitro hydrodynamic performance of the SAPIEN+cloth trans-catheter heart valve in the Carpentier-Edwards Perimount valves. Eur J Cardiothorac Surg. 2011;40(5):1120-6. Epub Apr. 7, 2011.
Related Publications (1)
Number Date Country
20230103353 A1 Apr 2023 US
Provisional Applications (1)
Number Date Country
63041050 Jun 2020 US
Continuations (1)
Number Date Country
Parent PCT/US2021/037738 Jun 2021 US
Child 18080043 US