The present invention relates to a crinkling device as defined in the preamble of claim 1.
In prior art, a crinkling device as disclosed in the preamble of specification EP 0 511 870 A1 for use with a wrapping machine to adjust the width of a film web to be wrapped around an object between a full web width and a narrowed, string-like web width is known.
The crinkling device comprises a frame secured to the film dispenser of the wrapping machine, said film dispenser carrying a film web roll of film web having a longitudinal upper edge and a longitudinal lower edge.
The crinkling device further comprises a first wheel rotatably mounted on the frame and a second wheel rotatably mounted on the frame at a distance from the first wheel.
An endless drive element is passed over the first wheel and the second wheel so that a first drive element portion and a second drive element portion are formed between the wheels, said portions extending adjacently and parallel to each other in the widthwise direction of the film web. Connected to the first drive element portion is a carriage guided in the frame so as to be movable in the widthwise direction of the film web.
A first crinkling element is fastened to the first carriage to crinkle the upper edge of the film web. The crinkling device further comprises a second carriage, which is also guided in the frame so as to be movable in the widthwise direction of the film web. A second crinkling element is mounted on the second carriage to crinkle the lower edge of the film web.
A power means, consisting of a pneumatic cylinder, is arranged to move the second carriage in the widthwise direction of the film web. Mounted on the same shaft with the upper first wheel is a third wheel of a smaller diameter. Near the lower second wheel is a fourth wheel rotatably mounted on the frame on a different shaft than the second wheel. An endless second drive element is passed over the third and fourth wheels. The second carriage is fastened to the second drive element. Because of the difference between the sizes of the first and second wheels, a transmission ratio is formed between the first drive element and the second drive element such that when the second carriage is moved by the pneumatic cylinder, this movement is transmitted with the aforesaid transmission ratio into a movement of the first carriage. When the wrapping film is to be crinkled, the first carriage (and the first crinkling element) moves downwards through a distance longer than the upwards movement of the second carriage (and the second crinkling element) past the level of the second carriage. Due to the above-described mechanical transmission, the movements of the first and second carriages take place simultaneously. The prior-art crinkling device has the advantage that it uses only one power means.
A problem with the crinkling device disclosed in the above-mentioned specification is that it always crinkles the film web from the upper and lower edges without allowing them to be crinkled separately and independently of each other. Moreover, the device has a complex construction as it comprises two drive elements and two pairs of sheaves. Therefore, the crinkling device also comprises a large number of maintenance objects and parts subject to wear and replacement. Due to the complex construction, the manufacturing costs of the crinkling device are high. A further problem is that the distance through which the first and second crinkling elements travel during the crinkling action can not be varied without replacing components, i.e. without changing-the transmission ratio between the running speeds of the first and second drive elements by replacing the third wheel with a wheel of a larger or smaller diameter.
Another prior-art crinkling device works on the drive screw/nut principle, using one power means to rotate the drive screw, which has been arranged to move a first drive nut connected to a first carriage with a first crinkling element attached to it and a second drive nut connected to a second carriage with a second crinkling element attached to it. When the drive screw is rotated, the two carriages and the respective crinkling elements move in opposite directions through equal distances, with the result that the film web is contracted into a string at about the middle of the device. The problem is that the travel of each crinkling device is always the same and it is not possible e.g. to produce a slighter crinkling at the lower edge of the film web and a greater crinkling at the upper edge so as to produce from the film web a string located near the level of the lower edge of the original full web width.
The object of the present invention is to overcome the above-mentioned drawbacks.
A specific object of the invention is to disclose a crinkling device that makes it possible to optionally crinkle the lower edge and/or the upper edge of the film separately or simultaneously.
A further object of the invention is to disclose a crinkling device having a construction as simple as possible.
A further object of the invention is to disclose a crinkling device in which the distances traveled by the crinkling elements can be easily varied.
The crinkling device of the invention is characterized by what is disclosed in claim 1.
According to the invention, the crinkling device comprises a frame connected to a foil dispenser comprised in a wrapping machine, said foil dispenser carrying a foil web roll of foil web having a longitudinal upper edge and a longitudinal lower edge; a first wheel rotatably mounted on the frame; a second wheel rotatably mounted on the frame at a distance from the first wheel; an endless drive element, which is passed over the first wheel and the second wheel so as to form a first drive element portion and a second drive element portion extending adjacently and parallel to each other between the wheels in the widthwise direction of the foil web; a power means for moving the drive element optionally in a first running direction with the first drive element portion moving upwards and the second drive element portion moving downwards, and in an opposite second running direction with the first drive element portion moving downwards and the second drive element portion moving upwards; a first carriage, which is fastened to the first drive element portion and guided in the frame so as to be movable in the widthwise direction of the foil web; a first crinkling element, which is mounted on the first carriage for crinkling the upper edge of the foil web; and a second crinkling element, which is movable by the action of the drive element in the widthwise direction of the foil web for crinkling the lower edge of the foil web.
According to the invention, the crinkling device comprises a slide rod, to which the second crinkling element is connected. The slide rod is guided in the frame so as to be movable in a substantially vertical direction between a lower position, in which the second crinkling element is out of contact with the lower edge of the foil web, and an upper position, in which the second crinkling element deflects the lower edge of the foil web upwards so as to crinkle it. The slide rod has been arranged to return towards the lower position when not exposed to a force acting in the upward direction. The crinkling device further comprises first coupling means for forming a releasable coupling between the slide rod and the first drive element portion when the drive element is running in the first direction to move the second crinkling element to the upper position. In addition, the crinkling device comprises second coupling means for forming a releasable coupling between the slide rod and the second drive element portion when the drive element is running in the second direction to move the second crinkling element to the upper position. By driving the drive element in the first running direction, the foil web can be crinkled only from its lower edge. By driving the drive element in the second running direction, the foil web can be crinkled optionally either from the upper edge without crinkling the lower edge or from the upper edge and the lower edge simultaneously. By driving the drive element in the second running direction, the foil web can be crinkled by the first crinkling element either from the upper edge only without crinkling of the lower edge or alternatively simultaneously with crinkling of the lower edge by the second crinkling element.
The essential discovery of the invention is that the crinkling elements need not necessarily always perform a crinkling movement simultaneously towards each other, but that they can instead be used to crinkle the foil web either separately from the lower edge or the upper edge if it is desirable to form a web somewhat narrower than the full width, or simultaneously from the upper edge and the lower edge to form a narrow string-like web. An additional advantage is that the crinkling device provides the same advantages as the prior-art crinkling device that uses only one power means, while having a simple construction, which means that its manufacturing and maintenance costs are low.
In an embodiment of the crinkling device, the first coupling means comprise a first dog, which is provided on the slide rod near the upper end, and a second dog, which is provided on the first carriage and fitted to come into contact with the first dog when the drive element is running in the first direction.
In an embodiment of the crinkling device, the crinkling device comprises a second carriage, which is fastened to the second drive element portion and guided in the frame so as to be movable in the width-wise direction of the foil web.
In an embodiment of the crinkling device, the second coupling means comprise a third dog, which is provided on the slide rod near the upper end, and a fourth dog, which is provided on the second carriage and fitted to come into contact with the third dog when the drive element is running in the second direction.
In an embodiment of the crinkling device, the slide rod comprises a straight rod part by which the slid rod is connected to the frame by means of guide elements placed between the first drive element portion and the second drive element portion.
In an embodiment of the crinkling device, the slide rod is so mounted in the frame that the slide rod can be returned to the lower position by the action of gravitation.
In an embodiment of the crinkling device, a return spring is provided between the slide rod and the frame for returning the slide rod to the lower position.
In an embodiment of the crinkling device, the power means is a motor arranged to drive the first wheel or the second wheel.
In an embodiment of the crinkling device, the crinkling device comprises detectors for detecting the position of the carriages and controlling the power means on that basis to stop the motion of the drive element and to change its running direction.
In an embodiment of the crinkling device, the detectors have been arranged to control the power means on the basis of the position of the first carriage and the second carriage.
In an embodiment of the crinkling device, the detectors are proximity sensors having a first state and a second state. The detectors have been fitted to change their state between the first and second states when the first carriage and/or the second carriage is within the detection distance of the detector.
In the following, the invention will be described in detail on the basis of an example embodiment with reference to the attached drawings, wherein
As shown in
To move the drive element, the shaft of a motor 10 is coupled to rotate the first wheel 5 so as to move the drive element 7 optionally in a first running direction 11 and in a second running direction 12 reverse relative to the first direction. When the motor 10 is driving the drive element 7 in the first running direction 11, the first drive element portion 8 moves upwards while the second drive element portion 9 moves downwards. Correspondingly, when the motor 10 is driving the drive element 7 in the second running direction 12, the first drive element portion 8 moves downwards while the second drive element portion 9 moves upwards. Fastened to the first drive element portion 9 is a first carriage 13, which is guided in the frame 2 so as to be movable in the widthwise direction of the foil web 1. A first crinkling element 14 is connected to the first carriage 13 for crinkling the upper edge 3 of the foil web. A second carriage 21 is fastened to the second drive element portion 9 and guided in the frame 2 so as to be movable in parallel with the direction of motion of the first carriage 13, i.e. in the widthwise direction of the foil web 1.
A second crinkling element 15 for crinkling the lower edge 4 of the foil web 1 is connected to a slide rod 16, which is guided in the frame 2 so as to be movable in the widthwise direction of the foil web 1, i.e. in a substantially vertical direction. The slide rod 16 a straight rod part 19, which is connected to the frame 2 by guide elements 20 placed between the first drive element portion 8 and the second drive element portion 9. The slide bar 16 can move between a lower position L as shown in
The crinkling device comprises first coupling means 171, 181 for forming a releasable coupling between the slide rod 16 and the first drive element portion 8 when the drive element 7 is running in the first direction 11 to move the second crinkling element 15 upwards so as to crinkle the lower edge of the foil web 1.
The coupling means 171, 181 consist of a first dog 171 provided on the slide bar 16 near its upper end and a second dog 181 provided on the first carriage 13. The first dog 171 is a first pin, which extends from the upper end of the slide bar 16 transversely across the path of movement of the first carriage 13, so that the upper surface of the first carriage 13 functions as a second dog 181 and meets the first pin 171 when the drive element 7 is running in the first direction 11.
The crinkling device further comprises second coupling means 172, 182 designed to form a releasable coupling between the slide rod 16 and the second drive element portion 9 when the drive element 7 is running in the second direction 12 (
The second coupling means 172, 182 comprise a third dog 172, which is connected to the slide rod 16 near the upper end, and a fourth dog 182, which is connected to the second carriage 21 and fitted to come into contact with the third dog 172 when the drive element 7 is running in the second direction 12. The third dog is a second pin extending from the upper end of the slide bar 16 transversely across the path of movement of the second carriage 21, so that the upper surface of the second carriage 21 functions as a fourth dog 182 and meets the second pin 172 when the drive element 7 is running in the second direction 12.
With this arrangement, as illustrated in
Correspondingly, according to
Further optionally according to
The functions of the device are preferably controlled by means-of detectors 22, 23, 24 to detect the current position of the carriages 13, 21 and, based on the positions detected, to control the power means 10 to stop the motion of the drive element 7 and change its running direction. The detectors 22, 23, 24 are proximity sensors having a first state 0 and a second state 1. The detectors 22, 23, 24 change their state between states 0 and 1 when the first carriage 13 and/or the second carriage 21 is/are within the detection distance of the detector. The first detector 22 and the second detector 23 have been arranged to observe the first carriage 13. The third detector 24 have been arranged to observe the second carriage 21. The detectors are connected to a control unit 26, which controls the operation of the motor 10 in accordance with the states 0 and 1 of the detectors.
In
When a transition is to be made from the situation of
When a transition is to be made from the situation of
When a transition is to be made from the situation of
The invention is not limited to the embodiment examples described above; instead, many variations are possible within the scope of the inventive concept defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
20030421 | Mar 2003 | FI | national |
Number | Name | Date | Kind |
---|---|---|---|
4255918 | Lancaster et al. | Mar 1981 | A |
4271657 | Lancaster et al. | Jun 1981 | A |
4336679 | Lancaster et al. | Jun 1982 | A |
4432185 | Geisinger | Feb 1984 | A |
4563863 | Humphrey | Jan 1986 | A |
4807427 | Casteel et al. | Feb 1989 | A |
4905451 | Jaconelli et al. | Mar 1990 | A |
5031771 | Lancaster | Jul 1991 | A |
5107657 | Diehl et al. | Apr 1992 | A |
5203136 | Thimon et al. | Apr 1993 | A |
Number | Date | Country |
---|---|---|
2287675 | Apr 2001 | CA |
0 511 870 | Nov 1992 | EP |
Number | Date | Country | |
---|---|---|---|
20040244336 A1 | Dec 2004 | US |