CRISPR/CAS-RELATED METHODS AND COMPOSITIONS FOR TREATING HIV INFECTION AND AIDS

Abstract
CRISPR/CAS-related compositions and methods for treatment of a subject at risk for or having a HIV infection or AIDS are disclosed.
Description
SEQUENCE LISTING

The specification further incorporates by reference the Sequence Listing submitted herewith via EFS on Sep. 23, 2016. Pursuant to 37 C.F.R. §1.52(e)(5), the Sequence Listing text file, identified as 084177.0124SEQ.txt, is 2,093,238 bytes and was created on Sep. 23, 2016. The Sequence Listing, electronically filed herewith, does not extend beyond the scope of the specification and thus does not contain new matter.


FIELD OF THE INVENTION

The invention relates to CRISPR/CAS-related methods and components for editing of a target nucleic acid sequence, and applications thereof in connection with Human Immunodeficiency Virus (HIV) infection and Acquired Immunodeficiency Syndrome (AIDS).


BACKGROUND

Human Immunodeficiency Virus (HIV) is a virus that causes severe immunodeficiency. In the United States, more than 1 million people are infected with the virus. Worldwide, approximately 30-40 million people are infected.


HIV preferentially infects CD4 T cells. It causes declining CD4 T cell counts, severe opportunistic infections and certain cancers, including Kaposi's sarcoma and Burkitt's lymphoma. Untreated HIV infection is a chronic, progressive disease that leads to acquired immunodeficiency syndrome (AIDS) and death in nearly all subjects.


HIV was untreatable and invariably led to death in all subjects until the late 1980's. Since then, antiretroviral therapy (ART) has dramatically slowed the course of HIV infection. Highly active antiretroviral therapy (HAART) is the use of three or more agents in combination to slow HIV. Treatment with HAART has significantly altered the life expectancy of those infected with HIV. A subject in the developed world who maintains their HAART regimen can expect to live into his or her 60's and possibly 70's. However, HAART regimens are associated with significant, long-term side effects. The dosing regimens are complex and associated with strict dietary requirements. Compliance rates with dosing can be lower than 50% in some populations in the United States. In addition, there are significant toxicities associated with HAART treatment, including diabetes, nausea, malaise and sleep disturbances. A subject who does not adhere to dosing requirements of HAART therapy may have a return of viral load in their blood and is at risk for progression of the disease and its associated complications.


HIV is a single-stranded RNA virus that preferentially infects CD4 T-cells. The virus must bind to receptors and coreceptors on the surface of CD4 cells to enter and infect these cells. This binding and infection step is vital to the pathogenesis of HIV. The virus attaches to the CD4 receptor on the cell surface via its own surface glycoproteins, gp120 and gp41. Gp120 binds to a CD4 receptor and must also bind to another coreceptor in order for the virus to enter the host cell. In macrophage-(M-tropic) viruses, the coreceptor is CCR5, also referred to as the CCR5 receptor. CCR5 receptors are expressed by CD4 cells, T cells, gut-associated lymphoid tissue (GALT), macrophages, dendritic cells and microglia. HIV establishes initial infection and replicates in the host most commonly via CCR5 co-receptors.


As most HIV infections and early stage HIV is due to entry and propagation of M-tropic virus, CCR5-Δ32 mutation results in a non-functional CCR5 receptor that does not allow M-tropic HIV-1 virus entry. Individuals carrying two copies of the CCR5-Δ32 allele are resistant to HIV infection and CCR5-Δ32 heterozygous carriers have slow progression of the disease.


CCR5 antagonists (e.g. maraviroc) exist and are used in the treatment of HIV. However, current CCR5 antagonists decrease HIV progression but cannot cure the disease. In addition, there are considerable risks of side effects of these CCR5 antagonists, including severe liver toxicity.


In spite of considerable advances in the treatment of HIV, there remain considerable needs for agents that could prevent, treat, and eliminate HIV infection or AIDS. Therapies that are free from significant toxicities and involve a single or multi-dose regimen (versus current daily dose regimen for the lifetime of a patient) would be superior to current HIV treatment. A reduction or complete elimination of CCR5 expression in myeloid and lymphoid cells would prevent HIV infection and progression, and even cure this disease.


SUMMARY OF THE INVENTION

Methods and compositions discussed herein, allow for the prevention and treatment of HIV infection and AIDS, by introducing one or more mutations in the gene for C-C chemokine receptor type 5 (CCR5). The CCR5 gene is also known as CKR5, CCR-5, CD195, CKR-5, CCCKR5, CMKBR5, IDDM22, and CC-CKR-5.


Methods and compositions discussed herein, provide for prevention or reduction of HIV infection and/or prevention or reduction of the ability for HIV to enter host cells, e.g., in subjects who are already infected. Exemplary host cells for HIV include, but are not limited to, CD4 cells, T cells, gut associated lymphatic tissue (GALT), macrophages, dendritic cells, myeloid precursor cell, and microglia. Viral entry into the host cells requires interaction of the viral glycoproteins gp41 and gp120 with both the CD4 receptor and a co-receptor, e.g., CCR5. If a co-receptor, e.g., CCR5, is not present on the surface of the host cells, the virus cannot bind and enter the host cells. The progress of the disease is thus impeded. By knocking out or knocking down CCR5 in the host cells, e.g., by introducing a protective mutation (such as a CCR5 delta 32 mutation), entry of the HIV virus into the host cells is prevented.


Methods and compositions discussed herein, provide for treating or delaying the onset or progression of HIV infection or AIDS by gene editing, e.g., using CRISPR-Cas9 mediated methods to alter a CCR5 gene. Altering the CCR5 gene herein refers to reducing or eliminating (1) CCR5 gene expression, (2) CCR5 protein function, or (3) the level of CCR5 protein.


In one aspect, the methods and compositions discussed herein, inhibit or block a critical aspect of the HIV life cycle, i.e., CCR5-mediated entry into T cells, by alteration (e.g., inactivation) of the CCR5 gene. Exemplary mechanisms that can be associated with the alteration of the CCR5 gene include, but are not limited to, non-homologous end joining (NHEJ) (e.g., classical or alternative), microhomology-mediated end joining (MMEJ), homology-directed repair (e.g., endogenous donor template mediated), SDSA (synthesis dependent strand annealing), single strand annealing or single strand invasion. Alteration of the CCR5 gene, e.g., mediated by NHEJ, can result in a mutation, which typically comprises a deletion or insertion (indel). The introduced mutation can take place in any region of the CCR5 gene, e.g., a promoter region or other non-coding region, or a coding region, so long as the mutation results in reduced or loss of the ability to mediate HIV entry into the cell.


In another aspect, the methods and compositions discussed herein may be used to alter the CCR5 gene to treat or prevent HIV infection or AIDS by targeting the coding sequence of the CCR5 gene.


In an embodiment, the gene, e.g., the coding sequence of the CCR5 gene, is targeted to knock out the gene, e.g., to eliminate expression of the gene, e.g., to knock out both alleles of the CCR5 gene, e.g., by introduction of an alteration comprising a mutation (e.g., an insertion or deletion) in the CCR5 gene. This type of alteration is sometimes referred to as “knocking out” the CCR5 gene. While not wishing to be bound by theory, in an embodiment, a targeted knockout approach is mediated by NHEJ using a CRISPR/Cas system comprising a Cas9 molecule, e.g., an enzymatically active Cas9 (eaCas9) molecule, as described herein.


In another aspect, the methods and compositions discussed herein may be used to alter the CCR5 gene to treat or prevent HIV infection or AIDS by targeting a non-coding sequence of the CCR5 gene, e.g., a promoter, an enhancer, an intron, a 3′UTR, and/or a polyadenylation signal.


In one embodiment, the gene, e.g., the non-coding sequence of the CCR5 gene, is targeted to knock out the gene, e.g., to eliminate expression of the gene, e.g., to knock out both alleles of the CCR5 gene, e.g., by introduction of an alteration comprising a mutation (e.g., an insertion or deletion) in the CCR5 gene. In an embodiment, the method provides an alteration that comprises an insertion or deletion. This type of alteration is also sometimes referred to as “knocking out” the CCR5 gene. While not wishing to be bound by theory, in an embodiment, a targeted knockout approach is mediated by NHEJ using a CRISPR/Cas system comprising a Cas9 molecule, e.g., an enzymatically active Cas9 (eaCas9) molecule, as described herein.


In an embodiment, methods and compositions discussed herein, provide for altering (e.g., knocking out) the CCR5 gene. In an embodiment, knocking out the CCR5 gene herein refers to (1) insertion or deletion (e.g., NHEJ-mediated insertion or deletion) of one or more nucleotides of the CCR5 gene (e.g., in close proximity to or within an early coding region or in a non-coding region), or (2) deletion (e.g., NHEJ-mediated deletion) of a genomic sequence of the CCR5 gene (e.g., in a coding region or in a non-coding region). Both approaches give rise to alteration of the CCR5 gene as described herein. In an embodiment, a CCR5 target knockout position is altered by genome editing using the CRISPR/Cas9 system. The CCR5 target knockout position may be targeted by cleaving with either one or more nucleases, or one or more nickases, or a combination thereof.


“CCR5 target knockout position”, as used herein, refers to a position in the CCR5 gene, which if altered, e.g., disrupted by insertion or deletion of one or more nucleotides, e.g., by NHEJ-mediated alteration, results in alteration of the CCR5 gene. In an embodiment, the position is in the CCR5 coding region, e.g., an early coding region. In another embodiment, the position is in a non-coding sequence of the CCR5 gene, e.g., a promoter, an enhancer, an intron, a 3′UTR, and/or a polyadenylation signal.


In another embodiment, the CCR5 gene is targeted to knock down the gene, e.g., to reduce or eliminate expression of the gene, e.g., to knock down one or both alleles of the CCR5 gene.


In one embodiment, the coding region of the CCR5 gene, is targeted to alter the expression of the gene. In another embodiment, a non-coding region (e.g., an enhancer region, a promoter region, an intron, a 5′ UTR, a 3′UTR, or a polyadenylation signal) of the CCR5 gene is targeted to alter the expression of the gene. In an embodiment, the promoter region of the CCR5 gene is targeted to knock down the expression of the CCR5 gene. This type of alteration is also sometimes referred to as “knocking down” the CCR5 gene. While not wishing to be bound by theory, in an embodiment, a targeted knockdown approach is mediated by a CRISPR/Cas system comprising a Cas9 molecule, e.g., an enzymatically inactive Cas9 (eiCas9) molecule or an eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain or chromatin modifying protein), as described herein. In an embodiment, the CCR5 gene is targeted to alter (e.g., to block, reduce, or decrease) the transcription of the CCR5 gene. In another embodiment, the CCR5 gene is targeted to alter the chromatin structure (e.g., one or more histone and/or DNA modifications) of the CCR5 gene. In an embodiment, a CCR5 target knockdown position is targeted by genome editing using the CRISPR/Cas9 system. In an embodiment, one or more gRNA molecules comprising a targeting domain are configured to target an enzymatically inactive Cas9 (eiCas9) molecule or an eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain), sufficiently close to a CCR5 target knockdown position to reduce, decrease or repress expression of the CCR5 gene.


“CCR5 target knockdown position”, as used herein, refers to a position in the CCR5 gene, which if targeted, e.g., by an eiCas9 molecule or an eiCas9 fusion described herein, results in reduction or elimination of expression of functional CCR5 gene product. In an embodiment, the transcription of the CCR5 gene is reduced or eliminated. In another embodiment, the chromatin structure of the CCR5 gene is altered. In an embodiment, the position is in the CCR5 promoter sequence. In an embodiment, a position in the promoter sequence of the CCR5 gene is targeted by an enzymatically inactive Cas9 (eiCas9) molecule or an eiCas9 fusion protein, as described herein.


“CCR5 target position”, as used herein, refers to any position that results in inactivation of the CCR5 gene. In an embodiment, a CCR5 target position refers to any of a CCR5 target knockout position or a CCR5 target knockdown position, as described herein.


In one aspect, disclosed herein is a gRNA molecule, e.g., an isolated or non-naturally occurring gRNA molecule, comprising a targeting domain which is complementary with a target domain from the CCR5 gene.


In an embodiment, the targeting domain of the gRNA molecule is configured to provide a cleavage event, e.g., a double strand break or a single strand break, sufficiently close to a CCR5 target position in the CCR5 gene to allow alteration, e.g., alteration associated with NHEJ, of a CCR5 target position in the CCR5 gene. In an embodiment, the alteration comprises an insertion or deletion. In an embodiment, the targeting domain is configured such that a cleavage event, e.g., a double strand or single strand break, is positioned within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 450, or 500 nucleotides of a CCR5 target position. The break, e.g., a double strand or single strand break, can be positioned upstream or downstream of a CCR5 target position in the CCR5 gene.


In an embodiment, a second gRNA molecule comprising a second targeting domain is configured to provide a cleavage event, e.g., a double strand break or a single strand break, sufficiently close to the CCR5 target position in the CCR5 gene, to allow alteration, e.g., alteration associated with NHEJ, of the CCR5 target position in the CCR5 gene, either alone or in combination with the break positioned by said first gRNA molecule. In an embodiment, the targeting domains of the first and second gRNA molecules are configured such that a cleavage event, e.g., a double strand or single strand break, is positioned, independently for each of the gRNA molecules, within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 450, or 500 nucleotides of the target position. In an embodiment, the breaks, e.g., double strand or single strand breaks, are positioned on both sides of a nucleotide of a CCR5 target position in the CCR5 gene. In an embodiment, the breaks, e.g., double strand or single strand breaks, are positioned on one side, e.g., upstream or downstream, of a nucleotide of a CCR5 target position in the CCR5 gene.


In an embodiment, a single strand break is accompanied by an additional single strand break, positioned by a second gRNA molecule, as discussed below. For example, the targeting domains are configured such that a cleavage event, e.g., the two single strand breaks, are positioned within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 450, or 500 nucleotides of a CCR5 target position. In an embodiment, the first and second gRNA molecules are configured such, that when guiding a Cas9 molecule, e.g., a Cas9 nickase, a single strand break will be accompanied by an additional single strand break, positioned by a second gRNA, sufficiently close to one another to result in alteration of a CCR5 target position in the CCR5 gene. In an embodiment, the first and second gRNA molecules are configured such that a single strand break positioned by said second gRNA is within 10, 20, 30, 40, or 50 nucleotides of the break positioned by said first gRNA molecule, e.g., when the Cas9 molecule is a nickase. In an embodiment, the two gRNA molecules are configured to position cuts at the same position, or within a few nucleotides of one another, on different strands, e.g., essentially mimicking a double strand break.


In an embodiment, a double strand break can be accompanied by an additional double strand break, positioned by a second gRNA molecule, as is discussed below. For example, the targeting domain of a first gRNA molecule is configured such that a double strand break is positioned upstream of a CCR5 target position in the CCR5 gene, e.g., within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 450, or 500 nucleotides of the target position; and the targeting domain of a second gRNA molecule is configured such that a double strand break is positioned downstream of a CCR5 target position in the CCR5 gene, e.g., within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 450, or 500 nucleotides of the target position.


In an embodiment, a double strand break can be accompanied by two additional single strand breaks, positioned by a second gRNA molecule and a third gRNA molecule. For example, the targeting domain of a first gRNA molecule is configured such that a double strand break is positioned upstream of a CCR5 target position in the CCR5 gene, e.g., within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 450, or 500 nucleotides of the target position; and the targeting domains of a second and third gRNA molecule are configured such that two single strand breaks are positioned downstream of a CCR5 target position in the CCR5 gene, e.g., within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 450, or 500 nucleotides of the target position. In an embodiment, the targeting domain of the first, second and third gRNA molecules are configured such that a cleavage event, e.g., a double strand or single strand break, is positioned, independently for each of the gRNA molecules.


In an embodiment, a first and second single strand breaks can be accompanied by two additional single strand breaks positioned by a third gRNA molecule and a fourth gRNA molecule. For example, the targeting domain of a first and second gRNA molecule are configured such that two single strand breaks are positioned upstream of a CCR5 target position in the CCR5 gene, e.g., within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 450, or 500 nucleotides of the target position; and the targeting domains of a third and fourth gRNA molecule are configured such that two single strand breaks are positioned downstream of a CCR5 target position in the CCR5 gene, e.g., within 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 450, or 500 nucleotides of the target position.


It is contemplated herein that, in an embodiment, when multiple gRNAs are used to generate (1) two single stranded breaks in close proximity, (2) two double stranded breaks, e.g., flanking a CCR5 target position (e.g., to remove a piece of DNA, e.g., a insertion or deletion mutation) or to create more than one indel in an early coding region, (3) one double stranded break and two paired nicks flanking a CCR5 target position (e.g., to remove a piece of DNA, e.g., a insertion or deletion mutation) or (4) four single stranded breaks, two on each side of a CCR5 target position, that they are targeting the same CCR5 target position. It is further contemplated herein that in an embodiment multiple gRNAs may be used to target more than one target position in the same gene.


In an embodiment, the targeting domain of the first gRNA molecule and the targeting domain of the second gRNA molecules are complementary to opposite strands of the target nucleic acid molecule. In an embodiment, the gRNA molecule and the second gRNA molecule are configured such that the PAMs are oriented outward.


In an embodiment, the targeting domain of a gRNA molecule is configured to avoid unwanted target chromosome elements, such as repeat elements, e.g., Alu repeats, in the target domain. The gRNA molecule may be a first, second, third and/or fourth gRNA molecule, as described herein.


In an embodiment, the targeting domain of a gRNA molecule is configured to position a cleavage event sufficiently far from a preselected nucleotide, e.g., the nucleotide of a coding region, such that the nucleotide is not altered. In an embodiment, the targeting domain of a gRNA molecule is configured to position an intronic cleavage event sufficiently far from an intron/exon border, or naturally occurring splice signal, to avoid alteration of the exonic sequence or unwanted splicing events. The gRNA molecule may be a first, second, third and/or fourth gRNA molecule, as described herein.


In an embodiment, a CCR5 target position is targeted and the targeting domain of a gRNA molecule comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any one of Tables 1A-1F, 2A-2C, 3A-3E, or 4A-4C. In an embodiment, the targeting domain is independently selected from those in Tables 1A-1F, 2A-2C, 3A-3E, or 4A-4C. In an embodiment, the targeting domain is independently selected from:









(SEQ ID NO: 387)









CCUGCCUCCGCUCUACUCAC;











(SEQ ID NO: 388)









GCUGCCGCCCAGUGGGACUU;











(SEQ ID NO: 389)









ACAAUGUGUCAACUCUUGAC;











(SEQ ID NO: 390)









GGUGACAAGUGUGAUCACUU;











(SEQ ID NO: 391)









CCAGGUACCUAUCGAUUGUC;











(SEQ ID NO: 392)









CUUCACAUUGAUUUUUUGGC;











(SEQ ID NO: 393)









GCAGCAUAGUGAGCCCAGAA;











(SEQ ID NO: 394)









GGUACCUAUCGAUUGUCAGG;











(SEQ ID NO: 395)









GUGAGUAGAGCGGAGGCAGG;











(SEQ ID NO: 396)









GCCUCCGCUCUACUCAC;











(SEQ ID NO: 397)









GCCGCCCAGUGGGACUU;











(SEQ ID NO: 398)









AUGUGUCAACUCUUGAC;











(SEQ ID NO: 399)









GACAAUCGAUAGGUACC;











(SEQ ID NO: 400)









CACAUUGAUUUUUUGGC;











(SEQ ID NO: 401)









GCAUAGUGAGCCCAGAA;



or











(SEQ ID NO: 402)









GGUACCUAUCGAUUGUC.






In an embodiment, the targeting domain is independently selected from those in Table 2A. In an embodiment, the targeting domain is independently selected from those in Table 3A. In an embodiment, the targeting domain is independently selected from those in Table 4A.


In an embodiment, more than one gRNA is used to position breaks, e.g., two single stranded breaks or two double stranded breaks, or a combination of single strand and double strand breaks, e.g., to create one or more indels, in the target nucleic acid sequence. In an embodiment, the targeting domain of each guide RNA is independently selected from any one of Tables 1A-1F, 2A-2C, 3A-3E, or 4A-4C.


In an embodiment, the targeting domain of the gRNA molecule is configured to target an enzymatically inactive Cas9 (eiCas9) molecule or an eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain), sufficiently close to a CCR5 transcription start site (TSS) to reduce (e.g., block) transcription, e.g., transcription initiation or elongation, binding of one or more transcription enhancers or activators, and/or RNA polymerase. In an embodiment, the targeting domain is configured to target between 1000 bp upstream and 1000 bp downstream (e.g., between 500 bp upstream and 1000 bp downstream, between 1000 bp upstream and 500 bp downstream, between 500 bp upstream and 500 bp downstream, within 500 bp or 200 bp upstream, or within 500 bp or 200 bp downstream) of the TSS of the CCR5 gene. One or more gRNAs may be used to target an eiCas9 to the promoter region of the CCR5 gene.


In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any one of Tables 5A-5C, 6A-6E, or 7A-7C. In an embodiment, the targeting domain is independently selected from those in Tables 5A-5C, 6A-6E, or 7A-7C.


In an embodiment, the targeting domain is independently selected from those in Table 5A. In an embodiment, the targeting domain is independently selected from those in Table 6A. In an embodiment, the targeting domain is independently selected from those in Table 7A.


In an embodiment, when the CCR5 promoter region is targeted, e.g., for knockdown, the targeting domain can comprise a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any one of Tables 5A-5C, 6A-6E, or 7A-7C. In an embodiment, the targeting domain is independently selected from those in Tables 5A-5C, 6A-6E, or 7A-7C.


In an embodiment, when the CCR5 target knockdown position is the CCR5 promoter region and more than one gRNA is used to position an eiCas9 molecule or an eiCas9-fusion protein (e.g., an eiCas9-transcription repressor domain fusion protein), in the target nucleic acid sequence, the targeting domain for each guide RNA is independently selected from one of Tables 5A-5C, 6A-6E, or 7A-7C.


In an embodiment, the targeting domain comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from Table 18. In an embodiment, the targeting domain is independently selected from those in Table 18.


In an embodiment, the targeting domain which is complementary with a target domain from the CCR5 target position in the CCR5 gene is 16 nucleotides or more in length. In an embodiment, the targeting domain is 16 nucleotides in length. In an embodiment, the targeting domain is 17 nucleotides in length. In other embodiments, the targeting domain is 18 nucleotides in length. In still other embodiments, the targeting domain is 19 nucleotides in length. In still other embodiments, the targeting domain is 20 nucleotides in length. In an embodiment, the targeting domain is 21 nucleotides in length. In an embodiment, the targeting domain is 22 nucleotides in length. In an embodiment, the targeting domain is 23 nucleotides in length. In an embodiment, the targeting domain is 24 nucleotides in length. In an embodiment, the targeting domain is 25 nucleotides in length. In an embodiment, the targeting domain is 26 nucleotides in length.


In an embodiment, the targeting domain comprises 16 nucleotides.


In an embodiment, the targeting domain comprises 17 nucleotides.


In an embodiment, the targeting domain comprises 18 nucleotides.


In an embodiment, the targeting domain comprises 19 nucleotides.


In an embodiment, the targeting domain comprises 20 nucleotides.


In an embodiment, the targeting domain comprises 21 nucleotides.


In an embodiment, the targeting domain comprises 22 nucleotides.


In an embodiment, the targeting domain comprises 23 nucleotides.


In an embodiment, the targeting domain comprises 24 nucleotides.


In an embodiment, the targeting domain comprises 25 nucleotides.


In an embodiment, the targeting domain comprises 26 nucleotides.


A gRNA as described herein may comprise from 5′ to 3′: a targeting domain (comprising a “core domain”, and optionally a “secondary domain”); a first complementarity domain; a linking domain; a second complementarity domain; a proximal domain; and a tail domain. In some embodiments, the proximal domain and tail domain are taken together as a single domain.


In an embodiment, a gRNA comprises a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 20 nucleotides in length; and a targeting domain equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In another embodiment, a gRNA comprises a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 25 nucleotides in length; and a targeting domain equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In another embodiment, a gRNA comprises a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 30 nucleotides in length; and a targeting domain equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In another embodiment, a gRNA comprises a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 40 nucleotides in length; and a targeting domain equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


A cleavage event, e.g., a double strand or single strand break, is generated by a Cas9 molecule. The Cas9 molecule may be an enzymatically active Cas9 (eaCas9) molecule, e.g., an eaCas9 molecule that forms a double strand break in a target nucleic acid or an eaCas9 molecule forms a single strand break in a target nucleic acid (e.g., a nickase molecule).


In an embodiment, the eaCas9 molecule catalyzes a double strand break.


In some embodiments, the eaCas9 molecule comprises HNH-like domain cleavage activity but has no, or no significant, N-terminal RuvC-like domain cleavage activity. In this case, the eaCas9 molecule is an HNH-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at D10, e.g., D10A. In other embodiments, the eaCas9 molecule comprises N-terminal RuvC-like domain cleavage activity but has no, or no significant, HNH-like domain cleavage activity. In an embodiment, the eaCas9 molecule is an N-terminal RuvC-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at H840, e.g., H840A. In an embodiment, the eaCas9 molecule is an N-terminal RuvC-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at N863, e.g., N863A.


In an embodiment, a single strand break is formed in the strand of the target nucleic acid to which the targeting domain of said gRNA is complementary. In another embodiment, a single strand break is formed in the strand of the target nucleic acid other than the strand to which the targeting domain of said gRNA is complementary.


In another aspect, disclosed herein is a nucleic acid, e.g., an isolated or non-naturally occurring nucleic acid, e.g., DNA, that comprises (a) a sequence that encodes a gRNA molecule comprising a targeting domain that is complementary with a CCR5 target position in the CCR5 gene as disclosed herein.


In an embodiment, the nucleic acid encodes a gRNA molecule, e.g., a first gRNA molecule, comprising a targeting domain configured to provide a cleavage event, e.g., a double strand break or a single strand break, sufficiently close to a CCR5 target position in the CCR5 gene to allow alteration, e.g., alteration associated with NHEJ, of a CCR5 target position in the CCR5 gene.


In an embodiment, the nucleic acid encodes a gRNA molecule, e.g., a first gRNA molecule, comprising a targeting domain configured to target an enzymatically inactive Cas9 (eiCas9) molecule or an eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain or chromatin modifying protein), sufficiently close to a CCR5 knockdown target position to reduce, decrease or repress expression of the CCR5 gene.


In an embodiment, the nucleic acid encodes a gRNA molecule, e.g., the first gRNA molecule, comprising a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any one of Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, or 18. In an embodiment, the nucleic acid encodes a gRNA molecule comprising a targeting domain is selected from those in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, or 18.


In an embodiment, the nucleic acid encodes a gRNA molecule, e.g., the first gRNA molecule, comprising a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any one of Tables 1A-1F, 2A-2C, 3A-3E, or 4A-4C. In an embodiment, the nucleic acid encodes a gRNA molecule comprising a targeting domain is selected from those in Tables 1A-1F, 2A-2C, 3A-3E, or 4A-4C.


In an embodiment, the nucleic acid encodes a gRNA molecule, e.g., the first gRNA molecule, comprising a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any one of Tables 5A-5C, 6A-6E, or 7A-7C. In an embodiment, the nucleic acid encodes a gRNA molecule comprising a targeting domain is selected from those in Tables 5A-5C, 6A-6E, or 7A-7C.


In an embodiment, the nucleic acid encodes a modular gRNA, e.g., one or more nucleic acids encode a modular gRNA. In other embodiments, the nucleic acid encodes a chimeric gRNA. The nucleic acid may encode a gRNA, e.g., the first gRNA molecule, comprising a targeting domain comprising 16 nucleotides or more in length. In an embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 16 nucleotides in length. In another embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 17 nucleotides in length. In yet another embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 18 nucleotides in length. In still another embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 19 nucleotides in length. In still another embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 20 nucleotides in length. In still another embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 21 nucleotides in length. In still another embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 22 nucleotides in length. In still another embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 23 nucleotides in length. In still another embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 24 nucleotides in length. In still another embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 25 nucleotides in length. In still another embodiment, the nucleic acid encodes a gRNA, e.g., the first gRNA molecule, comprising a targeting domain that is 26 nucleotides in length. In an embodiment, a nucleic acid encodes a gRNA comprising from 5′ to 3′: a targeting domain (comprising a “core domain”, and optionally a “secondary domain”); a first complementarity domain; a linking domain; a second complementarity domain; a proximal domain; and a tail domain. In an embodiment, the proximal domain and tail domain are taken together as a single domain.


In an embodiment, a nucleic acid encodes a gRNA e.g., the first gRNA molecule, comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 20 nucleotides in length; and a targeting domain equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a gRNA e.g., the first gRNA molecule, comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 25 nucleotides in length; and a targeting equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a gRNA e.g., the first gRNA molecule, comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 30 nucleotides in length; and a targeting domain equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a gRNA comprising e.g., the first gRNA molecule, a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 40 nucleotides in length; and a targeting domain equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid comprises (a) a sequence that encodes a gRNA molecule e.g., the first gRNA molecule, comprising a targeting domain that is complementary with a target domain in the CCR5 gene as disclosed herein, and further comprising (b) a sequence that encodes a Cas9 molecule.


The Cas9 molecule may be a nickase molecule, an enzymatically active Cas9 (eaCas9) molecule, e.g., an eaCas9 molecule that forms a double strand break in a target nucleic acid and/or an eaCas9 molecule that forms a single strand break in a target nucleic acid. In an embodiment, a single strand break is formed in the strand of the target nucleic acid to which the targeting domain of said gRNA is complementary. In another embodiment, a single strand break is formed in the strand of the target nucleic acid other than the strand to which to which the targeting domain of said gRNA is complementary.


In an embodiment, the eaCas9 molecule catalyzes a double strand break.


In an embodiment, the eaCas9 molecule comprises HNH-like domain cleavage activity but has no, or no significant, N-terminal RuvC-like domain cleavage activity. In another embodiment, the said eaCas9 molecule is an HNH-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at D10, e.g., D10A. In another embodiment, the eaCas9 molecule comprises N-terminal RuvC-like domain cleavage activity but has no, or no significant, HNH-like domain cleavage activity. In another embodiment, the eaCas9 molecule is an N-terminal RuvC-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at H840, e.g., H840A. In another embodiment, the eaCas9 molecule is an N-terminal RuvC-like domain nickase, e.g., the eaCas9 molecule comprises a mutation at N863, e.g., N863A.


A nucleic acid disclosed herein may comprise (a) a sequence that encodes a gRNA molecule comprising a targeting domain that is complementary with a target domain in the CCR5 gene as disclosed herein; (b) a sequence that encodes a Cas9 molecule, e.g., a Cas9 molecule described herein.


In an embodiment, the Cas9 molecule is an enzymatically active Cas9 (eaCas9) molecule. In an embodiment, the Cas9 molecule is an enzymatically inactive Cas9 (eiCas9) molecule or a modified eiCas9 molecule, e.g., the eiCas9 molecule is fused to Krüppel-associated box (KRAB) to generate an eiCas9-KRAB fusion protein molecule.


A nucleic acid disclosed herein may comprise (a) a sequence that encodes a gRNA molecule comprising a targeting domain that is complementary with a target domain in the CCR5 gene as disclosed herein; (b) a sequence that encodes a Cas9 molecule; and further may comprise (c)(i) a sequence that encodes a second gRNA molecule described herein having a targeting domain that is complementary to a second target domain of the CCR5 gene, and optionally, (c)(ii) a sequence that encodes a third gRNA molecule described herein having a targeting domain that is complementary to a third target domain of the CCR5 gene; and optionally, (c)(iii) a sequence that encodes a fourth gRNA molecule described herein having a targeting domain that is complementary to a fourth target domain of the CCR5 gene.


In an embodiment, a nucleic acid encodes a second gRNA molecule comprising a targeting domain configured to provide a cleavage event, e.g., a double strand break or a single strand break, sufficiently close to a CCR5 target position in the CCR5 gene, to allow alteration, e.g., alteration associated with NHEJ, of a CCR5 target position in the CCR5 gene, either alone or in combination with the break positioned by said first gRNA molecule.


In an embodiment, a nucleic acid encodes a second gRNA molecule comprising a targeting domain configured to target an enzymatically inactive Cas9 (eiCas9) molecule or an eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain or chromatin modifying protein), sufficiently close to a CCR5 knockdown target position to reduce, decrease or repress expression of the CCR5 gene.


In an embodiment, a nucleic acid encodes a third gRNA molecule comprising a targeting domain configured to provide a cleavage event, e.g., a double strand break or a single strand break, sufficiently close to a CCR5 target position in the CCR5 gene to allow alteration, e.g., alteration associated with NHEJ, of a CCR5 target position in the CCR5 gene, either alone or in combination with the break positioned by the first and/or second gRNA molecule.


In an embodiment, a nucleic acid encodes a third gRNA molecule comprising a targeting domain configured to target an enzymatically inactive Cas9 (eiCas9) molecule or an eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain or chromatin remodeling protein), sufficiently close to a CCR5 knockdown target position to reduce, decrease or repress expression of the CCR5 gene.


In an embodiment, a nucleic acid encodes a fourth gRNA molecule comprising a targeting domain configured to provide a cleavage event, e.g., a double strand break or a single strand break, sufficiently close to a CCR5 target position in the CCR5 gene to allow alteration, e.g., alteration associated with NHEJ, of a CCR5 target position in the CCR5 gene, either alone or in combination with the break positioned by the first gRNA molecule, the second gRNA molecule and/or the third gRNA molecule.


In an embodiment, the nucleic acid encodes a second gRNA molecule. The second gRNA is selected to target the same CCR5 target position as the first gRNA molecule. Optionally, the nucleic acid may encode a third gRNA, and further optionally, the nucleic acid may encode a fourth gRNA molecule. The third gRNA molecule and the fourth gRNA molecule are selected to target the same CCR5 target position as the first and second gRNA molecules.


In an embodiment, the nucleic acid encodes a second gRNA molecule comprising a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from one of Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, or 18. In an embodiment, the nucleic acid encodes a second gRNA molecule comprising a targeting domain selected from those in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, or 18. In an embodiment, when a third or fourth gRNA molecule are present, the third and fourth gRNA molecules may independently comprise a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from one of Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, or 18. In a further embodiment, when a third or fourth gRNA molecule are present, the third and fourth gRNA molecules may independently comprise a targeting domain selected from those in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, or 18.


In an embodiment, the nucleic acid encodes a second gRNA molecule comprising a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from one of Tables 1A-1F, 2A-2C, 3A-3E, or 4A-4C. In an embodiment, the nucleic acid encodes a second gRNA molecule comprising a targeting domain selected from those in Tables 1A-1F, 2A-2C, 3A-3E, or 4A-4C. In an embodiment, when a third or fourth gRNA molecule are present, the third and fourth gRNA molecules may independently comprise a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from one of Tables 1A-1F, 2A-2C, 3A-3E, or 4A-4C. In a further embodiment, when a third or fourth gRNA molecule are present, the third and fourth gRNA molecules may independently comprise a targeting domain selected from those in Tables 1A-1F, 2A-2C, 3A-3E, or 4A-4C.


In an embodiment, the nucleic acid encodes a second gRNA molecule comprising a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from one of Tables 5A-5C, 6A-6E, or 7A-7C. In an embodiment, the nucleic acid encodes a second gRNA molecule comprising a targeting domain selected from those in Tables 5A-5C, 6A-6E, or 7A-7C. In an embodiment, when a third or fourth gRNA molecule are present, the third and fourth gRNA molecules may independently comprise a targeting domain comprising a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from one of Tables 5A-5C, 6A-6E, or 7A-7C. In a further embodiment, when a third or fourth gRNA molecule are present, the third and fourth gRNA molecules may independently comprise a targeting domain selected from those in Tables 5A-5C, 6A-6E, or 7A-7C.


In an embodiment, the nucleic acid encodes a second gRNA which is a modular gRNA, e.g., wherein one or more nucleic acid molecules encode a modular gRNA. In another embodiment, the nucleic acid encoding a second gRNA is a chimeric gRNA. In yet another embodiment, when a nucleic acid encodes a third or fourth gRNA, the third and fourth gRNA may be a modular gRNA or a chimeric gRNA. When multiple gRNAs are used, any combination of modular or chimeric gRNAs may be used.


A nucleic acid may encode a second, a third, and/or a fourth gRNA, each independently, comprising a targeting domain comprising 16 nucleotides or more in length. In an embodiment, the nucleic acid encodes a second gRNA comprising a targeting domain that is 16 nucleotides in length. In another embodiment, the nucleic acid encodes a second gRNA comprising a targeting domain that is 17 nucleotides in length. In yet another embodiment, the nucleic acid encodes a second gRNA comprising a targeting domain that is 18 nucleotides in length. In still another embodiment, the nucleic acid encodes a second gRNA comprising a targeting domain that is 19 nucleotides in length. In still other embodiments, the nucleic acid encodes a second gRNA comprising a targeting domain that is 20 nucleotides in length. In still another embodiment, the nucleic acid encodes a second gRNA comprising a targeting domain that is 21 nucleotides in length. In still another embodiment, the nucleic acid encodes a second gRNA comprising a targeting domain that is 22 nucleotides in length. In still another embodiment, the nucleic acid encodes a second gRNA comprising a targeting domain that is 23 nucleotides in length. In still another embodiment, the nucleic acid encodes a second gRNA comprising a targeting domain that is 24 nucleotides in length. In still another embodiment, the nucleic acid encodes a second gRNA comprising a targeting domain that is 25 nucleotides in length. In still another embodiment, the nucleic acid encodes a second gRNA comprising a targeting domain that is 26 nucleotides in length.


In an embodiment, the targeting domain comprises 16 nucleotides.


In an embodiment, the targeting domain comprises 17 nucleotides.


In an embodiment, the targeting domain comprises 18 nucleotides.


In an embodiment, the targeting domain comprises 19 nucleotides.


In an embodiment, the targeting domain comprises 20 nucleotides.


In an embodiment, the targeting domain comprises 21 nucleotides.


In an embodiment, the targeting domain comprises 22 nucleotides.


In an embodiment, the targeting domain comprises 23 nucleotides.


In an embodiment, the targeting domain comprises 24 nucleotides.


In an embodiment, the targeting domain comprises 25 nucleotides.


In an embodiment, the targeting domain comprises 26 nucleotides.


In an embodiment, a nucleic acid encodes a second, a third, and/or a fourth gRNA, each independently, comprising from 5′ to 3′: a targeting domain (comprising a “core domain”, and optionally a “secondary domain”); a first complementarity domain; a linking domain; a second complementarity domain; a proximal domain; and a tail domain. In some embodiments, the proximal domain and tail domain are taken together as a single domain.


In an embodiment, a nucleic acid encodes a second, a third, and/or a fourth gRNA comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 20 nucleotides in length; and a targeting domain equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a second, a third, and/or a fourth gRNA comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 25 nucleotides in length; and a targeting domain equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a second, a third, and/or a fourth gRNA comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 30 nucleotides in length; and a targeting domain equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes a second, a third, and/or a fourth gRNA comprising a linking domain of no more than 25 nucleotides in length; a proximal and tail domain, that taken together, are at least 40 nucleotides in length; and a targeting domain equal to or greater than 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, a nucleic acid encodes (a) a sequence that encodes a gRNA molecule comprising a targeting domain that is complementary with a target domain in the CCR5 gene as disclosed herein, and (b) a sequence that encodes a Cas9 molecule, e.g., a Cas9 molecule described herein. In an embodiment, (a) and (b) are present on the same nucleic acid molecule, e.g., the same vector, e.g., the same viral vector, e.g., the same adeno-associated virus (AAV) vector. In an embodiment, the nucleic acid molecule is an AAV vector. Exemplary AAV vectors that may be used in any of the described compositions and methods include an AAV1 vector, a modified AAV1 vector, an AAV2 vector, a modified AAV2 vector, an AAV3 vector, an AAV4 vector, a modified AAV4 vector, an AAV5 vector, a modified AAV5 vector, a modified AAV3 vector, an AAV6 vector, a modified AAV6 vector, an AAV8 vector an AAV9 vector, an AAV.rh10 vector, a modified AAV.rh10 vector, an AAV.rh32/33 vector, a modified AAV.rh32/33 vector, an AAV.rh43 vector, a modified AAV.rh43 vector, an AAV.rh64R1 vector, and a modified AAV.rh64R1 vector.


In another embodiment, (a) is present on a first nucleic acid molecule, e.g. a first vector, e.g., a first viral vector, e.g., a first AAV vector; and (b) is present on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. The first and second nucleic acid molecules may be AAV vectors.


In another embodiment, a nucleic acid encodes (a) a sequence that encodes a gRNA molecule comprising a targeting domain that is complementary with a target domain in the CCR5 gene as disclosed herein, and (b) a sequence that encodes a Cas9 molecule, e.g., a Cas9 molecule described herein; and further comprises (c)(i) a sequence that encodes a second gRNA molecule as described herein and optionally, (c)(ii) a sequence that encodes a third gRNA molecule described herein having a targeting domain that is complementary to a third target domain of the CCR5 gene; and optionally, (c)(iii) a sequence that encodes a fourth gRNA molecule described herein having a targeting domain that is complementary to a fourth target domain of the CCR5 gene. In an embodiment, the nucleic acid comprises (a), (b) and (c)(i). In an embodiment, the nucleic acid comprises (a), (b), (c)(i) and (c)(ii). In an embodiment, the nucleic acid comprises (a), (b), (c)(i), (c)(ii) and (c)(iii). Each of (a) and (c)(i) may be present on the same nucleic acid molecule, e.g., the same vector, e.g., the same viral vector, e.g., the same adeno-associated virus (AAV) vector. In an embodiment, the nucleic acid molecule is an AAV vector.


In an embodiment, (a) and (c)(i) are on different vectors. For example, (a) may be present on a first nucleic acid molecule, e.g. a first vector, e.g., a first viral vector, e.g., a first AAV vector; and (c)(i) may be present on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. In an embodiment, the first and second nucleic acid molecules are AAV vectors.


In another embodiment, each of (a), (b), and (c)(i) are present on the same nucleic acid molecule, e.g., the same vector, e.g., the same viral vector, e.g., an AAV vector. In an embodiment, the nucleic acid molecule is an AAV vector. In an alternate embodiment, one of (a), (b), and (c)(i) is encoded on a first nucleic acid molecule, e.g., a first vector, e.g., a first viral vector, e.g., a first AAV vector; and a second and third of (a), (b), and (c)(i) is encoded on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. The first and second nucleic acid molecule may be AAV vectors.


In an embodiment, (a) is present on a first nucleic acid molecule, e.g., a first vector, e.g., a first viral vector, a first AAV vector; and (b) and (c)(i) are present on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. The first and second nucleic acid molecule may be AAV vectors.


In another embodiment, (b) is present on a first nucleic acid molecule, e.g., a first vector, e.g., a first viral vector, e.g., a first AAV vector; and (a) and (c)(i) are present on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. The first and second nucleic acid molecule may be AAV vectors.


In another embodiment, (c)(i) is present on a first nucleic acid molecule, e.g., a first vector, e.g., a first viral vector, e.g., a first AAV vector; and (b) and (a) are present on a second nucleic acid molecule, e.g., a second vector, e.g., a second vector, e.g., a second AAV vector. The first and second nucleic acid molecule may be AAV vectors.


In another embodiment, each of (a), (b) and (c)(i) are present on different nucleic acid molecules, e.g., different vectors, e.g., different viral vectors, e.g., different AAV vector. For example, (a) may be on a first nucleic acid molecule, (b) on a second nucleic acid molecule, and (c)(i) on a third nucleic acid molecule. The first, second and third nucleic acid molecule may be AAV vectors.


In another embodiment, when a third and/or fourth gRNA molecule are present, each of (a), (b), (c)(i), (c)(ii) and (c)(iii) may be present on the same nucleic acid molecule, e.g., the same vector, e.g., the same viral vector, e.g., an AAV vector. In an embodiment, the nucleic acid molecule is an AAV vector. In an alternate embodiment, each of (a), (b), (c)(i), (c)(ii) and (c)(iii) may be present on the different nucleic acid molecules, e.g., different vectors, e.g., the different viral vectors, e.g., different AAV vectors. In a further embodiment, each of (a), (b), (c)(i), (c)(ii) and (c)(iii) may be present on more than one nucleic acid molecule, but fewer than five nucleic acid molecules, e.g., AAV vectors.


The nucleic acids described herein may comprise a promoter operably linked to the sequence that encodes the gRNA molecule of (a), e.g., a promoter described herein. The nucleic acid may further comprise a second promoter operably linked to the sequence that encodes the second, third and/or fourth gRNA molecule of (c), e.g., a promoter described herein. The promoter and second promoter differ from one another. In some embodiments, the promoter and second promoter are the same.


The nucleic acids described herein may further comprise a promoter operably linked to the sequence that encodes the Cas9 molecule of (b), e.g., a promoter described herein.


In another aspect, disclosed herein is a composition comprising (a) a gRNA molecule comprising a targeting domain that is complementary with a target domain in the CCR5 gene, as described herein. The composition of (a) may further comprise (b) a Cas9 molecule, e.g., a Cas9 molecule as described herein. A composition of (a) and (b) may further comprise (c) a second, third and/or fourth gRNA molecule, e.g., a second, third and/or fourth gRNA molecule described herein. In an embodiment, the composition is a pharmaceutical composition. The compositions described herein, e.g., pharmaceutical compositions described herein, can be used in the treatment or prevention of HIV or AIDS in a subject, e.g., in accordance with a method disclosed herein.


In another aspect, disclosed herein is a method of altering a cell, e.g., altering the structure, e.g., altering the sequence, of a target nucleic acid of a cell, comprising contacting said cell with: (a) a gRNA that targets the CCR5 gene, e.g., a gRNA as described herein; (b) a Cas9 molecule, e.g., a Cas9 molecule as described herein; and optionally, (c) a second, third and/or fourth gRNA that targets CCR5 gene, e.g., a second, third and/or fourth gRNA as described herein.


In an embodiment, the method comprises contacting said cell with (a) and (b).


In an embodiment, the method comprises contacting said cell with (a), (b), and (c).


The gRNA of (a) and optionally (c) may be selected from any of Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, or 18, or a gRNA that differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any of Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, or 18.


In an embodiment, the method comprises contacting a cell from a subject suffering from or likely to develop an HIV infection or AIDS. The cell may be from a subject who does not have a mutation at a CCR5 target position.


In an embodiment, the cell being contacted in the disclosed method is a target cell from a circulating blood cell, a progenitor cell, or a stem cell, e.g., a hematopoietic stem cell (HSC) or a hematopoietic stem/progenitor cell (HSPC). In an embodiment, the target cell is a T cell (e.g., a CD4+ T cell, a CD8+ T cell, a helper T cell, a regulatory T cell, a cytotoxic T cell, a memory T cell, a T cell precursor or a natural killer T cell), a B cell (e.g., a progenitor B cell, a Pre B cell, a Pro B cell, a memory B cell, a plasma B cell), a monocyte, a megakaryocyte, a neutrophil, an eosinophil, a basophil, a mast cell, a reticulocyte, a lymphoid progenitor cell, a myeloid progenitor cell, or a hematopoietic stem cell. In an embodiment, the target cell is a bone marrow cell, (e.g., a lymphoid progenitor cell, a myeloid progenitor cell, an erythroid progenitor cell, a hematopoietic stem cell, or a mesenchymal stem cell). In an embodiment, the cell is a CD4 cell, a T cell, a gut associated lymphatic tissue (GALT), a macrophage, a dendritic cell, a myeloid precursor cell, or a microglia. The contacting may be performed ex vivo and the contacted cell may be returned to the subject's body after the contacting step. In another embodiment, the contacting step may be performed in vivo.


In an embodiment, the method of altering a cell as described herein comprises acquiring knowledge of the presence of a CCR5 target position in said cell, prior to the contacting step. Acquiring knowledge of the presence of a CCR5 target position in the cell may be by sequencing the CCR5 gene, or a portion of the CCR5 gene.


In an embodiment, the contacting step of the method comprises contacting the cell with a nucleic acid, e.g., a vector, e.g., an AAV vector, that expresses at least one of (a), (b), and (c). In an embodiment, the contacting step of the method comprises contacting the cell with a nucleic acid, e.g., a vector, e.g., an AAV vector, that encodes each of (a), (b), and (c). In another embodiment, the contacting step of the method comprises delivering to the cell a Cas9 molecule of (b) and a nucleic acid which encodes a gRNA of (a) and optionally, a second gRNA of (c)(i) (and further optionally, a third gRNA of (c)(ii) and/or fourth gRNA of (c)(iii).


In an embodiment, the contacting step comprises contacting the cell with a nucleic acid, e.g., a vector, e.g., an AAV vector, e.g., an AAV1 vector, a modified AAV1 vector, an AAV2 vector, a modified AAV2 vector, an AAV3 vector, a modified AAV3 vector, an AAV4 vector, a modified AAV4 vector, an AAV5 vector, a modified AAV5 vector, an AAV6 vector, a modified AAV6 vector, an AAV7 vector, a modified AAV7 vector, an AAV8 vector, an AAV9 vector, an AAV.rh10 vector, a modified AAV.rh10 vector, an AAV.rh32/33 vector, a modified AAV.rh32/33 vector, an AAV.rh43 vector, a modified AAV.rh43 vector, an AAV.rh64R1 vector, and a modified AAV.rh64R1 vector. a described herein.


In an embodiment, the contacting step comprises delivering to the cell a Cas9 molecule of (b), as a protein or an mRNA, and a nucleic acid which encodes a gRNA of (a) and optionally a second, third and/or fourth gRNA of (c).


In an embodiment, the contacting step comprises delivering to the cell a Cas9 molecule of (b), as a protein or an mRNA, said gRNA of (a), as an RNA, and optionally said second, third and/or fourth gRNA of (c), as an RNA.


In an embodiment, the contacting step comprises delivering to the cell a gRNA of (a) as an RNA, optionally the second, third and/or fourth gRNA of (c) as an RNA, and a nucleic acid that encodes the Cas9 molecule of (b).


In an embodiment, the contacting step further comprises contacting the cell with an HSC self-renewal agonist, e.g., UM171 ((1r,4r)-N1-(2-benzyl-7-(2-methyl-2H-tetrazol-5-yl)-9H-pyrimido[4,5-b]indol-4-yl)cyclohexane-1,4-diamine) or a pyrimidoindole derivative described in Fares et al., Science, 2014, 345(6203): 1509-1512). In an embodiment, the cell is contacted with the HSC self-reneal agonist before (e.g., at least 1, 2, 4, 8, 12, 24, 36, or 48 hours before, e.g., about 2 hours before) the cell is contacted with a gRNA molecule and/or a Cas9 molecule. In another embodiment, the cell is contacted with the HSC self-reneal agonist after (e.g., at least 1, 2, 4, 8, 12, 24, 36, or 48 hours after, e.g., about 24 hours after) the cell is contacted with a gRNA molecule and/or a Cas9 molecule. In yet another embodiment, the cell is contacted with the HSC self-reneal agonist before (e.g., at least 1, 2, 4, 8, 12, 24, 36, or 48 hours before) and after (e.g., at least 1, 2, 4, 8, 12, 24, 36, or 48 hours after) the cell is contacted with a gRNA molecule and/or a Cas9 molecule. In an embodiment, the cell is contacted with the HSC self-reneal agonist about 2 hours before and about 24 hours after the cell is contacted with a gRNA molecule and/or a Cas9 molecule. In an embodiment, the cell is contacted with the HSC self-reneal agonist at the same time the cell is contacted with a gRNA molecule and/or a Cas9 molecule. In an embodiment, the HSC self-renewal agonist, e.g., UM171, is used at a concentration between 5 and 200 nM, e.g., between 10 and 100 nM or between 20 and 50 nM, e.g., about 40 nM.


In another aspect, disclosed herein is a cell or a population of cells produced (e.g., altered) by a method described herein.


In another aspect, disclosed herein is a method of treating a subject suffering from or likely to develop an HIV infection or AIDS, e.g., altering the structure, e.g., sequence, of a target nucleic acid of the subject, comprising contacting the subject (or a cell from the subject) with:


(a) a gRNA that targets the CCR5 gene, e.g., a gRNA disclosed herein;


(b) a Cas9 molecule, e.g., a Cas9 molecule disclosed herein; and


optionally, (c)(i) a second gRNA that targets the CCR5 gene, e.g., a second gRNA disclosed herein, and


further optionally, (c)(ii) a third gRNA, and still further optionally, (c)(iii) a fourth gRNA that target the CCR5 gene, e.g., a third and fourth gRNA disclosed herein.


In some embodiments, contacting comprises contacting with (a) and (b).


In some embodiments, contacting comprises contacting with (a), (b), and (c)(i). In some embodiments, contacting comprises contacting with (a), (b), (c)(i) and (c)(ii). In some embodiments, contacting comprises contacting with (a), (b), (c)(i), (c)(ii) and (c)(iii).


The gRNA of (a) or (c) (e.g., (c)(i), (c)(ii), or (c)(iii)) may be selected from any of Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, or 18, or a gRNA that differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a targeting domain sequence from any of Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, or 18.


In an embodiment, the method comprises acquiring knowledge of the presence or absence of a mutation at a CCR5 target position in said subject.


In an embodiment, the method comprises acquiring knowledge of the presence or absence of a mutation at a CCR5 target position in said subject by sequencing the CCR5 gene or a portion of the CCR5 gene.


In an embodiment, the method comprises introducing a mutation at a CCR5 target position.


In an embodiment, the method comprises introducing a mutation at a CCR5 target position by NHEJ.


When the method comprises introducing a mutation at a CCR5 target position, e.g., by NHEJ in the coding region or a non-coding region, a Cas9 of (b) and at least one guide RNA (e.g., a guide RNA of (a)) are included in the contacting step.


In an embodiment, a cell of the subject is contacted ex vivo with (a), (b) and optionally (c)(i), further optionally (c)(ii), and still further optionally (c)(iii). In an embodiment, said cell is returned to the subject's body.


In an embodiment, a cell of the subject is contacted is in vivo with (a), (b) and optionally (c)(i), further optionally (c)(ii), and still further optionally (c)(iii). In an embodiment, the cell of the subject is contacted in vivo by intravenous delivery of (a), (b) and optionally (c)(i), further optionally (c)(ii), and still further optionally (c)(iii).


In an embodiment, the contacting step comprises contacting the subject with a nucleic acid, e.g., a vector, e.g., an AAV vector, described herein, e.g., a nucleic acid that encodes at least one of (a), (b), and optionally (c)(i), further optionally (c)(ii), and still further optionally (c)(iii).


In an embodiment, the contacting step comprises delivering to said subject said Cas9 molecule of (b), as a protein or mRNA, and a nucleic acid which encodes (a) and optionally (c)(i), further optionally (c)(ii), and still further optionally (c)(iii).


In an embodiment, the contacting step comprises delivering to the subject the Cas9 molecule of (b), as a protein or mRNA, said gRNA of (a), as an RNA, and optionally said second gRNA of (c)(i), further optionally said third gRNA of (c)(ii), and still further optionally said fourth gRNA of (c)(iii), as an RNA.


In an embodiment, the contacting step comprises delivering to the subject the gRNA of (a), as an RNA, optionally said second gRNA of (c)(i), further optionally said third gRNA of (c)(ii), and still further optionally said fourth gRNA of (c)(iii), as an RNA, and a nucleic acid that encodes the Cas9 molecule of (b).


In another aspect, disclosed herein is a reaction mixture comprising a gRNA molecule, a nucleic acid, or a composition described herein, and a cell, e.g., a cell from a subject having, or likely to develop and HIV infection or AIDS, or a subject having a mutation at a CCR5 target position (e.g., a heterozygous carrier of a CCR5 mutation).


In another aspect, disclosed herein is a kit comprising, (a) a gRNA molecule described herein, or a nucleic acid that encodes the gRNA, and one or more of the following:


(b) a Cas9 molecule, e.g., a Cas9 molecule described herein, or a nucleic acid or mRNA that encodes the Cas9;


(c)(i) a second gRNA molecule, e.g., a second gRNA molecule described herein or a nucleic acid that encodes (c)(i);


(c)(ii) a third gRNA molecule, e.g., a third gRNA molecule described herein or a nucleic acid that encodes (c)(ii);


(c)(iii) a fourth gRNA molecule, e.g., a fourth gRNA molecule described herein or a nucleic acid that encodes (c)(iii).


In an embodiment, the kit comprises a nucleic acid, e.g., an AAV vector, that encodes one or more of (a), (b), (c)(i), (c)(ii), and (c)(iii).


In yet another aspect, disclosed herein is a gRNA molecule, e.g., a gRNA molecule described herein, for use in treating, or delaying the onset or progression of, HIV infection or


AIDS in a subject, e.g., in accordance with a method of treating, or delaying the onset or progression of, HIV infection or AIDS as described herein.


In an embodiment, the gRNA molecule in used in combination with a Cas9 molecule, e.g., a Cas9 molecule described herein. Additionally or alternatively, in an embodiment, the gRNA molecule is used in combination with a second, third and/or fourth gRNA molecule, e.g., a second, third and/or fourth gRNA molecule described herein.


In still another aspect, disclosed herein is use of a gRNA molecule, e.g., a gRNA molecule described herein, in the manufacture of a medicament for treating, or delaying the onset or progression of, HIV infection or AIDS in a subject, e.g., in accordance with a method of treating, or delaying the onset or progression of, HIV infection or AIDS as described herein.


In an embodiment, the medicament comprises a Cas9 molecule, e.g., a Cas9 molecule described herein. Additionally or alternatively, in an embodiment, the medicament comprises a second, third and/or fourth gRNA molecule, e.g., a second, third and/or fourth gRNA molecule described herein.


The gRNA molecules and methods, as disclosed herein, can be used in combination with a governing gRNA molecule. As used herein, a governing gRNA molecule refers to a gRNA molecule comprising a targeting domain which is complementary to a target domain on a nucleic acid that encodes a component of the CRISPR/Cas system introduced into a cell or subject. For example, the methods described herein can further include contacting a cell or subject with a governing gRNA molecule or a nucleic acid encoding a governing molecule. In an embodiment, the governing gRNA molecule targets a nucleic acid that encodes a Cas9 molecule or a nucleic acid that encodes a target gene gRNA molecule. In an embodiment, the governing gRNA comprises a targeting domain that is complementary to a target domain in a sequence that encodes a Cas9 component, e.g., a Cas9 molecule or target gene gRNA molecule. In an embodiment, the target domain is designed with, or has, minimal homology to other nucleic acid sequences in the cell, e.g., to minimize off-target cleavage. For example, the targeting domain on the governing gRNA can be selected to reduce or minimize off-target effects. In an embodiment, a target domain for a governing gRNA can be disposed in the control or coding region of a Cas9 molecule or disposed between a control region and a transcribed region. In an embodiment, a target domain for a governing gRNA can be disposed in the control or coding region of a target gene gRNA molecule or disposed between a control region and a transcribed region for a target gene gRNA. While not wishing to be bound by theory, in an embodiment, it is believed that altering, e.g., inactivating, a nucleic acid that encodes a Cas9 molecule or a nucleic acid that encodes a target gene gRNA molecule can be effected by cleavage of the targeted nucleic acid sequence or by binding of a Cas9 molecule/governing gRNA molecule complex to the targeted nucleic acid sequence.


The compositions, reaction mixtures and kits, as disclosed herein, can also include a governing gRNA molecule, e.g., a governing gRNA molecule disclosed herein.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


Headings, including numeric and alphabetical headings and subheadings, are for organization and presentation and are not intended to be limiting.


Other features and advantages of the invention will be apparent from the detailed description, drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1I are representations of several exemplary gRNAs.



FIG. 1A depicts a modular gRNA molecule derived in part (or modeled on a sequence in part) from Streptococcus pyogenes (S. pyogenes) as a duplexed structure (SEQ ID NOS: 42 and 43, respectively, in order of appearance);



FIG. 1B depicts a unimolecular (or chimeric) gRNA molecule derived in part from S. pyogenes as a duplexed structure (SEQ ID NO: 44);



FIG. 1C depicts a unimolecular gRNA molecule derived in part from S. pyogenes as a duplexed structure (SEQ ID NO: 45);



FIG. 1D depicts a unimolecular gRNA molecule derived in part from S. pyogenes as a duplexed structure (SEQ ID NO: 46);



FIG. 1E depicts a unimolecular gRNA molecule derived in part from S. pyogenes as a duplexed structure (SEQ ID NO: 47);



FIG. 1F depicts a modular gRNA molecule derived in part from Streptococcus thermophilus (S. thermophilus) as a duplexed structure (SEQ ID NOS: 48 and 49, respectively, in order of appearance);



FIG. 1G depicts an alignment of modular gRNA molecules of S. pyogenes and S. thermophilus (SEQ ID NOS: 50-53, respectively, in order of appearance).



FIGS. 1H-1I depicts additional exemplary structures of unimolecular gRNA molecules. FIG. 1H shows an exemplary structure of a unimolecular gRNA molecule derived in part from S. pyogenes as a duplexed structure (SEQ ID NO: 45). FIG. 1I shows an exemplary structure of a unimolecular gRNA molecule derived in part from S. aureus as a duplexed structure (SEQ ID NO: 40).



FIGS. 2A-2G depict an alignment of Cas9 sequences from Chylinski et al. (RNA Biol. 2013; 10(5): 726-737). The N-terminal RuvC-like domain is boxed and indicated with a “Y”. The other two RuvC-like domains are boxed and indicated with a “B”. The HNH-like domain is boxed and indicated by a “G”. Sm: S. mutans (SEQ ID NO: 1); Sp: S. pyogenes (SEQ ID NO: 2); St: S. thermophilus (SEQ ID NO: 3); Li: L. innocua (SEQ ID NO: 4). Motif: this is a motif based on the four sequences: residues conserved in all four sequences are indicated by single letter amino acid abbreviation; “*” indicates any amino acid found in the corresponding position of any of the four sequences; and “-” indicates any amino acid, e.g., any of the 20 naturally occurring amino acids, or absent.



FIGS. 3A-3B show an alignment of the N-terminal RuvC-like domain from the Cas9 molecules disclosed in Chylinski et at (SEQ ID NOS: 54-103, respectively, in order of appearance). The last line of FIG. 3B identifies 4 highly conserved residues.



FIGS. 4A-4B show an alignment of the N-terminal RuvC-like domain from the Cas9 molecules disclosed in Chylinski et al. with sequence outliers removed (SEQ ID NOS: 104-177, respectively, in order of appearance). The last line of FIG. 4B identifies 3 highly conserved residues.



FIGS. 5A-5C show an alignment of the HNH-like domain from the Cas9 molecules disclosed in Chylinski et at (SEQ ID NOS: 178-252, respectively, in order of appearance). The last line of FIG. 5C identifies conserved residues.



FIGS. 6A-6B show an alignment of the HNH-like domain from the Cas9 molecules disclosed in Chylinski et al. with sequence outliers removed (SEQ ID NOS: 253-302, respectively, in order of appearance). The last line of FIG. 6B identifies 3 highly conserved residues.



FIGS. 7A-7B depict an alignment of Cas9 sequences from S. pyogenes and Neisseria meningitidis (N. meningitidis). The N-terminal RuvC-like domain is boxed and indicated with a “Y”. The other two RuvC-like domains are boxed and indicated with a “B”. The HNH-like domain is boxed and indicated with a “G”. Sp: S. pyogenes; Nm: N. meningitidis. Motif: this is a motif based on the two sequences: residues conserved in both sequences are indicated by a single amino acid designation; “*” indicates any amino acid found in the corresponding position of any of the two sequences; “-” indicates any amino acid, e.g., any of the 20 naturally occurring amino acids, and “-” indicates any amino acid, e.g., any of the 20 naturally occurring amino acids, or absent.



FIG. 8 shows a nucleic acid sequence encoding Cas9 of N. meningitidis (SEQ ID NO: 303). Sequence indicated by an “R” is an SV40 NLS; sequence indicated as “G” is an HA tag; and sequence indicated by an “O” is a synthetic NLS sequence; the remaining (unmarked) sequence is the open reading frame (ORF).



FIGS. 9A-9B are schematic representations of the domain organization of S. pyogenes Cas 9. FIG. 9A shows the organization of the Cas9 domains, including amino acid positions, in reference to the two lobes of Cas9 (recognition (REC) and nuclease (NUC) lobes). FIG. 9B shows the percent homology of each domain across 83 Cas9 orthologs.



FIG. 10 depicts the efficiency of NHEJ mediated by a Cas9 molecule and exemplary gRNA molecules targeting the CCR5 locus.



FIG. 11 depicts flow cytometry analysis of genome edited HSCs to determine co-expression of stem cell phenotypic markers CD34 and CD90 and for viability (7-AAD-AnnexinV− cells). CD34+ HSCs maintain phenotype and viability after Nucleofection™ with Cas9 and CCR5 gRNA plasmid DNA (96 hours).





DETAILED DESCRIPTION
Definitions

“CCR5 target position”, as used herein, refers to any position that results in inactivation of the CCR5 gene. In an embodiment, a CCR5 target position refers to any of a CCR5 target knockout position or a CCR5 target knockdown position, as described herein.


“Domain”, as used herein, is used to describe segments of a protein or nucleic acid. Unless otherwise indicated, a domain is not required to have any specific functional property.


Calculations of homology or sequence identity between two sequences (the terms are used interchangeably herein) are performed as follows. The sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The optimal alignment is determined as the best score using the GAP program in the GCG software package with a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frame shift gap penalty of 5. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences.


“Governing gRNA molecule”, as used herein, refers to a gRNA molecule that comprises a targeting domain that is complementary to a target domain on a nucleic acid that comprises a sequence that encodes a component of the CRISPR/Cas system that is introduced into a cell or subject. A governing gRNA does not target an endogenous cell or subject sequence. In an embodiment, a governing gRNA molecule comprises a targeting domain that is complementary with a target sequence on: (a) a nucleic acid that encodes a Cas9 molecule; (b) a nucleic acid that encodes a gRNA which comprises a targeting domain that targets the CCR5 gene (a target gene gRNA); or on more than one nucleic acid that encodes a CRISPR/Cas component, e.g., both (a) and (b). In an embodiment, a nucleic acid molecule that encodes a CRISPR/Cas component, e.g., that encodes a Cas9 molecule or a target gene gRNA, comprises more than one target domain that is complementary with a governing gRNA targeting domain. While not wishing to be bound by theory, in an embodiment, it is believed that a governing gRNA molecule complexes with a Cas9 molecule and results in Cas9 mediated inactivation of the targeted nucleic acid, e.g., by cleavage or by binding to the nucleic acid, and results in cessation or reduction of the production of a CRISPR/Cas system component. In an embodiment, the Cas9 molecule forms two complexes: a complex comprising a Cas9 molecule with a target gene gRNA, which complex will alter the CCR5 gene; and a complex comprising a Cas9 molecule with a governing gRNA molecule, which complex will act to prevent further production of a CRISPR/Cas system component, e.g., a Cas9 molecule or a target gene gRNA molecule. In an embodiment, a governing gRNA molecule/Cas9 molecule complex binds to or promotes cleavage of a control region sequence, e.g., a promoter, operably linked to a sequence that encodes a Cas9 molecule, a sequence that encodes a transcribed region, an exon, or an intron, for the Cas9 molecule. In an embodiment, a governing gRNA molecule/Cas9 molecule complex binds to or promotes cleavage of a control region sequence, e.g., a promoter, operably linked to a gRNA molecule, or a sequence that encodes the gRNA molecule. In an embodiment, the governing gRNA, e.g., a Cas9-targeting governing gRNA molecule, or a target gene gRNA-targeting governing gRNA molecule, limits the effect of the Cas9 molecule/target gene gRNA molecule complex-mediated gene targeting. In an embodiment, a governing gRNA places temporal, level of expression, or other limits, on activity of the Cas9 molecule/target gene gRNA molecule complex. In an embodiment, a governing gRNA reduces off-target or other unwanted activity. In an embodiment, a governing gRNA molecule inhibits, e.g., entirely or substantially entirely inhibits, the production of a component of the Cas9 system and thereby limits, or governs, its activity.


“Modulator”, as used herein, refers to an entity, e.g., a drug, that can alter the activity (e.g., enzymatic activity, transcriptional activity, or translational activity), amount, distribution, or structure of a subject molecule or genetic sequence. In an embodiment, modulation comprises cleavage, e.g., breaking of a covalent or non-covalent bond, or the forming of a covalent or non-covalent bond, e.g., the attachment of a moiety, to the subject molecule. In an embodiment, a modulator alters the, three dimensional, secondary, tertiary, or quaternary structure, of a subject molecule. A modulator can increase, decrease, initiate, or eliminate a subject activity.


“Large molecule”, as used herein, refers to a molecule having a molecular weight of at least 2, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 kD. Large molecules include proteins, polypeptides, nucleic acids, biologics, and carbohydrates.


“Polypeptide”, as used herein, refers to a polymer of amino acids having less than 100 amino acid residues. In an embodiment, it has less than 50, 20, or 10 amino acid residues.


“Reference molecule”, e.g., a reference Cas9 molecule or reference gRNA, as used herein, refers to a molecule to which a subject molecule, e.g., a subject Cas9 molecule of subject gRNA molecule, e.g., a modified or candidate Cas9 molecule is compared. For example, a Cas9 molecule can be characterized as having no more than 10% of the nuclease activity of a reference Cas9 molecule. Examples of reference Cas9 molecules include naturally occurring unmodified Cas9 molecules, e.g., a naturally occurring Cas9 molecule such as a Cas9 molecule of S. pyogenes, S. aureus or S. thermophilus. In an embodiment, the reference Cas9 molecule is the naturally occurring Cas9 molecule having the closest sequence identity or homology with the Cas9 molecule to which it is being compared. In an embodiment, the reference Cas9 molecule is a sequence, e.g., a naturally occurring or known sequence, which is the parental form on which a change, e.g., a mutation has been made.


“Replacement”, or “replaced”, as used herein with reference to a modification of a molecule does not require a process limitation but merely indicates that the replacement entity is present.


“Small molecule”, as used herein, refers to a compound having a molecular weight less than about 2 kD, e.g., less than about 2 kD, less than about 1.5 kD, less than about 1 kD, or less than about 0.75 kD.


“Subject”, as used herein, may mean either a human or non-human animal. The term includes, but is not limited to, mammals (e.g., humans, other primates, pigs, rodents (e.g., mice and rats or hamsters), rabbits, guinea pigs, cows, horses, cats, dogs, sheep, and goats). In an embodiment, the subject is a human. In other embodiments, the subject is poultry.


“Treat”, “treating” and “treatment”, as used herein, mean the treatment of a disease in a mammal, e.g., in a human, including (a) inhibiting the disease, i.e., arresting or preventing its development; (b) relieving the disease, i.e., causing regression of the disease state; and (c) curing the disease.


“Prevent”, “preventing” and “prevention”, as used herein, means the prevention of a disease in a mammal, e.g., in a human, including (a) avoiding or precluding the disease; (2) affecting the predisposition toward the disease, e.g., preventing at least one symptom of the disease or to delay onset of at least one symptom of the disease.


“X” as used herein in the context of an amino acid sequence, refers to any amino acid (e.g., any of the twenty natural amino acids) unless otherwise specified.


Human Immunodeficiency Virus

Human Immunodeficiency Virus (HIV) is a virus that causes severe immunodeficiency. In the United States, more than 1 million people are infected with the virus. Worldwide, approximately 30-40 million people are infected.


HIV is a single-stranded RNA virus that preferentially infects CD4 cells. The virus binds to receptors on the surface of CD4+ cells to enter and infect these cells. This binding and infection step is vital to the pathogenesis of HIV. The virus attaches to the CD4 receptor on the cell surface via its own surface glycoproteins, gp120 and gp41. These proteins are made from the cleavage product of gp160. Gp120 binds to a CD4 receptor and must also bind to another coreceptor in order for the virus to enter the host cell. In macrophage-(M-tropic) viruses, the coreceptor is CCR5 occasionally referred to as the CCR5 receptor. M-tropic virus is found most commonly in the early stages of HIV infection.


There are two types of HIV—HIV-1 and HIV-2. HIV-1 is the predominant global form and is a more virulent strain of the virus. HIV-2 has lower rates of infection and, at present, predominantly affects populations in West Africa. HIV is transmitted primarily through sexual exposure, although the sharing of needles in intravenous drug use is another mode of transmission.


As HIV infection progresses, the virus infects CD4 cells and a subject's CD4 counts fall. With declining CD4 counts, a subject is subject to increasing risk of opportunistic infections (OI). Severely declining CD4 counts are associated with a very high likelihood of OIs, specific cancers (such as Kaposi's sarcoma, Burkitt's lymphoma) and wasting syndrome. Normal CD4 counts are between 600-1200 cells/microliter.


Untreated HIV infection is a chronic, progressive disease that leads to acquired immunodeficiency syndrome (AIDS) and death in the vast majority of subjects. Diagnosis of AIDS is made based on infection with a variety of opportunistic pathogens, presence of certain cancers and/or CD4 counts below 200 cells/μL.


HIV was untreatable and invariably led to death until the late 1980's. Since then, antiretroviral therapy (ART) has dramatically slowed the course of HIV infection. Highly active antiretroviral therapy (HAART) is the use of three or more agents in combination to slow HIV. Antiretroviral therapy (ART) is indicated in a subject whose CD4 counts has dropped below 500 cells/μL. Viral load is the most common measurement of the efficacy of HIV treatment and disease progression. Viral load measures the amount of HIV RNA present in the blood.


Treatment with HAART has significantly altered the life expectancy of those infected with HIV. A subject in the developed world who maintains their HAART regimen can expect to live into their 60's and possibly 70's. However, HAART regimens are associated with significant, long term side effects. First, the dosing regimens are complex and associated with strict food requirements. Compliance rates with dosing can be lower than 50% in some populations in the United States. In addition, there are significant toxicities associated with HAART treatment, including diabetes, nausea, malaise, sleep disturbances. A subject who does not adhere to dosing requirements of HAART therapy may have return of viral load in their blood and are at risk for progression to disease and its associated complications.


Methods to Treat or Prevent HIV Infection or AIDS

Methods and compositions described herein provide for a therapy, e.g., a one-time therapy, or a multi-dose therapy, that prevents or treats HIV infection and/or AIDS. In an embodiment, a disclosed therapy prevents, inhibits, or reduces the entry of HIV into CD4 cells of a subject who is already infected. While not wishing to be bound by theory, in an embodiment, it is believed that knocking out CCR5 on CD4 cells, renders the HIV virus unable to enter CD4 cells. Viral entry into CD4 cells requires interaction of the viral glycoproteins gp41 and gp120 with both the CD4 receptor and acoreceptor, e.g., CCR5. Once a functional coreceptor such as CCR5 has been eliminated from the surface of the CD4 cells, the virus is prevented from binding and entering the host CD4 cells. In an embodiment, the disease does not progress or has delayed progression compared to a subject who has not received the therapy.


While not wishing to be bound by theory, subjects with naturally occurring CCR5 receptor mutations who have delayed HIV progression may confer protection by the mechanism of action described herein. Subjects with a specific deletion in the CCR5 gene (e.g., the delta 32 deletion) have been shown to have much higher likelihood of being long-term non-progressors (meaning they did not require HAART and their HIV infection did not progress). See, e.g., Stewart G J et al., 1997 The Australian Long-Term Non-Progressor Study Group. Aids. 11:1833-1838. In addition, a subject who was CCR5+ (had a wild type CCR5 receptor) and infected with HIV underwent a bone marrow transplant for acute myeloid lymphoma. See, e.g., Hutter G et al., 2009N ENGL J MED. 360:692-698. The bone marrow transplant (BMT) was from a subject homozygous for a CCR5 delta 32 deletion. Following BMT, the subject did not have progression of HIV and did not require treatment with ART. These subjects offer evidence for the fact that introduction of a protective mutation of the CCR5 gene, or knockout or knockdown of the CCR5 gene prevents, delays or diminishes the ability of HIV to infect the subject. Mutation or deletion of the CCR5 gene, or reduced CCR5 gene expression, should therefore reduce the progression, virulence and pathology of HIV. In an embodiment, a method described herein is used to treat a subject having HIV.


In an embodiment, a method described herein is used to treat a subject having AIDS.


In an embodiment, a method described herein is used to prevent, or delay the onset or progression of, HIV infection and AIDS in a subject at high risk for HIV infection.


In an embodiment, a method described herein results in a selective advantage to survival of treated CD4 cells. Some proportion of CD4 cells will be modified and have a CCR5 protective mutation. These cells are not subject to infection with HIV. Cells that are not modified may be infected with HIV and are expected to undergo cell death. In an embodiment, after the treatment described herein, treated cells survive, while untreated cells die. This selective advantage drives eventual colonization in all body compartments with 100% CCR5-negative CD4 cells derived from treated cells, conferring complete protection in treated subjects against infection with M tropic HIV.


In an embodiment, the method comprises initiating treatment of a subject prior to disease onset.


In an embodiment, the method comprises initiating treatment of a subject after disease onset.


In an embodiment, the method comprises initiating treatment of a subject after disease onset, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 36, 48 or more months after onset of HIV infection or AIDS. While not wishing to be bound by theory, it is believed that this may be effective as disease progression is slow in some cases and a subject may present well into the course of illness.


In an embodiment, the method comprises initiating treatment of a subject in an advanced stage of disease, e.g., to slow viral replication and viral load.


Overall, initiation of treatment for a subject at all stages of disease is expected to prevent or reduce disease progression and benefit a subject.


In an embodiment, the method comprises initiating treatment of a subject prior to disease onset and prior to infection with HIV.


In an embodiment, the method comprises initiating treatment of a subject in an early stage of disease, e.g., when a subject has tested positive for HIV infection but has no signs or symptoms associated with HIV.


In an embodiment, the method comprises initiating treatment of a patient at the appearance of a reduced CD4 count or a positive HIV test.


In an embodiment, the method comprises treating a subject considered at risk for developing HIV infection.


In an embodiment, the method comprises treating a subject who is the spouse, partner, sexual partner, newborn, infant, or child of a subject with HIV.


In an embodiment, the method comprises treating a subject for the prevention or reduction of HIV infection.


In an embodiment, the method comprises treating a subject at the appearance of any of the following findings consistent with HIV: low CD4 count; opportunistic infections associated with HIV, including but not limited to: candidiasis, mycobacterium tuberculosis, cryptococcosis, cryptosporidiosis, cytomegalovirus; and/or malignancy associated with HIV, including but not limited to: lymphoma, Burkitt's lymphoma, or Kaposi's sarcoma.


In an embodiment, a cell is treated ex vivo and returned to a patient.


In an embodiment, an autologous CD4 cell can be treated ex vivo and returned to the subject.


In an embodiment, a heterologous CD4 cells can be treated ex vivo and transplanted into the subject.


In an embodiment, an autologous stem cell can be treated ex vivo and returned to the subject.


In an embodiment, a heterologous stem cell can be treated ex vivo and transplanted into the subject.


In an embodiment, the treatment comprises delivery of gRNA by intravenous injection, intramuscular injection; subcutaneous injection; intrathecal injection; or intraventricular injection.


In an embodiment, the treatment comprises delivery of a gRNA by an AAV.


In an embodiment, the treatment comprises delivery of a gRNA by a lentivirus.


In an embodiment, the treatment comprises delivery of a gRNA by a nanoparticle.


In an embodiment, the treatment comprises delivery of a gRNA by a parvovirus, e.g., a specifically a modified parvovirus designed to target bone marrow cells and/or CD4 cells.


In an embodiment, the treatment is initiated after a subject is determined to not have a mutation (e.g., an inactivating mutation, e.g., an inactivating mutation in either or both alleles) in CCR5 by genetic screening, e.g., genotyping, wherein the genetic testing was performed prior to or after disease onset.


Methods of Targeting CCR5

As disclosed herein, the CCR5 gene can be targeted (e.g., altered) by gene editing, e.g., using CRISPR-Cas9 mediated methods as described herein.


Methods and compositions discussed herein, provide for targeting (e.g., altering) a CCR5 target position in the CCR5 gene. A CCR5 target position can be targeted (e.g., altered) by gene editing, e.g., using CRISPR-Cas9 mediated methods to target (e.g. alter) the CCR5 gene.


Disclosed herein are methods for targeting (e.g., altering) a CCR5 target position in the CCR5 gene. Targeting (e.g., altering) the CCR5 target position is achieved, e.g., by:


(1) knocking out the CCR5 gene:


(a) insertion or deletion (e.g., NHEJ-mediated insertion or deletion) of one or more nucleotides in close proximity to or within the early coding region of the CCR5 gene, or


(b) deletion (e.g., NHEJ-mediated deletion) of a genomic sequence including at least a portion of the CCR5 gene, or


(2) knocking down the CCR5 gene mediated by enzymatically inactive Cas9 (eiCas9) molecule or an eiCas9-fusion protein by targeting non-coding region, e.g., a promoter region, of the gene.


All approaches give rise to targeting (e.g., alteration) of the CCR5 gene.


In one embodiment, methods described herein introduce one or more breaks near the early coding region in at least one allele of the CCR5 gene. In another embodiment, methods described herein introduce two or more breaks to flank at least a portion of the CCR5 gene. The two or more breaks remove (e.g., delete) a genomic sequence including at least a portion of the CCR5 gene. In another embodiment, methods described herein comprise knocking down the CCR5 gene mediated by enzymatically inactive Cas9 (eiCas9) molecule or an eiCas9-fusion protein by targeting the promoter region of CCR5 target knockdown position. All methods described herein result in targeting (e.g., alteration) of the CCR5 gene.


The targeting (e.g., alteration) of the CCR5 gene can be mediated by any mechanism. Exemplary mechanisms that can be associated with the alteration of the CCR5 gene include, but are not limited to, non-homologous end joining (e.g., classical or alternative), microhomology-mediated end joining (MMEJ), homology-directed repair (e.g., endogenous donor template mediated), SDSA (synthesis dependent strand annealing), single strand annealing or single strand invasion.


Knocking Out CCR5 by Introducing an Indel or a Deletion in the CCR5 Gene

In an embodiment, the method comprises introducing an insertion or deletion of one more nucleotides in close proximity to the CCR5 target knockout position (e.g., the early coding region) of the CCR5 gene. As described herein, in one embodiment, the method comprises the introduction of one or more breaks (e.g., single strand breaks or double strand breaks) sufficiently close to (e.g., either 5′ or 3′ to) the early coding region of the CCR5 target knockout position, such that the break-induced indel could be reasonably expected to span the CCR5 target knockout position (e.g., the early coding region). While not wishing to be bound by theory, it is believed that NHEJ-mediated repair of the break(s) allows for the NHEJ-mediated introduction of an indel in close proximity to within the early coding region of the CCR5 target knockout position.


In an embodiment, the method comprises introducing a deletion of a genomic sequence comprising at least a portion of the CCR5 gene. As described herein, in an embodiment, the method comprises the introduction of two double stand breaks—one 5′ and the other 3′ to (i.e., flanking) the CCR5 target position. In an embodiment, two gRNAs, e.g., unimolecular (or chimeric) or modular gRNA molecules, are configured to position the two double strand breaks on opposite sides of the CCR5 target knockout position in the CCR5 gene.


In an embodiment, a single strand break is introduced (e.g., positioned by one gRNA molecule) at or in close proximity to a CCR5 target position in the CCR5 gene. In an embodiment, a single gRNA molecule (e.g., with a Cas9 nickase) is used to create a single strand break at or in close proximity to the CCR5 target position, e.g., the gRNA is configured such that the single strand break is positioned either upstream (e.g., within 500 bp upstream, e.g., within 200 bp upstream) or downstream (e.g., within 500 bp downstream, e.g., within 200 bp downstream) of the CCR5 target position. In an embodiment, the break is positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat.


In an embodiment, a double strand break is introduced (e.g., positioned by one gRNA molecule) at or in close proximity to a CCR5 target position in the CCR5 gene. In an embodiment, a single gRNA molecule (e.g., with a Cas9 nuclease other than a Cas9 nickase) is used to create a double strand break at or in close proximity to the CCR5 target position, e.g., the gRNA molecule is configured such that the double strand break is positioned either upstream (e.g., within 500 bp upstream, e.g., within 200 bp upstream) or downstream of (e.g., within 500 bp downstream, e.g., within 200 bp downstream) of a CCR5 target position. In an embodiment, the break is positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat.


In an embodiment, two single strand breaks are introduced (e.g., positioned by two gRNA molecules) at or in close proximity to a CCR5 target position in the CCR5 gene. In an embodiment, two gRNA molecules (e.g., with one or two Cas9 nickases) are used to create two single strand breaks at or in close proximity to the CCR5 target position, e.g., the gRNAs molecules are configured such that both of the single strand breaks are positioned e.g., within 500 by upstream, e.g., within 200 bp upstream) or downstream (e.g., within 500 bp downstream, e.g., within 200 bp downstream) of the CCR5 target position. In another embodiment, two gRNA molecules (e.g., with two Cas9 nickases) are used to create two single strand breaks at or in close proximity to the CCR5 target position, e.g., the gRNAs molecules are configured such that one single strand break is positioned upstream (e.g., within 200 bp upstream) and a second single strand break is positioned downstream (e.g., within 200 bp downstream) of the CCR5 target position. In an embodiment, the breaks are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat.


In an embodiment, two double strand breaks are introduced (e.g., positioned by two gRNA molecules) at or in close proximity to a CCR5 target position in the CCR5 gene. In an embodiment, two gRNA molecules (e.g., with one or two Cas9 nucleases that are not Cas9 nickases) are used to create two double strand breaks to flank a CCR5 target position, e.g., the gRNA molecules are configured such that one double strand break is positioned upstream (e.g., within 500 bp upstream, e.g., within 200 bp upstream) and a second double strand break is positioned downstream (e.g., within 500 bp downstream, e.g., within 200 bp downstream) of the CCR5 target position. In an embodiment, the breaks are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat.


In an embodiment, one double strand break and two single strand breaks are introduced (e.g., positioned by three gRNA molecules) at or in close proximity to a CCR5 target position in the CCR5 gene. In an embodiment, three gRNA molecules (e.g., with a Cas9 nuclease other than a Cas9 nickase and one or two Cas9 nickases) to create one double strand break and two single strand breaks to flank a CCR5 target position, e.g., the gRNA molecules are configured such that the double strand break is positioned upstream or downstream of (e.g., within 500 bp, e.g., within 200 bp upstream or downstream) of the CCR5 target position, and the two single strand breaks are positioned at the opposite site, e.g., downstream or upstream (e.g., within 500 bp, e.g., within 200 bp downstream or upstream), of the CCR5 target position. In an embodiment, the breaks are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat.


In an embodiment, four single strand breaks are introduced (e.g., positioned by four gRNA molecules) at or in close proximity to a CCR5 target position in the CCR5 gene. In an embodiment, four gRNA molecule (e.g., with one or more Cas9 nickases are used to create four single strand breaks to flank a CCR5 target position in the CCR5 gene, e.g., the gRNA molecules are configured such that a first and second single strand breaks are positioned upstream (e.g., within 500 bp upstream, e.g., within 200 bp upstream) of the CCR5 target position, and a third and a fourth single stranded breaks are positioned downstream (e.g., within 500 bp downstream, e.g., within 200 bp downstream) of the CCR5 target position. In an embodiment, the breaks are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat.


In an embodiment, two or more (e.g., three or four) gRNA molecules are used with one Cas9 molecule. In another embodiment, when two ore more (e.g., three or four) gRNAs are used with two or more Cas9 molecules, at least one Cas9 molecule is from a different species than the other Cas9 molecule(s). For example, when two gRNA molecules are used with two Cas9 molecules, one Cas9 molecule can be from one species and the other Cas9 molecule can be from a different species. Both Cas9 species are used to generate a single or double-strand break, as desired.


Knocking Out CCR5 bp Deleting (e.g., NHEJ-Mediated Deletion) a Genomic Sequence Including at Least a Portion of the CCR5 Gene

In an embodiment, the method comprises deleting (e.g., NHEJ-mediated deletion) a genomic sequence including at least a portion of the CCR5 gene. As described herein, in one embodiment, the method comprises the introduction two sets of breaks (e.g., a pair of double strand breaks, one double strand break or a pair of single strand breaks, or two pairs of single strand breaks) to flank a region of the CCR5 gene (e.g., a coding region, e.g., an early coding region, or a non-coding region, e.g., a non-coding sequence of the CCR5 gene, e.g., a promoter, an enhancer, an intron, a 3′UTR, and/or a polyadenylation signal). While not wishing to be bound by theory, it is believed that NHEJ-mediated repair of the break(s) allows for alteration of the CCR5 gene as described herein, which reduces or eliminates expression of the gene, e.g., to knock out one or both alleles of the CCR5 gene.


In an embodiment, two double strand breaks are introduced (e.g., positioned by two gRNA molecules) at or in close proximity to a CCR5 target position in the CCR5 gene. In an embodiment, two gRNA molecules (e.g., with one or two Cas9 nucleases that are not Cas9 nickases) are used to create two double strand breaks to flank a CCR5 target position, e.g., the gRNA molecules are configured such that one double strand break is positioned upstream (e.g., within 500 bp upstream, e.g., within 200 bp upstream) and a second double strand break is positioned downstream (e.g., within 500 bp downstream, e.g., within 200 bp downstream) of the CCR5 target position. In an embodiment, the breaks are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat.


In an embodiment, one double strand break and two single strand breaks are introduced (e.g., positioned by three gRNA molecules) at or in close proximity to a CCR5 target position in the CCR5 gene. In an embodiment, three gRNA molecules (e.g., with a Cas9 nuclease other than a Cas9 nickase and one or two Cas9 nickases) to create one double strand break and two single strand breaks to flank a CCR5 target position, e.g., the gRNA molecules are configured such that the double strand break is positioned upstream or downstream of (e.g., within 500 bp, e.g., within 200 bp upstream or downstream) of the CCR5 target position, and the two single strand breaks are positioned at the opposite site, e.g., downstream or upstream (e.g., within 500 bp, e.g., within 200 bp downstream or upstream), of the CCR5 target position. In an embodiment, the breaks are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat.


In an embodiment, four single strand breaks are introduced (e.g., positioned by four gRNA molecules) at or in close proximity to a CCR5 target position in the CCR5 gene. In an embodiment, four gRNA molecule (e.g., with one or more Cas9 nickases are used to create four single strand breaks to flank a CCR5 target position in the CCR5 gene, e.g., the gRNA molecules are configured such that a first and second single strand breaks are positioned upstream (e.g., within 500 bp upstream, e.g., within 200 bp upstream) of the CCR5 target position, and a third and a fourth single stranded breaks are positioned downstream (e.g., within 500 bp downstream, e.g., within 200 bp downstream) of the CCR5 target position. In an embodiment, the breaks are positioned to avoid unwanted target chromosome elements, such as repeat elements, e.g., an Alu repeat.


In an embodiment, two or more (e.g., three or four) gRNA molecules are used with one Cas9 molecule. In another embodiment, when two ore more (e.g., three or four) gRNAs are used with two or more Cas9 molecules, at least one Cas9 molecule is from a different species than the other Cas9 molecule(s). For example, when two gRNA molecules are used with two Cas9 molecules, one Cas9 molecule can be from one species and the other Cas9 molecule can be from a different species. Both Cas9 species are used to generate a single or double-strand break, as desired.


Knocking Down CCR5 Mediated by an Enzymatically Inactive Cas9 (eiCas9) Molecule


A targeted knockdown approach reduces or eliminates expression of functional CCR5 gene product. As described herein, in an embodiment, a targeted knockdown is mediated by targeting an enzymatically inactive Cas9 (eiCas9) molecule or an eiCas9 fused to a transcription repressor domain or chromatin modifying protein to alter transcription, e.g., to block, reduce, or decrease transcription, of the CCR5 gene.


Methods and compositions discussed herein may be used to alter the expression of the CCR5 gene to treat or prevent HIV infection or AIDS by targeting a promoter region of the CCR5 gene. In an embodiment, the promoter region is targeted to knock down expression of the CCR5 gene. A targeted knockdown approach reduces or eliminates expression of functional CCR5 gene product. As described herein, in an embodiment, a targeted knockdown is mediated by targeting an enzymatically inactive Cas9 (eiCas9) or an eiCas9 fused to a transcription repressor domain or chromatin modifying protein to alter transcription, e.g., to block, reduce, or decrease transcription, of the CCR5 gene.


In an embodiment, one or more eiCas9s may be used to block binding of one or more endogenous transcription factors. In another embodiment, an eiCas9 can be fused to a chromatin modifying protein. Altering chromatin status can result in decreased expression of the target gene. One or more eiCas9s fused to one or more chromatin modifying proteins may be used to alter chromatin status.


I. gRNA Molecules


A gRNA molecule, as that term is used herein, refers to a nucleic acid that promotes the specific targeting or homing of a gRNA molecule/Cas9 molecule complex to a target nucleic acid. gRNA molecules can be unimolecular (having a single RNA molecule), sometimes referred to herein as “chimeric” gRNAs, or modular (comprising more than one, and typically two, separate RNA molecules). A gRNA molecule comprises a number of domains. The gRNA molecule domains are described in more detail below.


Several exemplary gRNA structures, with domains indicated thereon, are provided in FIG. 1. While not wishing to be bound by theory, in an embodiment, with regard to the three dimensional form, or intra- or inter-strand interactions of an active form of a gRNA, regions of high complementarity are sometimes shown as duplexes in FIGS. 1A-1G and other depictions provided herein.


In an embodiment, a unimolecular, or chimeric, gRNA comprises, preferably from 5′ to 3′:


a targeting domain (which is complementary to a target nucleic acid in the CCR5 gene, e.g., a targeting domain from any of Tables 1A-1F);


a first complementarity domain;


a linking domain;


a second complementarity domain (which is complementary to the first complementarity domain);


a proximal domain; and


optionally, a tail domain.


In an embodiment, a modular gRNA comprises:

    • a first strand comprising, preferably from 5′ to 3′;
      • a targeting domain (which is complementary to a target nucleic acid in the CCR5 gene, e.g., a targeting domain from Tables 1A-1F); and
      • a first complementarity domain; and
    • a second strand, comprising, preferably from 5′ to 3′:
      • optionally, a 5′ extension domain;
      • a second complementarity domain;
      • a proximal domain; and
      • optionally, a tail domain.


The domains are discussed briefly below:


The Targeting Domain



FIGS. 1A-1G provide examples of the placement of targeting domains.


The targeting domain comprises a nucleotide sequence that is complementary, e.g., at least 80, 85, 90, or 95% complementary, e.g., fully complementary, to the target sequence on the target nucleic acid. The targeting domain is part of an RNA molecule and will therefore comprise the base uracil (U), while any DNA encoding the gRNA molecule will comprise the base thymine (T). While not wishing to be bound by theory, in an embodiment, it is believed that the complementarity of the targeting domain with the target sequence contributes to specificity of the interaction of the gRNA molecule/Cas9 molecule complex with a target nucleic acid. It is understood that in a targeting domain and target sequence pair, the uracil bases in the targeting domain will pair with the adenine bases in the target sequence. In an embodiment, the target domain itself comprises in the 5′ to 3′ direction, an optional secondary domain, and a core domain. In an embodiment, the core domain is fully complementary with the target sequence. In an embodiment, the targeting domain is 5 to 50 nucleotides in length. The strand of the target nucleic acid with which the targeting domain is complementary is referred to herein as the complementary strand. Some or all of the nucleotides of the domain can have a modification, e.g., a modification found in Section VIII herein.


In an embodiment, the targeting domain is 16 nucleotides in length.


In an embodiment, the targeting domain is 17 nucleotides in length.


In an embodiment, the targeting domain is 18 nucleotides in length.


In an embodiment, the targeting domain is 19 nucleotides in length.


In an embodiment, the targeting domain is 20 nucleotides in length.


In an embodiment, the targeting domain is 21 nucleotides in length.


In an embodiment, the targeting domain is 22 nucleotides in length.


In an embodiment, the targeting domain is 23 nucleotides in length.


In an embodiment, the targeting domain is 24 nucleotides in length.


In an embodiment, the targeting domain is 25 nucleotides in length.


In an embodiment, the targeting domain is 26 nucleotides in length.


In an embodiment, the targeting domain comprises 16 nucleotides.


In an embodiment, the targeting domain comprises 17 nucleotides.


In an embodiment, the targeting domain comprises 18 nucleotides.


In an embodiment, the targeting domain comprises 19 nucleotides.


In an embodiment, the targeting domain comprises 20 nucleotides.


In an embodiment, the targeting domain comprises 21 nucleotides.


In an embodiment, the targeting domain comprises 22 nucleotides.


In an embodiment, the targeting domain comprises 23 nucleotides.


In an embodiment, the targeting domain comprises 24 nucleotides.


In an embodiment, the targeting domain comprises 25 nucleotides.


In an embodiment, the targeting domain comprises 26 nucleotides.


Targeting domains are discussed in more detail below.


The First Complementarity Domain



FIGS. 1A-1G provide examples of first complementarity domains.


The first complementarity domain is complementary with the second complementarity domain, and in an embodiment, has sufficient complementarity to the second complementarity domain to form a duplexed region under at least some physiological conditions. In an embodiment, the first complementarity domain is 5 to 30 nucleotides in length. In an embodiment, the first complementarity domain is 5 to 25 nucleotides in length. In an embodiment, the first complementary domain is 7 to 25 nucleotides in length. In an embodiment, the first complementary domain is 7 to 22 nucleotides in length. In an embodiment, the first complementary domain is 7 to 18 nucleotides in length. In an embodiment, the first complementary domain is 7 to 15 nucleotides in length. In an embodiment, the first complementary domain is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length.


In an embodiment, the first complementarity domain comprises 3 subdomains, which, in the 5′ to 3′ direction are: a 5′ subdomain, a central subdomain, and a 3′ subdomain. In an embodiment, the 5′ subdomain is 4-9, e.g., 4, 5, 6, 7, 8 or 9 nucleotides in length. In an embodiment, the central subdomain is 1, 2, or 3, e.g., 1, nucleotide in length. In an embodiment, the 3′ subdomain is 3 to 25, e.g., 4 to 22, 4 to 18, or 4 to 10, or 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length.


The first complementarity domain can share homology with, or be derived from, a naturally occurring first complementarity domain. In an embodiment, it has at least 50% homology with a first complementarity domain disclosed herein, e.g., an S. pyogenes, S. aureus or S. thermophilus, first complementarity domain.


Some or all of the nucleotides of the domain can have a modification, e.g., modification found in Section VIII herein.


First complementarity domains are discussed in more detail below.


The Linking Domain



FIGS. 1A-1G provide examples of linking domains.


A linking domain serves to link the first complementarity domain with the second complementarity domain of a unimolecular gRNA. The linking domain can link the first and second complementarity domains covalently or non-covalently. In an embodiment, the linkage is covalent. In an embodiment, the linking domain covalently couples the first and second complementarity domains, see, e.g., FIGS. 1B-1E. In an embodiment, the linking domain is, or comprises, a covalent bond interposed between the first complementarity domain and the second complementarity domain. Typically the linking domain comprises one or more, e.g., 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides.


In modular gRNA molecules the two molecules are associated by virtue of the hybridization of the complementarity domains see e.g., FIG. 1A.


A wide variety of linking domains are suitable for use in unimolecular gRNA molecules. Linking domains can consist of a covalent bond, or be as short as one or a few nucleotides, e.g., 1, 2, 3, 4, or 5 nucleotides in length. In an embodiment, a linking domain is 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25 or more nucleotides in length. In an embodiment, a linking domain is 2 to 50, 2 to 40, 2 to 30, 2 to 20, 2 to 10, or 2 to 5 nucleotides in length. In an embodiment, a linking domain shares homology with, or is derived from, a naturally occurring sequence, e.g., the sequence of a tracrRNA that is 5′ to the second complementarity domain. In an embodiment, the linking domain has at least 50% homology with a linking domain disclosed herein.


Some or all of the nucleotides of the domain can have a modification, e.g., modification found in Section VIII herein.


Linking domains are discussed in more detail below.


The 5′ Extension Domain


In an embodiment, a modular gRNA can comprise additional sequence, 5′ to the second complementarity domain, referred to herein as the 5′ extension domain, see, e.g., FIG. 1A. In an embodiment, the 5′ extension domain is, 2 to 10, 2 to 9, 2 to 8, 2 to 7, 2 to 6, 2 to 5, or 2 to 4 nucleotides in length. In an embodiment, the 5′ extension domain is 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more nucleotides in length.


The Second Complementarity Domain



FIGS. 1A-1G provide examples of second complementarity domains.


The second complementarity domain is complementary with the first complementarity domain, and in an embodiment, has sufficient complementarity to the second complementarity domain to form a duplexed region under at least some physiological conditions. In an embodiment, e.g., as shown in FIGS. 1A-1B, the second complementarity domain can include sequence that lacks complementarity with the first complementarity domain, e.g., sequence that loops out from the duplexed region.


In an embodiment, the second complementarity domain is 5 to 27 nucleotides in length. In an embodiment, it is longer than the first complementarity region. In an embodiment the second complementary domain is 7 to 27 nucleotides in length. In an embodiment, the second complementary domain is 7 to 25 nucleotides in length. In an embodiment, the second complementary domain is 7 to 20 nucleotides in length. In an embodiment, the second complementary domain is 7 to 17 nucleotides in length. In an embodiment, the complementary domain is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 nucleotides in length.


In an embodiment, the second complementarity domain comprises 3 subdomains, which, in the 5′ to 3′ direction are: a 5′ subdomain, a central subdomain, and a 3′ subdomain. In an embodiment, the 5′ subdomain is 3 to 25, e.g., 4 to 22, 4 to 18, or 4 to 10, or 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length. In an embodiment, the central subdomain is 1, 2, 3, 4 or 5, e.g., 3, nucleotides in length. In an embodiment, the 3′ subdomain is 4 to 9, e.g., 4, 5, 6, 7, 8 or 9 nucleotides in length.


In an embodiment, the 5′ subdomain and the 3′ subdomain of the first complementarity domain, are respectively, complementary, e.g., fully complementary, with the 3′ subdomain and the 5′ subdomain of the second complementarity domain.


The second complementarity domain can share homology with or be derived from a naturally occurring second complementarity domain. In an embodiment, it has at least 50% homology with a second complementarity domain disclosed herein, e.g., an S. pyogenes, S. aureus or S. thermophilus, first complementarity domain.


Some or all of the nucleotides of the domain can have a modification, e.g., modification found in Section VIII herein.


A Proximal Domain



FIGS. 1A-1G provide examples of proximal domains.


In an embodiment, the proximal domain is 5 to 20 nucleotides in length. In an embodiment, the proximal domain can share homology with or be derived from a naturally occurring proximal domain. In an embodiment, it has at least 50% homology with a proximal domain disclosed herein, e.g., an S. pyogenes, S. aureus or S. thermophilus, proximal domain.


Some or all of the nucleotides of the domain can have a modification, e.g., modification found in Section VIII herein.


A Tail Domain



FIGS. 1A-1G provide examples of tail domains.


As can be seen by inspection of the tail domains in FIGS. 1A-1E, a broad spectrum of tail domains are suitable for use in gRNA molecules. In an embodiment, the tail domain is 0 (absent), 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides in length. In embodiment, the tail domain nucleotides are from or share homology with sequence from the 5′ end of a naturally occurring tail domain, see e.g., FIG. 1D or FIG. 1E. In an embodiment, the tail domain includes sequences that are complementary to each other and which, under at least some physiological conditions, form a duplexed region.


In an embodiment, the tail domain is absent or is 1 to 50 nucleotides in length. In an embodiment, the tail domain can share homology with or be derived from a naturally occurring proximal tail domain. In an embodiment, it has at least 50% homology with a tail domain disclosed herein, e.g., an S. pyogenes, S. aureus or S. thermophilus, tail domain.


In an embodiment, the tail domain includes nucleotides at the 3′ end that are related to the method of in vitro or in vivo transcription. When a T7 promoter is used for in vitro transcription of the gRNA, these nucleotides may be any nucleotides present before the 3′ end of the DNA template. When a U6 promoter is used for in vivo transcription, these nucleotides may be the sequence UUUUUU. When alternate pol-III promoters are used, these nucleotides may be various numbers or uracil bases or may include alternate bases.


The domains of gRNA molecules are described in more detail below.


The Targeting Domain


The “targeting domain” of the gRNA is complementary to the “target domain” on the target nucleic acid. The strand of the target nucleic acid comprising the nucleotide sequence complementary to the core domain of the gRNA is referred to herein as the “complementary strand” of the target nucleic acid. Guidance on the selection of targeting domains can be found, e.g., in Fu Y et al., Nat Biotechnol 2014 (doi: 10.1038/nbt.2808) and Sternberg S H et al., Nature 2014 (doi: 10.1038/nature13011).


In an embodiment, the targeting domain is 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, the targeting domain is 16 nucleotides in length.


In an embodiment, the targeting domain is 17 nucleotides in length.


In an embodiment, the targeting domain is 18 nucleotides in length.


In an embodiment, the targeting domain is 19 nucleotides in length.


In an embodiment, the targeting domain is 20 nucleotides in length.


In an embodiment, the targeting domain is 21 nucleotides in length.


In an embodiment, the targeting domain is 22 nucleotides in length.


In an embodiment, the targeting domain is 23 nucleotides in length.


In an embodiment, the targeting domain is 24 nucleotides in length.


In an embodiment, the targeting domain is 25 nucleotides in length.


In an embodiment, the targeting domain is 26 nucleotides in length.


In an embodiment, the targeting domain comprises 16 nucleotides.


In an embodiment, the targeting domain comprises 17 nucleotides.


In an embodiment, the targeting domain comprises 18 nucleotides.


In an embodiment, the targeting domain comprises 19 nucleotides.


In an embodiment, the targeting domain comprises 20 nucleotides.


In an embodiment, the targeting domain comprises 21 nucleotides.


In an embodiment, the targeting domain comprises 22 nucleotides.


In an embodiment, the targeting domain comprises 23 nucleotides.


In an embodiment, the targeting domain comprises 24 nucleotides.


In an embodiment, the targeting domain comprises 25 nucleotides.


In an embodiment, the targeting domain comprises 26 nucleotides.


In an embodiment, the targeting domain is 10+/−5, 20+/−5, 30+/−5, 40+/−5, 50+/−5, 60+/−5, 70+/−5, 80+/−5, 90+/−5, or 100+/−5 nucleotides, in length.


In an embodiment, the targeting domain is 20+/−5 nucleotides in length.


In an embodiment, the targeting domain is 20+/−10, 30+/−10, 40+/−10, 50+/−10, 60+/−10, 70+/−10, 80+/−10, 90+/−10, or 100+/−10 nucleotides, in length.


In an embodiment, the targeting domain is 30+/−10 nucleotides in length.


In an embodiment, the targeting domain is 10 to 100, 10 to 90, 10 to 80, 10 to 70, 10 to 60, 10 to 50, 10 to 40, 10 to 30, 10 to 20 or 10 to 15 nucleotides in length. In another embodiment, the targeting domain is 20 to 100, 20 to 90, 20 to 80, 20 to 70, 20 to 60, 20 to 50, 20 to 40, 20 to 30, or 20 to 25 nucleotides in length.


Typically the targeting domain has full complementarity with the target sequence. In an embodiment, the targeting domain has or includes 1, 2, 3, 4, 5, 6, 7 or 8 nucleotides that are not complementary with the corresponding nucleotide of the targeting domain.


In an embodiment, the target domain includes 1, 2, 3, 4 or 5 nucleotides that are complementary with the corresponding nucleotide of the targeting domain within 5 nucleotides of its 5′ end. In an embodiment, the target domain includes 1, 2, 3, 4 or 5 nucleotides that are complementary with the corresponding nucleotide of the targeting domain within 5 nucleotides of its 3′ end.


In an embodiment, the target domain includes 1, 2, 3, or 4 nucleotides that are not complementary with the corresponding nucleotide of the targeting domain within 5 nucleotides of its 5′ end. In an embodiment, the target domain includes 1, 2, 3, or 4 nucleotides that are not complementary with the corresponding nucleotide of the targeting domain within 5 nucleotides of its 3′ end.


In an embodiment, the degree of complementarity, together with other properties of the gRNA, is sufficient to allow targeting of a Cas9 molecule to the target nucleic acid.


In some embodiments, the targeting domain comprises two consecutive nucleotides that are not complementary to the target domain (“non-complementary nucleotides”), e.g., two consecutive noncomplementary nucleotides that are within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or more than 5 nucleotides away from one or both ends of the targeting domain.


In an embodiment, no two consecutive nucleotides within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or within a region that is more than 5 nucleotides away from one or both ends of the targeting domain, are not complementary to the targeting domain.


In an embodiment, there are no noncomplementary nucleotides within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or within a region that is more than 5 nucleotides away from one or both ends of the targeting domain.


In an embodiment, the targeting domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the targeting domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the targeting domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment, a nucleotide of the targeting domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII.


In some embodiments, the targeting domain includes 1, 2, 3, 4, 5, 6, 7 or 8 or more modifications. In an embodiment, the targeting domain includes 1, 2, 3, or 4 modifications within 5 nucleotides of its 5′ end. In an embodiment, the targeting domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 3′ end.


In some embodiments, the targeting domain comprises modifications at two consecutive nucleotides, e.g., two consecutive nucleotides that are within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or more than 5 nucleotides away from one or both ends of the targeting domain.


In an embodiment, no two consecutive nucleotides are modified within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or within a region that is more than 5 nucleotides away from one or both ends of the targeting domain. In an embodiment, no nucleotide is modified within 5 nucleotides of the 5′ end of the targeting domain, within 5 nucleotides of the 3′ end of the targeting domain, or within a region that is more than 5 nucleotides away from one or both ends of the targeting domain.


Modifications in the targeting domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section IV. gRNAs having a candidate targeting domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in a system in Section IV. The candidate targeting domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, all of the modified nucleotides are complementary to and capable of hybridizing to corresponding nucleotides present in the target domain. In another embodiment, 1, 2, 3, 4, 5, 6, 7 or 8 or more modified nucleotides are not complementary to or capable of hybridizing to corresponding nucleotides present in the target domain.


In an embodiment, the targeting domain comprises, preferably in the 5′→3′ direction: a secondary domain and a core domain. These domains are discussed in more detail below.


The Core Domain and Secondary Domain of the Targeting Domain


The “core domain” of the targeting domain is complementary to the “core domain target” on the target nucleic acid. In an embodiment, the core domain comprises about 8 to about 13 nucleotides from the 3′ end of the targeting domain (e.g., the most 3′ 8 to 13 nucleotides of the targeting domain).


In an embodiment, the core domain and targeting domain, are independently, 6+/−2, 7+/−2, 8+/−2, 9+/−2, 10+/−2, 11+/−2, 12+/−2, 13+/−2, 14+/−2, 15+/−2, or 16+-2, 17+/−2, or 18+/−2, nucleotides in length.


In an embodiment, the core domain and targeting domain, are independently 10+/−2 nucleotides in length.


In an embodiment, the core domain and targeting domain, are independently, 10+/−4 nucleotides in length.


In an embodiment, the core domain and targeting domain are independently 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18, nucleotides in length.


In an embodiment, the core domain and targeting domain are independently 3 to 20, 4 to 20, 5 to 20, 6 to 20, 7 to 20, 8 to 20, 9 to 20 10 to 20 or 15 to 20 nucleotides in length.


In an embodiment, the core domain and targeting domain are independently 3 to 15, e.g., 6 to 15, 7 to 14, 7 to 13, 6 to 12, 7 to 12, 7 to 11, 7 to 10, 8 to 14, 8 to 13, 8 to 12, 8 to 11, 8 to 10 or 8 to 9 nucleotides in length.


The “core domain” is complementary with the “core domain target” of the target nucleic acid. Typically the core domain has exact complementarity with the core domain target. In some embodiments, the core domain can have 1, 2, 3, 4 or 5 nucleotides that are not complementary with the corresponding nucleotide of the core domain. In an embodiment, the degree of complementarity, together with other properties of the gRNA, is sufficient to allow targeting of a Cas9 molecule to the target nucleic acid.


The “secondary domain” of the targeting domain of the gRNA is complementary to the “secondary domain target” of the target nucleic acid.


In an embodiment, the secondary domain is positioned 5′ to the core domain.


In an embodiment, the secondary domain is absent or optional.


In an embodiment, if the targeting domain is 26 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 12 to 17 nucleotides in length.


In an embodiment, if the targeting domain is 25 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 12 to 17 nucleotides in length.


In an embodiment, if the targeting domain is 24 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 11 to 16 nucleotides in length.


In an embodiment, if the targeting domain is 23 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 10 to 15 nucleotides in length.


In an embodiment, if the targeting domain is 22 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 9 to 14 nucleotides in length.


In an embodiment, if the targeting domain is 21 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 8 to 13 nucleotides in length.


In an embodiment, if the targeting domain is 20 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 7 to 12 nucleotides in length.


In an embodiment, if the targeting domain is 19 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 6 to 11 nucleotides in length.


In an embodiment, if the targeting domain is 18 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 5 to 10 nucleotides in length.


In an embodiment, if the targeting domain is 17 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 4 to 9 nucleotides in length.


In an embodiment, if the targeting domain is 16 nucleotides in length and the core domain (counted from the 3′ end of the targeting domain) is 8 to 13 nucleotides in length, the secondary domain is 3 to 8 nucleotides in length.


In an embodiment, the secondary domain is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 nucleotides in length.


The secondary domain is complementary with the secondary domain target. Typically the secondary domain has exact complementarity with the secondary domain target. In some embodiments the secondary domain can have 1, 2, 3, 4 or 5 nucleotides that are not complementary with the corresponding nucleotide of the secondary domain. In an embodiment, the degree of complementarity, together with other properties of the gRNA, is sufficient to allow targeting of a Cas9 molecule to the target nucleic acid.


In an embodiment, the core domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the core domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the core domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment a nucleotide of the core domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII. Typically, a core domain will contain no more than 1, 2, or 3 modifications.


Modifications in the core domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section IV. gRNAs having a candidate core domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described at Section IV. The candidate core domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, the secondary domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the secondary domain comprises one or more modifications, e.g., modifications that render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the secondary domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment a nucleotide of the secondary domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII. Typically, a secondary domain will contain no more than 1, 2, or 3 modifications.


Modifications in the secondary domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section IV. gRNAs having a candidate secondary domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described at Section IV. The candidate secondary domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, (1) the degree of complementarity between the core domain and its target, and (2) the degree of complementarity between the secondary domain and its target, may differ. In an embodiment, (1) may be greater than (2). In an embodiment, (1) may be less than (2). In an embodiment, (1) and (2) are the same, e.g., each may be completely complementary with its target.


In an embodiment, (1) the number of modifications (e.g., modifications from Section VIII) of the nucleotides of the core domain and (2) the number of modification (e.g., modifications from Section VIII) of the nucleotides of the secondary domain, may differ. In an embodiment, (1) may be less than (2). In an embodiment, (1) may be greater than (2). In an embodiment, (1) and (2) may be the same, e.g., each may be free of modifications.


The First and Second Complementarity Domains


The first complementarity domain is complementary with the second complementarity domain.


Typically the first domain does not have exact complementarity with the second complementarity domain target. In some embodiments, the first complementarity domain can have 1, 2, 3, 4 or 5 nucleotides that are not complementary with the corresponding nucleotide of the second complementarity domain. In an embodiment, 1, 2, 3, 4, 5 or 6, e.g., 3 nucleotides, will not pair in the duplex, and, e.g., form a non-duplexed or looped-out region. In an embodiment, an unpaired, or loop-out, region, e.g., a loop-out of 3 nucleotides, is present on the second complementarity domain. In an embodiment, the unpaired region begins 1, 2, 3, 4, 5, or 6, e.g., 4, nucleotides from the 5′ end of the second complementarity domain.


In an embodiment, the degree of complementarity, together with other properties of the gRNA, is sufficient to allow targeting of a Cas9 molecule to the target nucleic acid.


In an embodiment, the first and second complementarity domains are:


independently, 6+/−2, 7+/−2, 8+/−2, 9+/−2, 10+/−2, 11+/−2, 12+/−2, 13+/−2, 14+/−2, 15+/−2, 16+/−2, 17+/−2, 18+/−2, 19+/−2, or 20+/−2, 21+/−2, 22+/−2, 23+/−2, or 24+/−2 nucleotides in length;


independently, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or 26, nucleotides in length; or


independently, 5 to 24, 5 to 23, 5 to 22, 5 to 21, 5 to 20, 7 to 18, 9 to 16, or 10 to 14 nucleotides in length.


In an embodiment, the second complementarity domain is longer than the first complementarity domain, e.g., 2, 3, 4, 5, or 6, e.g., 6, nucleotides longer.


In an embodiment, the first and second complementary domains, independently, do not comprise modifications, e.g., modifications of the type provided in Section VIII.


In an embodiment, the first and second complementary domains, independently, comprise one or more modifications, e.g., modifications that the render the domain less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment, a nucleotide of the domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII.


In an embodiment, the first and second complementary domains, independently, include 1, 2, 3, 4, 5, 6, 7 or 8 or more modifications. In an embodiment, the first and second complementary domains, independently, include 1, 2, 3, or 4 modifications within 5 nucleotides of its 5′ end. In an embodiment, the first and second complementary domains, independently, include as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 3′ end.


In an embodiment, the first and second complementary domains, independently, include modifications at two consecutive nucleotides, e.g., two consecutive nucleotides that are within 5 nucleotides of the 5′ end of the domain, within 5 nucleotides of the 3′ end of the domain, or more than 5 nucleotides away from one or both ends of the domain. In an embodiment, the first and second complementary domains, independently, include no two consecutive nucleotides that are modified, within 5 nucleotides of the 5′ end of the domain, within 5 nucleotides of the 3′ end of the domain, or within a region that is more than 5 nucleotides away from one or both ends of the domain. In an embodiment, the first and second complementary domains, independently, include no nucleotide that is modified within 5 nucleotides of the 5′ end of the domain, within 5 nucleotides of the 3′ end of the domain, or within a region that is more than 5 nucleotides away from one or both ends of the domain.


Modifications in a complementarity domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section IV. gRNAs having a candidate complementarity domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described in Section IV. The candidate complementarity domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, the first complementarity domain has at least 60, 70, 80, 85%, 90% or 95% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference first complementarity domain, e.g., a naturally occurring, e.g., an S. pyogenes, S. aureus or S. thermophilus, first complementarity domain, or a first complementarity domain described herein, e.g., from FIGS. 1A-1G.


In an embodiment, the second complementarity domain has at least 60, 70, 80, 85%, 90%, or 95% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference second complementarity domain, e.g., a naturally occurring, e.g., an S. pyogenes, S. aureus or S. thermophilus, second complementarity domain, or a second complementarity domain described herein, e.g., from FIGS. 1A-1G.


The duplexed region formed by first and second complementarity domains is typically 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or 22 base pairs in length (excluding any looped out or unpaired nucleotides).


In some embodiments, the first and second complementarity domains, when duplexed, comprise 11 paired nucleotides, for example, in the gRNA sequence (one paired strand underlined, one bolded):









(SEQ ID NO: 5)







NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAGAAAUAGCAAGUUAAAAU





AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC.







In some embodiments, the first and second complementarity domains, when duplexed, comprise 15 paired nucleotides, for example in the gRNA sequence (one paired strand underlined, one bolded):









(SEQ ID NO: 27)







NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAUGCUGAAAAGCAUAGCAA





GUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCG





GUGC.







In some embodiments the first and second complementarity domains, when duplexed, comprise 16 paired nucleotides, for example in the gRNA sequence (one paired strand underlined, one bolded):









(SEQ ID NO: 28)







NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAUGCUGGAAACAGCAUAGC





AAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAG





UCGGUGC.







In some embodiments the first and second complementarity domains, when duplexed, comprise 21 paired nucleotides, for example in the gRNA sequence (one paired strand underlined, one bolded):









(SEQ ID NO: 29)







NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAUGCUGUUUUGGAAACAAA






ACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU






GGCACCGAGUCGGUGC.







In some embodiments, nucleotides are exchanged to remove poly-U tracts, for example in the gRNA sequences (exchanged nucleotides underlined):









(SEQ ID NO: 30)







NNNNNNNNNNNNNNNNNNNNGUAUUAGAGCUAGAAAUAGCAAGUUAAUAU





AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC;










(SEQ ID NO: 31)







NNNNNNNNNNNNNNNNNNNNGUUUAAGAGCUAGAAAUAGCAAGUUUAAAU





AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC;


or










(SEQ ID NO: 32)







NNNNNNNNNNNNNNNNNNNNGUAUUAGAGCUAUGCUGUAUUGGAAACAAU





ACAGCAUAGCAAGUUAAUAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU





GGCACCGAGUCGGUGC.






The 5′ Extension Domain

In an embodiment, a modular gRNA can comprise additional sequence, 5′ to the second complementarity domain. In an embodiment, the 5′ extension domain is 2 to 10, 2 to 9, 2 to 8, 2 to 7, 2 to 6, 2 to 5, or 2 to 4 nucleotides in length. In an embodiment, the 5′ extension domain is 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more nucleotides in length.


In an embodiment, the 5′ extension domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the 5′ extension domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the 5′ extension domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment, a nucleotide of the 5′ extension domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII.


In some embodiments, the 5′ extension domain can comprise as many as 1, 2, 3, 4, 5, 6, 7 or 8 modifications. In an embodiment, the 5′ extension domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 5′ end, e.g., in a modular gRNA molecule. In an embodiment, the 5′ extension domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 3′ end, e.g., in a modular gRNA molecule.


In some embodiments, the 5′ extension domain comprises modifications at two consecutive nucleotides, e.g., two consecutive nucleotides that are within 5 nucleotides of the 5′ end of the 5′ extension domain, within 5 nucleotides of the 3′ end of the 5′ extension domain, or more than 5 nucleotides away from one or both ends of the 5′ extension domain. In an embodiment, no two consecutive nucleotides are modified within 5 nucleotides of the 5′ end of the 5′ extension domain, within 5 nucleotides of the 3′ end of the 5′ extension domain, or within a region that is more than 5 nucleotides away from one or both ends of the 5′ extension domain. In an embodiment, no nucleotide is modified within 5 nucleotides of the 5′ end of the 5′ extension domain, within 5 nucleotides of the 3′ end of the 5′ extension domain, or within a region that is more than 5 nucleotides away from one or both ends of the 5′ extension domain.


Modifications in the 5′ extension domain can be selected to not interfere with gRNA molecule efficacy, which can be evaluated by testing a candidate modification in the system described in Section IV. gRNAs having a candidate 5′ extension domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described at Section IV. The candidate 5′ extension domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, the 5′ extension domain has at least 60, 70, 80, 85, 90 or 95% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference 5′ extension domain, e.g., a naturally occurring, e.g., an S. pyogenes, S. aureus or S. thermophilus, 5′ extension domain, or a 5′ extension domain described herein, e.g., from FIGS. 1A-1G.


The Linking Domain

In a unimolecular gRNA molecule the linking domain is disposed between the first and second complementarity domains. In a modular gRNA molecule, the two molecules are associated with one another by the complementarity domains.


In an embodiment, the linking domain is 10+/−5, 20+/−5, 30+/−5, 40+/−5, 50+/−5, 60+/−5, 70+/−5, 80+/−5, 90+/−5, or 100+/−5 nucleotides, in length.


In an embodiment, the linking domain is 20+/−10, 30+/−10, 40+/−10, 50+/−10, 60+/−10, 70+/−10, 80+/−10, 90+/−10, or 100+/−10 nucleotides, in length.


In an embodiment, the linking domain is 10 to 100, 10 to 90, 10 to 80, 10 to 70, 10 to 60, 10 to 50, 10 to 40, 10 to 30, 10 to 20 or 10 to 15 nucleotides in length. In other embodiments, the linking domain is 20 to 100, 20 to 90, 20 to 80, 20 to 70, 20 to 60, 20 to 50, 20 to 40, 20 to 30, or 20 to 25 nucleotides in length.


In an embodiment, the linking domain is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 17, 18, 19, or 20 nucleotides in length.


In and embodiment, the linking domain is a covalent bond.


In an embodiment, the linking domain comprises a duplexed region, typically adjacent to or within 1, 2, or 3 nucleotides of the 3′ end of the first complementarity domain and/or the 5-end of the second complementarity domain. In an embodiment, the duplexed region can be 20+/−10 base pairs in length. In an embodiment, the duplexed region can be 10+/−5, 15+/−5, 20+/−5, or 30+/−5 base pairs in length. In an embodiment, the duplexed region can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 base pairs in length.


Typically the sequences forming the duplexed region have exact complementarity with one another, though in some embodiments as many as 1, 2, 3, 4, 5, 6, 7 or 8 nucleotides are not complementary with the corresponding nucleotides.


In an embodiment, the linking domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the linking domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the linking domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment a nucleotide of the linking domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII.


In some embodiments, the linking domain can comprise as many as 1, 2, 3, 4, 5, 6, 7 or 8 modifications.


Modifications in a linking domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section IV. gRNAs having a candidate linking domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated a system described in Section IV. A candidate linking domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, the linking domain has at least 60, 70, 80, 85, 90 or 95% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference linking domain, e.g., a linking domain described herein, e.g., from FIGS. 1A-1G.


The Proximal Domain


In an embodiment, the proximal domain is 6+/−2, 7+/−2, 8+/−2, 9+/−2, 10+/−2, 11+/−2, 12+/−2, 13+/−2, 14+/−2, 14+/−2, 16+/−2, 17+/−2, 18+/−2, 19+/−2, or 20+/−2 nucleotides in length.


In an embodiment, the proximal domain is 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, the proximal domain is 5 to 20, 7, to 18, 9 to 16, or 10 to 14 nucleotides in length.


In an embodiment, the proximal domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the proximal domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the proximal domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment a nucleotide of the proximal domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII.


In some embodiments, the proximal domain can comprise as many as 1, 2, 3, 4, 5, 6, 7 or 8 modifications. In an embodiment, the proximal domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 5′ end, e.g., in a modular gRNA molecule. In an embodiment, the target domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 3′ end, e.g., in a modular gRNA molecule.


In some embodiments, the proximal domain comprises modifications at two consecutive nucleotides, e.g., two consecutive nucleotides that are within 5 nucleotides of the 5′ end of the proximal domain, within 5 nucleotides of the 3′ end of the proximal domain, or more than 5 nucleotides away from one or both ends of the proximal domain. In an embodiment, no two consecutive nucleotides are modified within 5 nucleotides of the 5′ end of the proximal domain, within 5 nucleotides of the 3′ end of the proximal domain, or within a region that is more than 5 nucleotides away from one or both ends of the proximal domain. In an embodiment, no nucleotide is modified within 5 nucleotides of the 5′ end of the proximal domain, within 5 nucleotides of the 3′ end of the proximal domain, or within a region that is more than 5 nucleotides away from one or both ends of the proximal domain.


Modifications in the proximal domain can be selected so as to not interfere with gRNA molecule efficacy, which can be evaluated by testing a candidate modification in the system described in Section IV. gRNAs having a candidate proximal domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described at Section IV. The candidate proximal domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, the proximal domain has at least 60, 70, 80, 85 90 or 95% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference proximal domain, e.g., a naturally occurring, e.g., an S. pyogenes, S. aureus or S. thermophilus, proximal domain, or a proximal domain described herein, e.g., from FIGS. 1A-1G.


The Tail Domain


In an embodiment, the tail domain is 10+/−5, 20+/−5, 30+/−5, 40+/−5, 50+/−5, 60+/−5, 70+/−5, 80+/−5, 90+/−5, or 100+/−5 nucleotides, in length.


In an embodiment, the tail domain is 20+/−5 nucleotides in length.


In an embodiment, the tail domain is 20+/−10, 30+/−10, 40+/−10, 50+/−10, 60+/−10, 70+/−10, 80+/−10, 90+/−10, or 100+/−10 nucleotides, in length.


In an embodiment, the tail domain is 25+/−10 nucleotides in length.


In an embodiment, the tail domain is 10 to 100, 10 to 90, 10 to 80, 10 to 70, 10 to 60, 10 to 50, 10 to 40, 10 to 30, 10 to 20 or 10 to 15 nucleotides in length.


In other embodiments, the tail domain is 20 to 100, 20 to 90, 20 to 80, 20 to 70, 20 to 60, 20 to 50, 20 to 40, 20 to 30, or 20 to 25 nucleotides in length.


In an embodiment, the tail domain is 1 to 20, 1 to 15, 1 to 10, or 1 to 5 nucleotides in length.


In an embodiment, the tail domain nucleotides do not comprise modifications, e.g., modifications of the type provided in Section VIII. However, in an embodiment, the tail domain comprises one or more modifications, e.g., modifications that it render it less susceptible to degradation or more bio-compatible, e.g., less immunogenic. By way of example, the backbone of the tail domain can be modified with a phosphorothioate, or other modification(s) from Section VIII. In an embodiment a nucleotide of the tail domain can comprise a 2′ modification, e.g., a 2-acetylation, e.g., a 2′ methylation, or other modification(s) from Section VIII.


In some embodiments, the tail domain can have as many as 1, 2, 3, 4, 5, 6, 7 or 8 modifications. In an embodiment, the target domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 5′ end. In an embodiment, the target domain comprises as many as 1, 2, 3, or 4 modifications within 5 nucleotides of its 3′ end.


In an embodiment, the tail domain comprises a tail duplex domain, which can form a tail duplexed region. In an embodiment, the tail duplexed region can be 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 base pairs in length. In an embodiment, a further single stranded domain, exists 3′ to the tail duplexed domain. In an embodiment, this domain is 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides in length. In an embodiment it is 4 to 6 nucleotides in length.


In an embodiment, the tail domain has at least 60, 70, 80, or 90% homology with, or differs by no more than 1, 2, 3, 4, 5, or 6 nucleotides from, a reference tail domain, e.g., a naturally occurring, e.g., an S. pyogenes, S. aureus or S. thermophilus, tail domain, or a tail domain described herein, e.g., from FIGS. 1A-1G.


In an embodiment, the proximal and tail domain, taken together comprise the following sequences:









(SEQ ID NO: 33)







AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCU,


or










(SEQ ID NO: 34)







AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGGUGC,


or










(SEQ ID NO: 35)







AAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCGGAU





C,


or










(SEQ ID NO: 36)







AAGGCUAGUCCGUUAUCAACUUGAAAAAGUG,


or










(SEQ ID NO: 37)







AAGGCUAGUCCGUUAUCA,


or










(SEQ ID NO: 38)







AAGGCUAGUCCG.






In an embodiment, the tail domain comprises the 3′ sequence UUUUUU, e.g., if a U6 promoter is used for transcription.


In an embodiment, the tail domain comprises the 3′ sequence UUUU, e.g., if an H1 promoter is used for transcription.


In an embodiment, tail domain comprises variable numbers of 3′ Us depending, e.g., on the termination signal of the pol-III promoter used.


In an embodiment, the tail domain comprises variable 3′ sequence derived from the DNA template if a T7 promoter is used.


In an embodiment, the tail domain comprises variable 3′ sequence derived from the DNA template, e.g., if in vitro transcription is used to generate the RNA molecule.


In an embodiment, the tail domain comprises variable 3′ sequence derived from the DNA template, e.g., if a pol-II promoter is used to drive transcription.


Modifications in the tail domain can be selected to not interfere with targeting efficacy, which can be evaluated by testing a candidate modification in the system described in Section IV. gRNAs having a candidate tail domain having a selected length, sequence, degree of complementarity, or degree of modification, can be evaluated in the system described in Section IV. The candidate tail domain can be placed, either alone, or with one or more other candidate changes in a gRNA molecule/Cas9 molecule system known to be functional with a selected target and evaluated.


In an embodiment, the tail domain comprises modifications at two consecutive nucleotides, e.g., two consecutive nucleotides that are within 5 nucleotides of the 5′ end of the tail domain, within 5 nucleotides of the 3′ end of the tail domain, or more than 5 nucleotides away from one or both ends of the tail domain. In an embodiment, no two consecutive nucleotides are modified within 5 nucleotides of the 5′ end of the tail domain, within 5 nucleotides of the 3′ end of the tail domain, or within a region that is more than 5 nucleotides away from one or both ends of the tail domain. In an embodiment, no nucleotide is modified within 5 nucleotides of the 5′ end of the tail domain, within 5 nucleotides of the 3′ end of the tail domain, or within a region that is more than 5 nucleotides away from one or both ends of the tail domain.


In an embodiment, a gRNA has the following structure:


5′ [targeting domain]-[first complementarity domain]-[linking domain]-[second complementarity domain]-[proximal domain]-[tail domain]-3′


wherein, the targeting domain comprises a core domain and optionally a secondary domain, and is 10 to 50 nucleotides in length;


the first complementarity domain is 5 to 25 nucleotides in length and, in an embodiment, has at least 50, 60, 70, 80, 85, 90 or 95% homology with a reference first complementarity domain disclosed herein;


the linking domain is 1 to 5 nucleotides in length;


the second complementarity domain is 5 to 27 nucleotides in length and, in an embodiment has at least 50, 60, 70, 80, 85, 90 or 95% homology with a reference second complementarity domain disclosed herein;


the proximal domain is 5 to 20 nucleotides in length and, in an embodiment, has at least 50, 60, 70, 80, 85, 90 or 95% homology with a reference proximal domain disclosed herein; and


the tail domain is absent or a nucleotide sequence is 1 to 50 nucleotides in length and, in an embodiment, has at least 50, 60, 70, 80, 85, 90 or 95% homology with a reference tail domain disclosed herein.


Exemplary Chimeric gRNAs


In an embodiment, a unimolecular, or chimeric, gRNA comprises, preferably from 5′ to 3′:


a targeting domain (which is complementary to a target nucleic acid);


a first complementarity domain, e.g., comprising 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or 26 nucleotides;


a linking domain;


a second complementarity domain (which is complementary to the first complementarity domain);


a proximal domain; and


a tail domain, wherein,


(a) the proximal and tail domain, when taken together, comprise


at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides;


(b) there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain; or


(c) there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the sequence from (a), (b), or (c), has at least 60, 75, 80, 85, 90, 95, or 99% homology with the corresponding sequence of a naturally occurring gRNA, or with a gRNA described herein.


In an embodiment, the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides (e.g., 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the unimolecular, or chimeric, gRNA molecule (comprising a targeting domain, a first complementary domain, a linking domain, a second complementary domain, a proximal domain and, optionally, a tail domain) comprises the following sequence in which the targeting domain is depicted as 20 Ns but could be any sequence and range in length from 16 to 26 nucleotides and in which the gRNA sequence is followed by 6 Us, which serve as a termination signal for the U6 promoter, but which could be either absent or fewer in number: NNNNNNNNNNNNNNNNNNNNGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGG CUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUUUU (SEQ ID NO: 45). In an embodiment, the unimolecular, or chimeric, gRNA molecule is a S. pyogenes gRNA molecule.


In some embodiments, the unimolecular, or chimeric, gRNA molecule (comprising a targeting domain, a first complementary domain, a linking domain, a second complementary domain, a proximal domain and, optionally, a tail domain) comprises the following sequence in which the targeting domain is depicted as 20 Ns but could be any sequence and range in length from 16 to 26 nucleotides and in which the gRNA sequence is followed by 6 Us, which serve as a termination signal for the U6 promoter, but which could be either absent or fewer in number: NNNNNNNNNNNNNNNNNNNNGUUUUAGUACUCUGGAAACAGAAUCUACUAAAAC AAGGCAAAAUGCCGUGUUUAUCUCGUCAACUUGUUGGCGAGAUUUUUU (SEQ ID NO: 40). In an embodiment, the unimolecular, or chimeric, gRNA molecule is a S. aureus gRNA molecule.


The sequences and structures of exemplary chimeric gRNAs are also shown in FIGS. 1H-1I.


Exemplary Modular gRNAs


In an embodiment, a modular gRNA comprises:

    • a first strand comprising, preferably from 5′ to 3′;
      • a targeting domain, e.g., comprising 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or 26 nucleotides;
      • a first complementarity domain; and
      • a second strand, comprising, preferably from 5′ to 3′:
      • optionally a 5′ extension domain;
      • a second complementarity domain;
      • a proximal domain; and
      • a tail domain,
    • wherein:


(a) the proximal and tail domain, when taken together, comprise


at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides;


(b) there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain; or


(c) there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the sequence from (a), (b), or (c), has at least 60, 75, 80, 85, 90, 95, or 99% homology with the corresponding sequence of a naturally occurring gRNA, or with a gRNA described herein.


In an embodiment, the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides (e.g., 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or 26 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 16 nucleotides (e.g., 16 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 16 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 17 nucleotides (e.g., 17 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 17 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 18 nucleotides (e.g., 18 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 18 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 19 nucleotides (e.g., 19 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 19 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 20 nucleotides (e.g., 20 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 20 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 21 nucleotides (e.g., 21 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 21 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 22 nucleotides (e.g., 22 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 22 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 23 nucleotides (e.g., 23 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 23 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 24 nucleotides (e.g., 24 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 24 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 25 nucleotides (e.g., 25 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 25 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain.


In an embodiment, the targeting domain comprises, has, or consists of, 26 nucleotides (e.g., 26 consecutive nucleotides) having complementarity with the target domain, e.g., the targeting domain is 26 nucleotides in length; and there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain.


II. Methods for Designing gRNAs


Methods for designing gRNAs are described herein, including methods for selecting, designing and validating target domains. Exemplary targeting domains are also provided herein. Targeting Domains discussed herein can be incorporated into the gRNAs described herein.


Methods for selection and validation of target sequences as well as off-target analyses are described, e.g., in Mali et al., 2013 SCIENCE 339(6121): 823-826; Hsu et al. NAT BIOTECHNOL, 31(9): 827-32; Fu et al., 2014 NAT BIOTECHNOL, doi: 10.1038/nbt.2808. PubMed PMID: 24463574; Heigwer et al., 2014 NAT METHODS 11(2):122-3. doi: 10.1038/nmeth.2812. PubMed PMID: 24481216; Bae et al., 2014 BIOINFORMATICS PubMed PMID: 24463181; Xiao A et al., 2014 BIOINFORMATICS PubMed PMID: 24389662.


For example, a software tool can be used to optimize the choice of gRNA within a user's target sequence, e.g., to minimize total off-target activity across the genome. Off target activity may be other than cleavage. For each possible gRNA choice using S. pyogenes Cas9, the tool can identify all off-target sequences (preceding either NAG or NGG PAMs) across the genome that contain up to certain number (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) of mismatched base-pairs. The cleavage efficiency at each off-target sequence can be predicted, e.g., using an experimentally-derived weighting scheme. Each possible gRNA is then ranked according to its total predicted off-target cleavage; the top-ranked gRNAs represent those that are likely to have the greatest on-target and the least off-target cleavage. Other functions, e.g., automated reagent design for CRISPR construction, primer design for the on-target Surveyor assay, and primer design for high-throughput detection and quantification of off-target cleavage via next-gen sequencing, can also be included in the tool. Candidate gRNA molecules can be evaluated by art-known methods or as described in Section IV herein.


Guide RNAs (gRNAs) for use with S. pyogenes, S. aureus and N. meningitidis Cas9s were identified using a DNA sequence searching algorithm. Guide RNA design was carried out using a custom guide RNA design software based on the public tool cas-offinder (reference: Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases, Bioinformatics. 2014 Feb. 17. Bae S, Park J, Kim J S. PMID:24463181). Said custom guide RNA design software scores guides after calculating their genomewide off-target propensity. Typically matches ranging from perfect matches to 7 mismatches are considered for guides ranging in length from 17 to 24. Once the off-target sites are computationally determined, an aggregate score is calculated for each guide and summarized in a tabular output using a web-interface. In addition to identifying potential gRNA sites adjacent to PAM sequences, the software also identifies all PAM adjacent sequences that differ by 1, 2, 3 or more nucleotides from the selected gRNA sites. Genomic DNA sequence for each gene was obtained from the UCSC Genome browser and sequences were screened for repeat elements using the publically available RepeatMasker program. RepeatMasker searches input DNA sequences for repeated elements and regions of low complexity. The output is a detailed annotation of the repeats present in a given query sequence.


Following identification, gRNAs were ranked into tiers based on their distance to the target site, their orthogonality or presence of a 5′ G (based on identification of close matches in the human genome containing a relevant PAM, e.g., in the case of S. pyogenes, a NGG PAM, in the case of S. aureus, NNGRR (e.g, a NNGRRT or NNGRRV) PAM, and in the case of N. meningitides, a NNNNGATT or NNNNGCTT PAM. Orthogonality refers to the number of sequences in the human genome that contain a minimum number of mismatches to the target sequence. A “high level of orthogonality” or “good orthogonality” may, for example, refer to 20-mer gRNAs that have no identical sequences in the human genome besides the intended target, nor any sequences that contain one or two mismatches in the target sequence. Targeting domains with good orthogonality are selected to minimize off-target DNA cleavage.


As an example, for S. pyogenes and N. meningitides targets, 17-mer, or 20-mer gRNAs were designed. As another example, for S. aureus targets, 18-mer, 19-mer, 20-mer, 21-mer, 22-mer, 23-mer and 24-mer gRNAs were designed. Targeting domains, disclosed herein, may comprise the 17-mer described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C, e.g., the targeting domains of 18 or more nucleotides may comprise the 17-mer gRNAs described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C. Targeting domains, disclosed herein, may comprises the 18-mer described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C, e.g., the targeting domains of 19 or more nucleotides may comprise the 18-mer gRNAs described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C. Targeting domains, disclosed herein, may comprises the 19-mer described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C, e.g., the targeting domains of 20 or more nucleotides may comprise the 19-mer gRNAs described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C. Targeting domains, disclosed herein, may comprises the 20-mer gRNAs described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C e.g., the targeting domains of 21 or more nucleotides may comprise the 20-mer gRNAs described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C. Targeting domains, disclosed herein, may comprises the 21-mer described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C e.g., the targeting domains of 22 or more nucleotides may comprise the 21-mer gRNAs described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C. Targeting domains, disclosed herein, may comprises the 22-mer described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C, e.g., the targeting domains of 23 or more nucleotides may comprise the 22-mer gRNAs described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C. Targeting domains, disclosed herein, may comprises the 23-mer described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C e.g., the targeting domains of 24 or more nucleotides may comprise the 23-mer gRNAs described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C. Targeting domains, disclosed herein, may comprises the 24-mer described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C, e.g., the targeting domains of 25 or more nucleotides may comprise the 24-mer gRNAs described in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E or 7A-7C. gRNAs were identified for both single-gRNA nuclease cleavage and for a dual-gRNA paired “nickase” strategy. Criteria for selecting gRNAs and the determination for which gRNAs can be used for which strategy is based on several considerations:


gRNA pairs should be oriented on the DNA such that PAMs are facing out and cutting with the D10A Cas9 nickase will result in 5′ overhangs.


An assumption that cleaving with dual nickase pairs will result in deletion of the entire intervening sequence at a reasonable frequency. However, it will also often result in indel mutations at the site of only one of the gRNAs. Candidate pair members can be tested for how efficiently they remove the entire sequence versus just causing indel mutations at the site of one gRNA.


The Targeting Domains discussed herein can be incorporated into the gRNAs described herein.


Strategies to Identify gRNAs for S. pyogenes, S. Aureus, and N. meningitides to Knock Out the CCR5 Gene


As an example, two strategies were utilized to identify gRNAs for use with S. pyogenes, S. aureus and N. meningitidis Cas9 enzymes.


In one strategy, gRNAs were designed for use with S. pyogenes Cas9 enzymes (Tables 1A-1D). While it can be desirable to have gRNAs start with a 5′ G, this requirement was relaxed for some gRNAs in tier 1 in order to identify guides in the correct orientation, within a reasonable distance to the mutation and with a high level of orthogonality. In order to find a pair for the dual-nickase strategy it was necessary to either extend the distance from the mutation or remove the requirement for the 5′G. For selection of tier 2 gRNAs, the distance restriction was relaxed in some cases such that a longer sequence was scanned, but the 5′G was required for all gRNAs. Whether or not the distance requirement was relaxed depended on how many sites were found within the original search window. Tier 3 uses the same distance restriction as tier 2, but removes the requirement for a 5′G. Note that tiers are non-inclusive (each gRNA is listed only once). Tier 4 gRNAs were selected based on location in coding sequence of gene.


As discussed above, gRNAs were identified for single-gRNA nuclease cleavage as well as for a dual-gRNA paired “nickase” strategy, as indicated.


gRNAs for use with the Neisseria meningitidis and Staphylococcus aureus Cas9s were identified manually by scanning genomic DNA sequence for the presence of PAM sequences. These gRNAs were not separated into tiers, but are provided in single lists for each species (Table 1E for S. aureus and Table 1F for N. meningitides).


As discussed above, gRNAs were identified for single-gRNA nuclease cleavage as well as for a dual-gRNA paired “nickase” strategy, as indicated.


In another strategy, gRNAs were designed for use with S. pyogenes, S. aureus and N. meningitidis Cas9 enzymes. The gRNAs were identified and ranked into 3 tiers for S. pyogenes (Tables 2A-2C). The targeting domain to be used with S. pyogenes Cas9 enzymes for tier 1 gRNA molecules were selected based on (1) distance to a target site (e.g., start codon), e.g., within 500 bp (e.g., downstream) of the target site (e.g., start codon) and (2) a high level of orthogonality. The targeting domain to be used with S. pyogenes Cas9 enzymes for tier 2 gRNA molecules were selected based on (1) distance to the target site (e.g., start codon), e.g., within 500 bp (e.g., downstream) of the target site (e.g., start codon). The targeting domain to be used with S. pyogenes Cas9 enzymes for tier 3 gRNA molecules were selected based on distance to the target site (e.g., start codon), e.g., within reminder of the coding sequence, e.g., downstream of the first 500 bp of coding sequence (e.g., anywhere from +500 (relative to the start codon) to the stop codon). The gRNAs were identified and ranked into 5 tiers for S. aureus, when the relevant PAM was NNGRRT or NNGRRV (Tables 3A-3E). The targeting domain to be used with S. aureus Cas9 enzymes for tier 1 gRNA molecules were selected based on (1) distance to the target site (e.g., start codon), e.g., within 500 bp (e.g., downstream) of the target site (e.g., start codon), (2) a high level of orthogonality, and (3) PAM is NNGRRT. The targeting domain to be used with S. aureus Cas9 enzymes for tier 2 gRNA molecules were selected based on (1) distance to the target site (e.g., start codon), e.g., within 500 bp (e.g., downstream) of the target site (e.g., start codon), and (2) PAM is NNGRRT. The targeting domain to be used with S. aureus Cas9 enzymes for tier 3 gRNA molecules were selected based on (1) distance to a the target site (e.g., start codon), e.g., within 500 bp (e.g., downstream) of the target site (e.g., start codon), and (2) PAM is NNGRRV. The targeting domain to be used with S. aureus Cas9 enzymes for tier 4 gRNA molecules were selected based on (1) distance to the target site (e.g., start codon), e.g., within reminder of the coding sequence, e.g., downstream of the first 500 bp of coding sequence (e.g., anywhere from +500 (relative to the start codon) to the stop codon), and (2) PAM is NNGRRT. The targeting domain to be used with S. aureus Cas9 enzymes for tier 5 gRNA molecules were selected based on (1) distance to the target site (e.g., start codon), e.g., within reminder of the coding sequence, e.g., downstream of the first 500 bp of coding sequence (e.g., anywhere from +500 (relative to the start codon) to the stop codon), and (2) PAM is NNGRRV. The gRNAs were identified and ranked into 3 tiers for N. meningitidis (Tables 4A-4C). The targeting domain to be used with N. meningitidis Cas9 enzymes for tier 1 gRNA molecules were selected based on (1) distance to the target site, e.g., within 500 bp (e.g., downstream) of the target site (e.g., start codon) and (2) a high level of orthogonality. The targeting domain to be used with N. meningitidis Cas9 enzymes for tier 2 gRNA molecules were selected based on (1) distance to the target site (e.g., start codon), e.g., within 500 bp (e.g., downstream) of the target site (e.g., start codon). The targeting domain to be used with N. meningitidis Cas9 enzymes for tier 3 gRNA molecules were selected based on distance to the target site (e.g., start codon), e.g., within reminder of the coding sequence, e.g., downstream of the first 500 bp of coding sequence (e.g., anywhere from +500 (relative to the start codon) to the stop codon). Note that tiers are non-inclusive (each gRNA is listed only once for the strategy). In certain instances, no gRNA was identified based on the criteria of the particular tier.


In an embodiment, when a single gRNA molecule is used to target a Cas9 nickase to create a single strand break in close proximity to the CCR5 target position, e.g., the gRNA is used to target either upstream of (e.g., within 500 bp, e.g., within 200 bp upstream of the CCR5 target position), or downstream of (e.g., within 500 bp, e.g., within 200 bp downstream of the CCR5 target position) in the CCR5 gene.


In an embodiment, when a single gRNA molecule is used to target a Cas9 nuclease to create a double strand break to in close proximity to the CCR5 target position, e.g., the gRNA is used to target either upstream of (e.g., within 500 bp, e.g., within 200 bp upstream of the CCR5 target position), or downstream of (e.g., within 500 bp, e.g., within 200 bp downstream of the CCR5 target position) in the CCR5 gene.


In an embodiment, dual targeting is used to create two double strand breaks to in close proximity to the mutation, e.g., the gRNA is used to target either upstream of (e.g., within 500 bp, e.g., within 200 bp upstream of the CCR5 target position), or downstream of (e.g., within 500 bp, e.g., within 200 bp downstream of the CCR5 target position) in the CCR5 gene. In an embodiment, the first and second gRNAs are used to target two Cas9 nucleases to flank, e.g., the first of gRNA is used to target upstream of (e.g., within 500 bp, e.g., within 200 bp upstream of the CCR5 target position), and the second gRNA is used to target downstream of (e.g., within 500 bp, e.g., within 200 bp downstream of the CCR5 target position) in the CCR5 gene.


In an embodiment, dual targeting is used to create a double strand break and a pair of single strand breaks to delete a genomic sequence including the CCR5 target position. In an embodiment, the first, second and third gRNAs are used to target one Cas9 nuclease and two Cas9 nickases to flank, e.g., the first gRNA that will be used with the Cas9 nuclease is used to target upstream of (e.g., within 500 bp, e.g., within 200 bp upstream of the CCR5 target position) or downstream of (e.g., within 500 bp, e.g., within 200 bp downstream of the CCR5 target position), and the second and third gRNAs that will be used with the Cas9 nickase pair are used to target the opposite side of the mutation (e.g., within 200 bp upstream or downstream of the CCR5 target position) in the CCR5 gene.


In an embodiment, when four gRNAs (e.g., two pairs) are used to target four Cas9 nickases to create four single strand breaks to delete genomic sequence including the mutation, the first pair and second pair of gRNAs are used to target four Cas9 nickases to flank, e.g., the first pair of gRNAs are used to target upstream of (e.g., within 500 bp, e.g., within 200 bp upstream of the CCR5 target position), and the second pair of gRNAs are used to target downstream of (e.g., within 500 bp, e.g., within 200 bp downstream of the CCR5 target position) in the CCR5 gene.


Strategies to Identify gRNAs for S. pyogenes, S. Aureus, and N. meningitides to Knock Down the CCR5 Gene


In yet another strategy, gRNAs were designed for use with S. pyogenes, S. aureus and N. meningitidis Cas9 enzymes. The gRNAs were identified and ranked into 3 tiers for S. pyogenes (Tables 5A-5C). The targeting domain to be used with S. pyogenes Cas9 enzymes for tier 1 gRNA molecules were selected based on (1) distance to a target site (e.g., the transcription start site), e.g., within 500 bp (e.g., upstream or downstream) of the target site (e.g., the transcription start site) and (2) a high level of orthogonality. The targeting domain to be used with S. pyogenes Cas9 enzymes for tier 2 gRNA molecules were selected based on (1) distance to the target site (e.g., the transcription start site), e.g., within 500 bp (e.g., upstream or downstream) of the target site (e.g., the transcription start site). The targeting domain to be used with S. pyogenes Cas9 enzymes for tier 3 gRNA molecules were selected based on distance to the target site (e.g., the transcription start site), e.g., within the additional 500 bp upstream and downstream of the transcription start site (i.e., extending to 1 kb upstream and downstream of the transcription start site. The gRNAs were identified and ranked into 5 tiers for S. aureus, when the relevant PAM was NNGRRT or NNGRRV (Tables 6A-6E). The targeting domain to be used with S. aureus Cas9 enzymes for tier 1 gRNA molecules were selected based on (1) distance to the target site (e.g., the transcription start site), e.g., within 500 bp (e.g., upstream or downstream) of the target site (e.g., the transcription start site), (2) a high level of orthogonality, and (3) PAM is NNGRRT. The targeting domain to be used with S. aureus Cas9 enzymes for tier 2 gRNA molecules were selected based on (1) distance to the target site (e.g., the transcription start site), e.g., within 500 bp (e.g., upstream or downstream) of the target site (e.g., the transcription start site), and (2) PAM is NNGRRT. The targeting domain to be used with S. aureus Cas9 enzymes for tier 3 gRNA molecules were selected based on (1) distance to a target site (e.g., the transcription start site), e.g., within 500 bp (e.g., upstream or downstream) of the target site (e.g., the transcription start site), and (2) PAM is NNGRRV. The targeting domain to be used with S. aureus Cas9 enzymes for tier 4 gRNA molecules were selected based on (1) distance to the target site (e.g., the transcription start site), e.g., within the additional 500 bp upstream and downstream of the transcription start site (i.e., extending to 1 kb upstream and downstream of the transcription start site, and (2) PAM is NNGRRT. The targeting domain to be used with S. aureus Cas9 enzymes for tier 5 gRNA molecules were selected based on (1) distance to the target site (e.g., the transcription start site), e.g., within the additional 500 bp upstream and downstream of the transcription start site (i.e., extending to 1 kb upstream and downstream of the transcription start site, and (2) PAM is NNGRRV. The gRNAs were identified and ranked into 3 tiers for N. meningitidis (Tables 7A-7C). The targeting domain to be used with N. meningitidis Cas9 enzymes for tier 1 gRNA molecules were selected based on (1) distance to a target site (e.g., the transcription start site), e.g., within 500 bp (e.g., upstream or downstream) of the target site (e.g., the transcription start site) and (2) a high level of orthogonality. The targeting domain to be used with N. meningitidis Cas9 enzymes for tier 2 gRNA molecules were selected based on (1) distance to the target site (e.g., the transcription start site), e.g., within 500 bp (e.g., upstream or downstream) of the target site (e.g., the transcription start site). The targeting domain to be used with N. meningitidis Cas9 enzymes for tier 3 gRNA molecules were selected based on distance to the target site (e.g., the transcription start site), e.g., within the additional 500 bp upstream and downstream of the transcription start site (i.e., extending to 1 kb upstream and downstream of the transcription start site. Note that tiers are non-inclusive (each gRNA is listed only once for the strategy). In certain instances, no gRNA was identified based on the criteria of the particular tier.


Any of the targeting domains in the tables described herein can be used with a Cas9 nickase molecule to generate a single strand break.


Any of the targeting domains in the tables described herein can be used with a Cas9 nuclease molecule to generate a double strand break.


In an embodiment, dual targeting (e.g., dual nicking) is used to create two nicks on opposite DNA strands by using S. pyogenes, S. aureus and N. meningitidis Cas9 nickases with two targeting domains that are complementary to opposite DNA strands, e.g., a gRNA comprising any minus strand targeting domain may be paired any gRNA comprising a plus strand targeting domain provided that the two gRNAs are oriented on the DNA such that PAMs face outward and the distance between the 5′ ends of the gRNAs is 0-50 bp.


When two gRNAs designed for use to target two Cas9 molecules, one Cas9 can be one species, the second Cas9 can be from a different species. Both Cas9 species are used to generate a single or double-strand break, as desired.


Exemplary Targeting Domains

Table 1A provides exemplary targeting domains for knocking out the CCR5 gene selected according to first tier parameters, and are selected based on the presence of a 5′ G (except for CCR5-51, -52, -60, -63, -64 and -66), close proximity to the start codon and orthogonality in the human genome. In an embodiment, the targeting domain is the exact complement of the target domain. Any of the targeting domains in the table can be used with a Cas9 molecule (e.g., a S. pyogenes Cas9 molecule) that gives double stranded cleavage. Any of the targeting domains in the table can be used with Cas9 single-stranded break nucleases (nickases) (e.g., S. pyogenes Cas9 single-stranded break nucleases). In an embodiment, dual targeting is used to create two nicks. When selecting gRNAs for use in a nickase pair, one gRNA targets a domain in the complementary strand and the second gRNA targets a domain in the non-complementary strand. In an embodiment, two 20-mer guide RNAs are used to target two S. pyogenes Cas9 nucleases or two S. pyogenes Cas9 nickases, e.g., CCR5-63 and CCR5-49, or CCR5-63 and CCR5-41 are used. In an embodiment, two 17-mer guide RNAs are used to target two Cas9 nucleases or two Cas9 nickases, e.g., CCR5-4 and CCR5-3 are used.









TABLE 1A







1st Tier















SEQ


gRNA
DNA

Target Site
ID


Name
Strand
Targeting Domain
Length
NO














CCR5-66

CCUGCCUCCGCUCUACUCAC
20
387





CCR5-43

GCUGCCGCCCAGUGGGACUU
20
388





CCR5-51

ACAAUGUGUCAACUCUUGAC
20
389





CCR5-58

GGUGACAAGUGUGAUCACUU
20
390





CCR5-60
+
CCAGGUACCUAUCGAUUGUC
20
391





CCR5-63
+
CUUCACAUUGAUUUUUUGGC
20
392





CCR5-47
+
GCAGCAUAGUGAGCCCAGAA
20
393





CCR5-45
+
GGUACCUAUCGAUUGUCAGG
20
394





CCR5-49
+
GUGAGUAGAGCGGAGGCAGG
20
395





CCR5-1

GCCUCCGCUCUACUCAC
17
396





CCR5-3

GCCGCCCAGUGGGACUU
17
397





CCR5-52

AUGUGUCAACUCUUGAC
17
398





CCR5-10

GACAAUCGAUAGGUACC
17
399





CCR5-64
+
CACAUUGAUUUUUUGGC
17
400





CCR5-4
+
GCAUAGUGAGCCCAGAA
17
401





CCR5-14
+
GGUACCUAUCGAUUGUC
17
402









Table 1B provides exemplary targeting domains for knocking out the CCR5 gene selected according to the second tier parameters and are selected based on the presence of a 5′ G and close proximity to the start codon. In an embodiment, the targeting domain is the exact complement of the target domain. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that gives double stranded cleavage. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 single-stranded break nucleases (nickases). In an embodiment, dual targeting is used to create two nicks.









TABLE 1B







2nd Tier














Target



gRNA
DNA

Site
SEQ


Name
Strand
Targeting Domain
Length
ID NO














CCR5-5
+
GAAAAACAGGUCAGAGA
17
403





CCR5-13

GACAAGUGUGAUCACUU
17
404





CCR5-85

GACAAGUGUGAUCACUUGGG
20
405





CCR5-12

GACGGUCACCUUUGGGG
17
406





CCR5-8
+
GAGCGGAGGCAGGAGGC
17
407





CCR5-11

GCCAGGACGGUCACCUU
17
408





CCR5-6
+
GCCUUUUGCAGUUUAUC
17
409





CCR5-59

GCUGUGUUUGCGUCUCUCCC
20
410





CCR5-9
+
GCUUCACAUUGAUUUUU
17
411





CCR5-48
+
GGACAGUAAGAAGGAAAAAC
20
412





CCR5-46
+
GGCAGCAUAGUGAGCCCAGA
20
413





CCR5-41

GGUGUUCAUCUUUGGUUUUG
20
414





CCR5-50
+
GUAGAGCGGAGGCAGGAGGC
20
415





CCR5-7
+
GUGAGUAGAGCGGAGGC
17
416





CCR5-42

GUGUUCAUCUUUGGUUUUGU
20
417





CCR5-129

GUGUUUGCGUCUCUCCC
17
418





CCR5-2

GUUCAUCUUUGGUUUUG
17
419





CCR5-79

GUUUGCUUUAAAAGCCAGGA
20
420









Table 1C provides exemplary targeting domains for knocking out the CCR5 gene selected according to the third tier parameters and are selected based on close proximity to the start codon. In an embodiment, the targeting domain is the exact complement of the target domain. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that gives double stranded cleavage. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 single-stranded break nucleases (nickases). In an embodiment, dual targeting is used to create two nicks.









TABLE 1C







3rd Tier














Target



gRNA
DNA

Site
SEQ


Name
Strand
Targeting Domain
Length
ID NO














CCR5-87
+
AAAACAGGUCAGAGAUGGCC
20
421





CCR5-80

AAAGCCAGGACGGUCACCUU
20
422





CCR5-130
+
AACACCAGUGAGUAGAG
17
423





CCR5-88
+
AACACCAGUGAGUAGAGCGG
20
424





CCR5-81

AAGCCAGGACGGUCACCUUU
20
425





CCR5-89
+
AAGGAAAAACAGGUCAGAGA
20
426





CCR5-127

AAGUGUGAUCACUUGGG
17
427





CCR5-86

AAGUGUGAUCACUUGGGUGG
20
428





CCR5-90
+
ACACAGCAUGGACGACAGCC
20
429





CCR5-119

ACAGGGCUCUAUUUUAU
17
430





CCR5-131
+
ACAGGUCAGAGAUGGCC
17
431





CCR5-132
+
ACAUUGAUUUUUUGGCA
17
432





CCR5-133
+
ACCAGUGAGUAGAGCGG
17
433





CCR5-134
+
ACCUAUCGAUUGUCAGG
17
434





CCR5-115

ACUAUGCUGCCGCCCAG
17
435





CCR5-135
+
ACUUGUCACCACCCCAA
17
436





CCR5-136
+
AGAAGGGGACAGUAAGA
17
437





CCR5-137
+
AGAGCGGAGGCAGGAGG
17
438





CCR5-138
+
AGAUGGCCAGGUUGAGC
17
439





CCR5-139
+
AGCAUAGUGAGCCCAGA
17
440





CCR5-82

AGCCAGGACGGUCACCUUUG
20
441





CCR5-65
+
AGUAGAGCGGAGGCAGG
17
442





CCR5-91
+
AGUAGAGCGGAGGCAGGAGG
20
443





CCR5-92
+
AUGAACACCAGUGAGUAGAG
20
444





CCR5-141
+
AUUUCCAAAGUCCCACU
17
445





CCR5-93
+
AUUUCCAAAGUCCCACUGGG
20
446





CCR5-76

CAAUGUGUCAACUCUUGACA
20
447





CCR5-94
+
CACACUUGUCACCACCCCAA
20
448





CCR5-95
+
CACCCCAAAGGUGACCGUCC
20
449





CCR5-96
+
CAGAGAUGGCCAGGUUGAGC
20
450





CCR5-97
+
CAGCAUAGUGAGCCCAGAAG
20
451





CCR5-143
+
CAGCAUGGACGACAGCC
17
452





CCR5-125

CAGGACGGUCACCUUUG
17
453





CCR5-83

CAGGACGGUCACCUUUGGGG
20
454





CCR5-144
+
CAGUAAGAAGGAAAAAC
17
455





CCR5-145
+
CAUAGUGAGCCCAGAAG
17
456





CCR5-107

CAUCAAUUAUUAUACAU
17
457





CCR5-112

CAUCUACCUGCUCAACC
17
458





CCR5-124

CCAGGACGGUCACCUUU
17
459





CCR5-98
+
CCAGUGAGUAGAGCGGAGGC
20
460





CCR5-146
+
CCCAAAGGUGACCGUCC
17
461





CCR5-99
+
CCCAGAAGGGGACAGUAAGA
20
462





CCR5-57

CCUGACAAUCGAUAGGUACC
20
463





CCR5-73

CCUUCUUACUGUCCCCUUCU
20
464





CCR5-116

CUAUGCUGCCGCCCAGU
17
465





CCR5-74

CUCACUAUGCUGCCGCCCAG
20
466





CCR5-78

CUGUGUUUGCUUUAAAAGCC
20
467





CCR5-100
+
CUUUUAAAGCAAACACAGCA
20
468





CCR5-101
+
UAAUAAUUGAUGUCAUAGAU
20
469





CCR5-147
+
UAAUUGAUGUCAUAGAU
17
470





CCR5-68

UACUCACUGGUGUUCAUCUU
20
471





CCR5-148
+
UAUUUCCAAAGUCCCAC
17
472





CCR5-77

UAUUUUAUAGGCUUCUUCUC
20
473





CCR5-75

UCACUAUGCUGCCGCCCAGU
20
474





CCR5-108

UCACUGGUGUUCAUCUU
17
475





CCR5-62
+
UCAGCCUUUUGCAGUUUAUC
20
476





CCR5-55

UCAUCCUCCUGACAAUCGAU
20
477





CCR5-70

UCAUCCUGAUAAACUGCAAA
20
478





CCR5-149
+
UCCAAAGUCCCACUGGG
17
479





CCR5-121

UCCUCCUGACAAUCGAU
17
480





CCR5-111

UCCUGAUAAACUGCAAA
17
481





CCR5-72

UCCUUCUUACUGUCCCCUUC
20
482





CCR5-114

UCUUACUGUCCCCUUCU
17
483





CCR5-126

UGACAAGUGUGAUCACU
17
484





CCR5-67

UGACAUCAAUUAUUAUACAU
20
485





CCR5-71

UGACAUCUACCUGCUCAACC
20
486





CCR5-150
+
UGCAGUUUAUCAGGAUG
17
487





CCR5-123

UGCUUUAAAAGCCAGGA
17
488





CCR5-84

UGGUGACAAGUGUGAUCACU
20
489





CCR5-69

UGGUUUUGUGGGCAACAUGC
20
490





CCR5-102
+
UGUAUUUCCAAAGUCCCACU
20
491





CCR5-128

UGUGAUCACUUGGGUGG
17
492





CCR5-118

UGUGUCAACUCUUGACA
17
493





CCR5-122

UGUUUGCUUUAAAAGCC
17
494





CCR5-151
+
UUAAAGCAAACACAGCA
17
495





CCR5-103
+
UUCACAUUGAUUUUUUGGCA
20
496





CCR5-109

UUCAUCUUUGGUUUUGU
17
497





CCR5-113

UUCUUACUGUCCCCUUC
17
498





CCR5-53

UUGACAGGGCUCUAUUUUAU
20
499





CCR5-104
+
UUGUAUUUCCAAAGUCCCAC
20
500





CCR5-120

UUUAUAGGCUUCUUCUC
17
501





CCR5-105
+
UUUGCUUCACAUUGAUUUUU
20
502





CCR5-106
+
UUUUGCAGUUUAUCAGGAUG
20
503





CCR5-110

UUUUGUGGGCAACAUGC
17
504









Table 1D provides exemplary targeting domains for knocking out the CCR5 gene selected according to the fourth tier parameters and are selected on location in coding sequence of gene. In an embodiment, the targeting domain is the exact complement of the target domain. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that gives double stranded cleavage. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 single-stranded break nucleases (nickases). In an embodiment, dual targeting is used to create two nicks.









TABLE 1D







4th Tier














Target



gRNA
DNA

Site
SEQ


Name
Strand
Targeting Domain
Length
ID NO














CCR5-152

CAUACAGUCAGUAUCAAUUC
20
505





CCR5-153

GACAUUAAAGAUAGUCAUCU
20
506





CCR5-154

ACAUUAAAGAUAGUCAUCUU
20
507





CCR5-155

CAUUAAAGAUAGUCAUCUUG
20
508





CCR5-156

AAAGAUAGUCAUCUUGGGGC
20
509





CCR5-157

GGUCCUGCCGCUGCUUGUCA
20
510





CCR5-158

UGUCAUGGUCAUCUGCUACU
20
511





CCR5-159

GUCAUGGUCAUCUGCUACUC
20
512





CCR5-160

GAAUCCUAAAAACUCUGCUU
20
513





CCR5-161

GGUGUCGAAAUGAGAAGAAG
20
514





CCR5-162

GAAAUGAGAAGAAGAGGCAC
20
515





CCR5-163

AAAUGAGAAGAAGAGGCACA
20
516





CCR5-164

AGAAGAGGCACAGGGCUGUG
20
517





CCR5-165

UGAUUGUUUAUUUUCUCUUC
20
518





CCR5-166

GAUUGUUUAUUUUCUCUUCU
20
519





CCR5-167

CCUUCUCCUGAACACCUUCC
20
520





CCR5-168

AACACCUUCCAGGAAUUCUU
20
521





CCR5-169

AUAAUUGCAGUAGCUCUAAC
20
522





CCR5-170

UUGCAGUAGCUCUAACAGGU
20
523





CCR5-171

CAGGUUGGACCAAGCUAUGC
20
524





CCR5-172

AUGCAGGUGACAGAGACUCU
20
525





CCR5-173

UGCAGGUGACAGAGACUCUU
20
526





CCR5-174

CCCAUCAUCUAUGCCUUUGU
20
527





CCR5-175

CCAUCAUCUAUGCCUUUGUC
20
528





CCR5-176

CAUCAUCUAUGCCUUUGUCG
20
529





CCR5-177

CUGUUCUAUUUUCCAGCAAG
20
530





CCR5-178

UCAGUUUACACCCGAUCCAC
20
531





CCR5-179

CAGUUUACACCCGAUCCACU
20
532





CCR5-180

AGUUUACACCCGAUCCACUG
20
533





CCR5-181

CACCCGAUCCACUGGGGAGC
20
534





CCR5-182

UGGGGAGCAGGAAAUAUCUG
20
535





CCR5-183

GGGGAGCAGGAAAUAUCUGU
20
536





CCR5-184

AUAUCUGUGGGCUUGUGACA
20
537





CCR5-185

GCUUGUGACACGGACUCAAG
20
538





CCR5-186

CUUGUGACACGGACUCAAGU
20
539





CCR5-187

UGACACGGACUCAAGUGGGC
20
540





CCR5-188

CCCAGUCAGAGUUGUGCACA
20
541





CCR5-189

CUUAGUUUUCAUACACAGCC
20
542





CCR5-190

UUAGUUUUCAUACACAGCCU
20
543





CCR5-191

UUUUCAUACACAGCCUGGGC
20
544





CCR5-192

UUUCAUACACAGCCUGGGCU
20
545





CCR5-193

UUCAUACACAGCCUGGGCUG
20
546





CCR5-194

UCAUACACAGCCUGGGCUGG
20
547





CCR5-195

UACACAGCCUGGGCUGGGGG
20
548





CCR5-196

ACACAGCCUGGGCUGGGGGU
20
549





CCR5-197

CACAGCCUGGGCUGGGGGUG
20
550





CCR5-198

AGCCUGGGCUGGGGGUGGGG
20
551





CCR5-199

GCCUGGGCUGGGGGUGGGGU
20
552





CCR5-200

GGCUGGGGGUGGGGUGGGAG
20
553





CCR5-201

UGGGAGAGGUCUUUUUUAAA
20
554





CCR5-202

AAAGGAAGUUACUGUUAUAG
20
555





CCR5-203

AAGGAAGUUACUGUUAUAGA
20
556





CCR5-204

CUAAGAUUCAUCCAUUUAUU
20
557





CCR5-205

ACAACUUUUUACCUAGUACA
20
558





CCR5-206

CCUAGUACAAGGCAACAUAU
20
559





CCR5-207

GUUGUAAAUGUGUUUAAAAC
20
560





CCR5-208

AACAGGUCUUUGUCUUGCUA
20
561





CCR5-209

ACAGGUCUUUGUCUUGCUAU
20
562





CCR5-210

CAGGUCUUUGUCUUGCUAUG
20
563





CCR5-211

CAUGUGUGAUUUCCCCUCCA
20
564





CCR5-212

GUGAUUUCCCCUCCAAGGUA
20
565





CCR5-213

AGUUUCACUGACUUAGAACC
20
566





CCR5-214

AGAACCAGGCGAGAGACUUG
20
567





CCR5-215

CAGGCGAGAGACUUGUGGCC
20
568





CCR5-216

AGGCGAGAGACUUGUGGCCU
20
569





CCR5-217

GACUUGUGGCCUGGGAGAGC
20
570





CCR5-218

ACUUGUGGCCUGGGAGAGCU
20
571





CCR5-219

CUUGUGGCCUGGGAGAGCUG
20
572





CCR5-220

GGGAAGCUUCUUAAAUGAGA
20
573





CCR5-221

AAAUGAGAAGGAAUUUGAGU
20
574





CCR5-222

UGAGUUGGAUCAUCUAUUGC
20
575





CCR5-223

GCCUCACUGCAAGCACUGCA
20
576





CCR5-224

CCUCACUGCAAGCACUGCAU
20
577





CCR5-225

AAGCACUGCAUGGGCAAGCU
20
578





CCR5-226

UGGGCAAGCUUGGCUGUAGA
20
579





CCR5-227

GCUGUAGAAGGAGACAGAGC
20
580





CCR5-228

UAGAAGGAGACAGAGCUGGU
20
581





CCR5-229

AGAAGGAGACAGAGCUGGUU
20
582





CCR5-230

CAGAGCUGGUUGGGAAGACA
20
583





CCR5-231

AGAGCUGGUUGGGAAGACAU
20
584





CCR5-232

GAGCUGGUUGGGAAGACAUG
20
585





CCR5-233

CUGGUUGGGAAGACAUGGGG
20
586





CCR5-234

UUGGGAAGACAUGGGGAGGA
20
587





CCR5-235

AGACAUGGGGAGGAAGGACA
20
588





CCR5-236

UAGAUCAUGAAGAACCUUGA
20
589





CCR5-237

GUCUAAGUCAUGAGCUGAGC
20
590





CCR5-238

UCUAAGUCAUGAGCUGAGCA
20
591





CCR5-239

UGAGCUGAGCAGGGAGAUCC
20
592





CCR5-240

CUGAGCAGGGAGAUCCUGGU
20
593





CCR5-241

AUCCUGGUUGGUGUUGCAGA
20
594





CCR5-242

GUUGCAGAAGGUUUACUCUG
20
595





CCR5-243

AAGGUUUACUCUGUGGCCAA
20
596





CCR5-244

GUUUACUCUGUGGCCAAAGG
20
597





CCR5-245

UUUACUCUGUGGCCAAAGGA
20
598





CCR5-246

UCUGUGGCCAAAGGAGGGUC
20
599





CCR5-247

UGGCCAAAGGAGGGUCAGGA
20
600





CCR5-248

GUCAGGAAGGAUGAGCAUUU
20
601





CCR5-249

UCAGGAAGGAUGAGCAUUUA
20
602





CCR5-250

AAGGAUGAGCAUUUAGGGCA
20
603





CCR5-251

GGAGACCACCAACAGCCCUC
20
604





CCR5-252

CCACCAACAGCCCUCAGGUC
20
605





CCR5-253

CACCAACAGCCCUCAGGUCA
20
606





CCR5-254

ACAGCCCUCAGGUCAGGGUG
20
607





CCR5-255

CCCUCAGGUCAGGGUGAGGA
20
608





CCR5-256

GAUGGCCUCUGCUAAGCUCA
20
609





CCR5-257

UCUGCUAAGCUCAAGGCGUG
20
610





CCR5-258

CUAAGCUCAAGGCGUGAGGA
20
611





CCR5-259

UAAGCUCAAGGCGUGAGGAU
20
612





CCR5-260

CUCAAGGCGUGAGGAUGGGA
20
613





CCR5-261

AAGGCGUGAGGAUGGGAAGG
20
614





CCR5-262

AGGCGUGAGGAUGGGAAGGA
20
615





CCR5-263

CGUGAGGAUGGGAAGGAGGG
20
616





CCR5-264

GAAGGAGGGAGGUAUUCGUA
20
617





CCR5-265

GAGGGAGGUAUUCGUAAGGA
20
618





CCR5-266

AGGGAGGUAUUCGUAAGGAU
20
619





CCR5-267

AGGUAUUCGUAAGGAUGGGA
20
620





CCR5-268

UAUUCGUAAGGAUGGGAAGG
20
621





CCR5-269

AUUCGUAAGGAUGGGAAGGA
20
622





CCR5-270

CGUAAGGAUGGGAAGGAGGG
20
623





CCR5-271

AGGUAUUCGUGCAGCAUAUG
20
624





CCR5-272

GGAUGCAGAGUCAGCAGAAC
20
625





CCR5-273

GAUGCAGAGUCAGCAGAACU
20
626





CCR5-274

AUGCAGAGUCAGCAGAACUG
20
627





CCR5-275

CAGAGUCAGCAGAACUGGGG
20
628





CCR5-276

CAGCAGAACUGGGGUGGAUU
20
629





CCR5-277

AGCAGAACUGGGGUGGAUUU
20
630





CCR5-278

GAACUGGGGUGGAUUUGGGU
20
631





CCR5-279

GUGGAUUUGGGUUGGAAGUG
20
632





CCR5-280

UGGAUUUGGGUUGGAAGUGA
20
633





CCR5-281

GUUGGAAGUGAGGGUCAGAG
20
634





CCR5-282

UCCCUAGUCUUCAAGCAGAU
20
635





CCR5-283

GAAAAGACAUCAAGCACAGA
20
636





CCR5-284

AAGACAUCAAGCACAGAAGG
20
637





CCR5-285

ACAUCAAGCACAGAAGGAGG
20
638





CCR5-286

UCAAGCACAGAAGGAGGAGG
20
639





CCR5-287

AGCACAGAAGGAGGAGGAGG
20
640





CCR5-288

GAAGGAGGAGGAGGAGGUUU
20
641





CCR5-289

GGUUUAGGUCAAGAAGAAGA
20
642





CCR5-290

AGGUCAAGAAGAAGAUGGAU
20
643





CCR5-291

AGAAGAUGGAUUGGUGUAAA
20
644





CCR5-292

GAUGGAUUGGUGUAAAAGGA
20
645





CCR5-293

AUGGAUUGGUGUAAAAGGAU
20
646





CCR5-294

UUGGUGUAAAAGGAUGGGUC
20
647





CCR5-295

CACAGUCUCACCCAGACUCC
20
648





CCR5-296

CCAUCCCAGCUGAAAUACUG
20
649





CCR5-297

CAUCCCAGCUGAAAUACUGA
20
650





CCR5-298

AUCCCAGCUGAAAUACUGAG
20
651





CCR5-299

UGAAAUACUGAGGGGUCUCC
20
652





CCR5-300

AAUACUGAGGGGUCUCCAGG
20
653





CCR5-301

ACUAGAUUUAUGAAUACACG
20
654





CCR5-302

UUAUGAAUACACGAGGUAUG
20
655





CCR5-303

AUACACGAGGUAUGAGGUCU
20
656





CCR5-304

UCAGCUCACACAUGAGAUCU
20
657





CCR5-305

UCACACAUGAGAUCUAGGUG
20
658





CCR5-306

AUUACCUAGUAGUCAUUUCA
20
659





CCR5-307

UUACCUAGUAGUCAUUUCAU
20
660





CCR5-308

GUAGUCAUUUCAUGGGUUGU
20
661





CCR5-309

UAGUCAUUUCAUGGGUUGUU
20
662





CCR5-310

UCAUUUCAUGGGUUGUUGGG
20
663





CCR5-311

GUUGUUGGGAGGAUUCUAUG
20
664





CCR5-312

GGAUUCUAUGAGGCAACCAC
20
665





CCR5-313

AAACUCUUAGUUACUCAUUC
20
666





CCR5-314

AACUCUUAGUUACUCAUUCA
20
667





CCR5-315

CUGAGCAAAGCAUUGAGCAA
20
668





CCR5-316

UGAGCAAAGCAUUGAGCAAA
20
669





CCR5-317

GAGCAAAGCAUUGAGCAAAG
20
670





CCR5-318

UGAGCAAAGGGGUCCCAUAG
20
671





CCR5-319

AAAGGGGUCCCAUAGAGGUG
20
672





CCR5-320

AAGGGGUCCCAUAGAGGUGA
20
673





CCR5-321

UGCCCAGUGCACACAAGUGU
20
674





CCR5-322

UUCUGCAUUUAACCGUCAAU
20
675





CCR5-323

AUUUAACCGUCAAUAGGCAA
20
676





CCR5-324

UUUAACCGUCAAUAGGCAAA
20
677





CCR5-325

UUAACCGUCAAUAGGCAAAG
20
678





CCR5-326

UAACCGUCAAUAGGCAAAGG
20
679





CCR5-327

AACCGUCAAUAGGCAAAGGG
20
680





CCR5-328

GUCAAUAGGCAAAGGGGGGA
20
681





CCR5-329

UCAAUAGGCAAAGGGGGGAA
20
682





CCR5-330

GGGGAAGGGACAUAUUCAUU
20
683





CCR5-331

CCUCCGUAUUUCAGACUGAA
20
684





CCR5-332

CUCCGUAUUUCAGACUGAAU
20
685





CCR5-333

UCCGUAUUUCAGACUGAAUG
20
686





CCR5-334

CCGUAUUUCAGACUGAAUGG
20
687





CCR5-335

UAUUUCAGACUGAAUGGGGG
20
688





CCR5-336

AUUUCAGACUGAAUGGGGGU
20
689





CCR5-337

UUUCAGACUGAAUGGGGGUG
20
690





CCR5-338

UUCAGACUGAAUGGGGGUGG
20
691





CCR5-339

UCAGACUGAAUGGGGGUGGG
20
692





CCR5-340

CAGACUGAAUGGGGGUGGGG
20
693





CCR5-341

AGACUGAAUGGGGGUGGGGG
20
694





CCR5-342

GGGGGUGGGGGGGGCGCCUU
20
695





CCR5-343

UGAAUAUACCCCUUAGUGUU
20
696





CCR5-344

GAAUAUACCCCUUAGUGUUU
20
697





CCR5-345

UUUGGGUAUAUUCAUUUCAA
20
698





CCR5-346

UUGGGUAUAUUCAUUUCAAA
20
699





CCR5-347

CAUUUCAAAGGGAGAGAGAG
20
700





CCR5-348

ACUUGAGACUGUUUUGAAUU
20
701





CCR5-349

CUUGAGACUGUUUUGAAUUU
20
702





CCR5-350

UUGAGACUGUUUUGAAUUUG
20
703





CCR5-351

UGAGACUGUUUUGAAUUUGG
20
704





CCR5-352

ACUGUUUUGAAUUUGGGGGA
20
705





CCR5-353

GGCUAAAACCAUCAUAGUAC
20
706





CCR5-354

AAACCAUCAUAGUACAGGUA
20
707





CCR5-355

AUCAUAGUACAGGUAAGGUG
20
708





CCR5-356

UCAUAGUACAGGUAAGGUGA
20
709





CCR5-357

UAAGGUGAGGGAAUAGUAAG
20
710





CCR5-358

GUAAGUGGUGAGAACUACUC
20
711





CCR5-359

UAAGUGGUGAGAACUACUCA
20
712





CCR5-360

GAGAACUACUCAGGGAAUGA
20
713





CCR5-361

GAAGGUGUCAGAAUAAUAAG
20
714





CCR5-362

UCUCAGCCUCUGAAUAUGAA
20
715





CCR5-363

AAUAUGAACGGUGAGCAUUG
20
716





CCR5-364

UGAGCAUUGUGGCUGUCAGC
20
717





CCR5-365

CUGUCAGCAGGAAGCAACGA
20
718





CCR5-366

UGUCAGCAGGAAGCAACGAA
20
719





CCR5-367

UUCCUUUUGCUCUUAAGUUG
20
720





CCR5-368

GGAGAGUGCAACAGUAGCAU
20
721





CCR5-369

UAGCAUAGGACCCUACCCUC
20
722





CCR5-370

AGCAUAGGACCCUACCCUCU
20
723





CCR5-371

ACAGUCAGUAUCAAUUC
17
724





CCR5-372

AUUAAAGAUAGUCAUCU
17
725





CCR5-373

UUAAAGAUAGUCAUCUU
17
726





CCR5-374

UAAAGAUAGUCAUCUUG
17
727





CCR5-375

GAUAGUCAUCUUGGGGC
17
728





CCR5-376

CCUGCCGCUGCUUGUCA
17
729





CCR5-377

CAUGGUCAUCUGCUACU
17
730





CCR5-378

AUGGUCAUCUGCUACUC
17
731





CCR5-379

UCCUAAAAACUCUGCUU
17
732





CCR5-380

GUCGAAAUGAGAAGAAG
17
733





CCR5-381

AUGAGAAGAAGAGGCAC
17
734





CCR5-382

UGAGAAGAAGAGGCACA
17
735





CCR5-383

AGAGGCACAGGGCUGUG
17
736





CCR5-384

UUGUUUAUUUUCUCUUC
17
737





CCR5-385

UGUUUAUUUUCUCUUCU
17
738





CCR5-386

UCUCCUGAACACCUUCC
17
739





CCR5-387

ACCUUCCAGGAAUUCUU
17
740





CCR5-388

AUUGCAGUAGCUCUAAC
17
741





CCR5-389

CAGUAGCUCUAACAGGU
17
742





CCR5-390

GUUGGACCAAGCUAUGC
17
743





CCR5-391

CAGGUGACAGAGACUCU
17
744





CCR5-392

AGGUGACAGAGACUCUU
17
745





CCR5-393

AUCAUCUAUGCCUUUGU
17
746





CCR5-394

UCAUCUAUGCCUUUGUC
17
747





CCR5-395

CAUCUAUGCCUUUGUCG
17
748





CCR5-396

UUCUAUUUUCCAGCAAG
17
749





CCR5-397

GUUUACACCCGAUCCAC
17
750





CCR5-398

UUUACACCCGAUCCACU
17
751





CCR5-399

UUACACCCGAUCCACUG
17
752





CCR5-400

CCGAUCCACUGGGGAGC
17
753





CCR5-401

GGAGCAGGAAAUAUCUG
17
754





CCR5-402

GAGCAGGAAAUAUCUGU
17
755





CCR5-403

UCUGUGGGCUUGUGACA
17
756





CCR5-404

UGUGACACGGACUCAAG
17
757





CCR5-405

GUGACACGGACUCAAGU
17
758





CCR5-406

CACGGACUCAAGUGGGC
17
759





CCR5-407

AGUCAGAGUUGUGCACA
17
760





CCR5-408

AGUUUUCAUACACAGCC
17
761





CCR5-409

GUUUUCAUACACAGCCU
17
762





CCR5-410

UCAUACACAGCCUGGGC
17
763





CCR5-411

CAUACACAGCCUGGGCU
17
764





CCR5-412

AUACACAGCCUGGGCUG
17
765





CCR5-413

UACACAGCCUGGGCUGG
17
766





CCR5-414

ACAGCCUGGGCUGGGGG
17
767





CCR5-415

CAGCCUGGGCUGGGGGU
17
768





CCR5-416

AGCCUGGGCUGGGGGUG
17
769





CCR5-417

CUGGGCUGGGGGUGGGG
17
770





CCR5-418

UGGGCUGGGGGUGGGGU
17
771





CCR5-419

UGGGGGUGGGGUGGGAG
17
772





CCR5-420

GAGAGGUCUUUUUUAAA
17
773





CCR5-421

GGAAGUUACUGUUAUAG
17
774





CCR5-422

GAAGUUACUGUUAUAGA
17
775





CCR5-423

AGAUUCAUCCAUUUAUU
17
776





CCR5-424

ACUUUUUACCUAGUACA
17
777





CCR5-425

AGUACAAGGCAACAUAU
17
778





CCR5-426

GUAAAUGUGUUUAAAAC
17
779





CCR5-427

AGGUCUUUGUCUUGCUA
17
780





CCR5-428

GGUCUUUGUCUUGCUAU
17
781





CCR5-429

GUCUUUGUCUUGCUAUG
17
782





CCR5-430

GUGUGAUUUCCCCUCCA
17
783





CCR5-431

AUUUCCCCUCCAAGGUA
17
784





CCR5-432

UUCACUGACUUAGAACC
17
785





CCR5-433

ACCAGGCGAGAGACUUG
17
786





CCR5-434

GCGAGAGACUUGUGGCC
17
787





CCR5-435

CGAGAGACUUGUGGCCU
17
788





CCR5-436

UUGUGGCCUGGGAGAGC
17
789





CCR5-437

UGUGGCCUGGGAGAGCU
17
790





CCR5-438

GUGGCCUGGGAGAGCUG
17
791





CCR5-439

AAGCUUCUUAAAUGAGA
17
792





CCR5-440

UGAGAAGGAAUUUGAGU
17
793





CCR5-441

GUUGGAUCAUCUAUUGC
17
794





CCR5-442

UCACUGCAAGCACUGCA
17
795





CCR5-443

CACUGCAAGCACUGCAU
17
796





CCR5-444

CACUGCAUGGGCAAGCU
17
797





CCR5-445

GCAAGCUUGGCUGUAGA
17
798





CCR5-446

GUAGAAGGAGACAGAGC
17
799





CCR5-447

AAGGAGACAGAGCUGGU
17
800





CCR5-448

AGGAGACAGAGCUGGUU
17
801





CCR5-449

AGCUGGUUGGGAAGACA
17
802





CCR5-450

GCUGGUUGGGAAGACAU
17
803





CCR5-451

CUGGUUGGGAAGACAUG
17
804





CCR5-452

GUUGGGAAGACAUGGGG
17
805





CCR5-453

GGAAGACAUGGGGAGGA
17
806





CCR5-454

CAUGGGGAGGAAGGACA
17
807





CCR5-455

AUCAUGAAGAACCUUGA
17
808





CCR5-456

UAAGUCAUGAGCUGAGC
17
809





CCR5-457

AAGUCAUGAGCUGAGCA
17
810





CCR5-458

GCUGAGCAGGGAGAUCC
17
811





CCR5-459

AGCAGGGAGAUCCUGGU
17
812





CCR5-460

CUGGUUGGUGUUGCAGA
17
813





CCR5-461

GCAGAAGGUUUACUCUG
17
814





CCR5-462

GUUUACUCUGUGGCCAA
17
815





CCR5-463

UACUCUGUGGCCAAAGG
17
816





CCR5-464

ACUCUGUGGCCAAAGGA
17
817





CCR5-465

GUGGCCAAAGGAGGGUC
17
818





CCR5-466

CCAAAGGAGGGUCAGGA
17
819





CCR5-467

AGGAAGGAUGAGCAUUU
17
820





CCR5-468

GGAAGGAUGAGCAUUUA
17
821





CCR5-469

GAUGAGCAUUUAGGGCA
17
822





CCR5-470

GACCACCAACAGCCCUC
17
823





CCR5-471

CCAACAGCCCUCAGGUC
17
824





CCR5-472

CAACAGCCCUCAGGUCA
17
825





CCR5-473

GCCCUCAGGUCAGGGUG
17
826





CCR5-474

UCAGGUCAGGGUGAGGA
17
827





CCR5-475

GGCCUCUGCUAAGCUCA
17
828





CCR5-476

GCUAAGCUCAAGGCGUG
17
829





CCR5-477

AGCUCAAGGCGUGAGGA
17
830





CCR5-478

GCUCAAGGCGUGAGGAU
17
831





CCR5-479

AAGGCGUGAGGAUGGGA
17
832





CCR5-480

GCGUGAGGAUGGGAAGG
17
833





CCR5-481

CGUGAGGAUGGGAAGGA
17
834





CCR5-482

GAGGAUGGGAAGGAGGG
17
835





CCR5-483

GGAGGGAGGUAUUCGUA
17
836





CCR5-484

GGAGGUAUUCGUAAGGA
17
837





CCR5-485

GAGGUAUUCGUAAGGAU
17
838





CCR5-486

UAUUCGUAAGGAUGGGA
17
839





CCR5-487

UCGUAAGGAUGGGAAGG
17
840





CCR5-488

CGUAAGGAUGGGAAGGA
17
841





CCR5-489

AAGGAUGGGAAGGAGGG
17
842





CCR5-490

UAUUCGUGCAGCAUAUG
17
843





CCR5-491

UGCAGAGUCAGCAGAAC
17
844





CCR5-492

GCAGAGUCAGCAGAACU
17
845





CCR5-493

CAGAGUCAGCAGAACUG
17
846





CCR5-494

AGUCAGCAGAACUGGGG
17
847





CCR5-495

CAGAACUGGGGUGGAUU
17
848





CCR5-496

AGAACUGGGGUGGAUUU
17
849





CCR5-497

CUGGGGUGGAUUUGGGU
17
850





CCR5-498

GAUUUGGGUUGGAAGUG
17
851





CCR5-499

AUUUGGGUUGGAAGUGA
17
852





CCR5-500

GGAAGUGAGGGUCAGAG
17
853





CCR5-501

CUAGUCUUCAAGCAGAU
17
854





CCR5-502

AAGACAUCAAGCACAGA
17
855





CCR5-503

ACAUCAAGCACAGAAGG
17
856





CCR5-504

UCAAGCACAGAAGGAGG
17
857





CCR5-505

AGCACAGAAGGAGGAGG
17
858





CCR5-506

ACAGAAGGAGGAGGAGG
17
859





CCR5-507

GGAGGAGGAGGAGGUUU
17
860





CCR5-508

UUAGGUCAAGAAGAAGA
17
861





CCR5-509

UCAAGAAGAAGAUGGAU
17
862





CCR5-510

AGAUGGAUUGGUGUAAA
17
863





CCR5-511

GGAUUGGUGUAAAAGGA
17
864





CCR5-512

GAUUGGUGUAAAAGGAU
17
865





CCR5-513

GUGUAAAAGGAUGGGUC
17
866





CCR5-514

AGUCUCACCCAGACUCC
17
867





CCR5-515

UCCCAGCUGAAAUACUG
17
868





CCR5-516

CCCAGCUGAAAUACUGA
17
869





CCR5-517

CCAGCUGAAAUACUGAG
17
870





CCR5-518

AAUACUGAGGGGUCUCC
17
871





CCR5-519

ACUGAGGGGUCUCCAGG
17
872





CCR5-520

AGAUUUAUGAAUACACG
17
873





CCR5-521

UGAAUACACGAGGUAUG
17
874





CCR5-522

CACGAGGUAUGAGGUCU
17
875





CCR5-523

GCUCACACAUGAGAUCU
17
876





CCR5-524

CACAUGAGAUCUAGGUG
17
877





CCR5-525

ACCUAGUAGUCAUUUCA
17
878





CCR5-526

CCUAGUAGUCAUUUCAU
17
879





CCR5-527

GUCAUUUCAUGGGUUGU
17
880





CCR5-528

UCAUUUCAUGGGUUGUU
17
881





CCR5-529

UUUCAUGGGUUGUUGGG
17
882





CCR5-530

GUUGGGAGGAUUCUAUG
17
883





CCR5-531

UUCUAUGAGGCAACCAC
17
884





CCR5-532

CUCUUAGUUACUCAUUC
17
885





CCR5-533

UCUUAGUUACUCAUUCA
17
886





CCR5-534

AGCAAAGCAUUGAGCAA
17
887





CCR5-535

GCAAAGCAUUGAGCAAA
17
888





CCR5-536

CAAAGCAUUGAGCAAAG
17
889





CCR5-537

GCAAAGGGGUCCCAUAG
17
890





CCR5-538

GGGGUCCCAUAGAGGUG
17
891





CCR5-539

GGGUCCCAUAGAGGUGA
17
892





CCR5-540

CCAGUGCACACAAGUGU
17
893





CCR5-541

UGCAUUUAACCGUCAAU
17
894





CCR5-542

UAACCGUCAAUAGGCAA
17
895





CCR5-543

AACCGUCAAUAGGCAAA
17
896





CCR5-544

ACCGUCAAUAGGCAAAG
17
897





CCR5-545

CCGUCAAUAGGCAAAGG
17
898





CCR5-546

CGUCAAUAGGCAAAGGG
17
899





CCR5-547

AAUAGGCAAAGGGGGGA
17
900





CCR5-548

AUAGGCAAAGGGGGGAA
17
901





CCR5-549

GAAGGGACAUAUUCAUU
17
902





CCR5-550

CCGUAUUUCAGACUGAA
17
903





CCR5-551

CGUAUUUCAGACUGAAU
17
904





CCR5-552

GUAUUUCAGACUGAAUG
17
905





CCR5-553

UAUUUCAGACUGAAUGG
17
906





CCR5-554

UUCAGACUGAAUGGGGG
17
907





CCR5-555

UCAGACUGAAUGGGGGU
17
908





CCR5-556

CAGACUGAAUGGGGGUG
17
909





CCR5-557

AGACUGAAUGGGGGUGG
17
910





CCR5-558

GACUGAAUGGGGGUGGG
17
911





CCR5-559

ACUGAAUGGGGGUGGGG
17
912





CCR5-560

CUGAAUGGGGGUGGGGG
17
913





CCR5-561

GGUGGGGGGGGCGCCUU
17
914





CCR5-562

AUAUACCCCUUAGUGUU
17
915





CCR5-563

UAUACCCCUUAGUGUUU
17
916





CCR5-564

GGGUAUAUUCAUUUCAA
17
917





CCR5-565

GGUAUAUUCAUUUCAAA
17
918





CCR5-566

UUCAAAGGGAGAGAGAG
17
919





CCR5-567

UGAGACUGUUUUGAAUU
17
920





CCR5-568

GAGACUGUUUUGAAUUU
17
921





CCR5-569

AGACUGUUUUGAAUUUG
17
922





CCR5-570

GACUGUUUUGAAUUUGG
17
923





CCR5-571

GUUUUGAAUUUGGGGGA
17
924





CCR5-572

UAAAACCAUCAUAGUAC
17
925





CCR5-573

CCAUCAUAGUACAGGUA
17
926





CCR5-574

AUAGUACAGGUAAGGUG
17
927





CCR5-575

UAGUACAGGUAAGGUGA
17
928





CCR5-576

GGUGAGGGAAUAGUAAG
17
929





CCR5-577

AGUGGUGAGAACUACUC
17
930





CCR5-578

GUGGUGAGAACUACUCA
17
931





CCR5-579

AACUACUCAGGGAAUGA
17
932





CCR5-580

GGUGUCAGAAUAAUAAG
17
933





CCR5-581

CAGCCUCUGAAUAUGAA
17
934





CCR5-582

AUGAACGGUGAGCAUUG
17
935





CCR5-583

GCAUUGUGGCUGUCAGC
17
936





CCR5-584

UCAGCAGGAAGCAACGA
17
937





CCR5-585

CAGCAGGAAGCAACGAA
17
938





CCR5-586

CUUUUGCUCUUAAGUUG
17
939





CCR5-587

GAGUGCAACAGUAGCAU
17
940





CCR5-588

CAUAGGACCCUACCCUC
17
941





CCR5-589

AUAGGACCCUACCCUCU
17
942





CCR5-590
+
AUGUCAGAAUGUCUUUGACU
20
943





CCR5-591
+
AUGUCUUUGACUUGGCCCAG
20
944





CCR5-592
+
UGUCUUUGACUUGGCCCAGA
20
945





CCR5-593
+
UUUGACUUGGCCCAGAGGGU
20
946





CCR5-594
+
UUGACUUGGCCCAGAGGGUA
20
947





CCR5-595
+
CUCCACAACUUAAGAGCAAA
20
948





CCR5-596
+
UGCUCACCGUUCAUAUUCAG
20
949





CCR5-597
+
UCACCUUACCUGUACUAUGA
20
950





CCR5-598
+
AUGAAUAUACCCAAACACUA
20
951





CCR5-599
+
UGAAUAUACCCAAACACUAA
20
952





CCR5-600
+
GAAUAUACCCAAACACUAAG
20
953





CCR5-601
+
AAGGGGUAUAUUCAUUUCAA
20
954





CCR5-602
+
AGGGGUAUAUUCAUUUCAAA
20
955





CCR5-603
+
GGUAUAUUCAUUUCAAAGGG
20
956





CCR5-604
+
GUAUAUUCAUUUCAAAGGGA
20
957





CCR5-605
+
ACGAUUUUUUCUGUUGCUUC
20
958





CCR5-606
+
UCUGUUGCUUCUGGUUUGUC
20
959





CCR5-607
+
GCUUCUGGUUUGUCUGGAGA
20
960





CCR5-608
+
GUUUGUCUGGAGAAGGCAUC
20
961





CCR5-609
+
GCAUCUGGAAUAAGUACCUA
20
962





CCR5-610
+
CCCCCAUUCAGUCUGAAAUA
20
963





CCR5-611
+
CCAUUCAGUCUGAAAUACGG
20
964





CCR5-612
+
UCAGUCUGAAAUACGGAGGC
20
965





CCR5-613
+
GCUGGUAAAUUGUACUUUUG
20
966





CCR5-614
+
CUGGUAAAUUGUACUUUUGU
20
967





CCR5-615
+
UUGUACUUUUGUGGGUUUUA
20
968





CCR5-616
+
UUUGUGGGUUUUAAGGCUCA
20
969





CCR5-617
+
UUCCCCCCUUUGCCUAUUGA
20
970





CCR5-618
+
AUACCUACACUUGUGUGCAC
20
971





CCR5-619
+
UACCUACACUUGUGUGCACU
20
972





CCR5-620
+
UACACUUGUGUGCACUGGGC
20
973





CCR5-621
+
AGGCAGCAUCUUAGUUUUUC
20
974





CCR5-622
+
UCAGGCUUCCCUCACCUCUA
20
975





CCR5-623
+
CAGGCUUCCCUCACCUCUAU
20
976





CCR5-624
+
UAUGUGCUAAAUGCUGCCUG
20
977





CCR5-625
+
CAACCCAUGAAAUGACUACU
20
978





CCR5-626
+
UCAUAAAUCUAGUCUCCUCC
20
979





CCR5-627
+
AGACCCCUCAGUAUUUCAGC
20
980





CCR5-628
+
GACCCCUCAGUAUUUCAGCU
20
981





CCR5-629
+
CCUCAGUAUUUCAGCUGGGA
20
982





CCR5-630
+
CUCAGUAUUUCAGCUGGGAU
20
983





CCR5-631
+
GUAUUUCAGCUGGGAUGGGA
20
984





CCR5-632
+
GCAUUCAGUGAAAGACAGCC
20
985





CCR5-633
+
GUGAAAGACAGCCUGGAGUC
20
986





CCR5-634
+
UGAAAGACAGCCUGGAGUCU
20
987





CCR5-635
+
CUGUGCUUGAUGUCUUUUCA
20
988





CCR5-636
+
UGUGCUUGAUGUCUUUUCAA
20
989





CCR5-637
+
CUCCAAUCUGCUUGAAGACU
20
990





CCR5-638
+
UCCAAUCUGCUUGAAGACUA
20
991





CCR5-639
+
UCACGCCUUGAGCUUAGCAG
20
992





CCR5-640
+
GCCAUCCUCACCCUGACCUG
20
993





CCR5-641
+
CCAUCCUCACCCUGACCUGA
20
994





CCR5-642
+
CACCCUGACCUGAGGGCUGU
20
995





CCR5-643
+
CCUGACCUGAGGGCUGUUGG
20
996





CCR5-644
+
CAUCCUUCCUGACCCUCCUU
20
997





CCR5-645
+
AACCUUCUGCAACACCAACC
20
998





CCR5-646
+
UGCUCAGCUCAUGACUUAGA
20
999





CCR5-647
+
UAGACGGAGCAAUGCCGUCA
20
1000





CCR5-648
+
CCCAUGCAGUGCUUGCAGUG
20
1001





CCR5-649
+
GAAGCUUCCCCAGCUCUCCC
20
1002





CCR5-650
+
CAGGCCACAAGUCUCUCGCC
20
1003





CCR5-651
+
GAAACUUAUUAACCAUACCU
20
1004





CCR5-652
+
ACUUAUUAACCAUACCUUGG
20
1005





CCR5-653
+
CUUAUUAACCAUACCUUGGA
20
1006





CCR5-654
+
UUAUUAACCAUACCUUGGAG
20
1007





CCR5-655
+
CCUAUAUGUUGCCUUGUACU
20
1008





CCR5-656
+
GUACAUUUCUGAAAUAAUUU
20
1009





CCR5-657
+
CAAGAAUCAGCAAUUCUCUG
20
1010





CCR5-658
+
CUUUCUUUUAAAUAUACAUA
20
1011





CCR5-659
+
AAAUAUACAUAAGGAACUUU
20
1012





CCR5-660
+
AUAAGGAACUUUCGGAGUGA
20
1013





CCR5-661
+
UAAGGAACUUUCGGAGUGAA
20
1014





CCR5-662
+
CAAUAACUUGAUGCAUGUGA
20
1015





CCR5-663
+
AAUAACUUGAUGCAUGUGAA
20
1016





CCR5-664
+
AUAACUUGAUGCAUGUGAAG
20
1017





CCR5-665
+
CAUGUGAAGGGGAGAUAAAA
20
1018





CCR5-666
+
UUCAUCAACAUAUUUUGAUU
20
1019





CCR5-667
+
AUUUGGCUUUCUAUAAUUGA
20
1020





CCR5-668
+
UUUGGCUUUCUAUAAUUGAU
20
1021





CCR5-669
+
UUAAACAGAUGCCAAAUAAA
20
1022





CCR5-670
+
UCCCACCCCACCCCCAGCCC
20
1023





CCR5-671
+
GCCAUGUGCACAACUCUGAC
20
1024





CCR5-672
+
CCAUGUGCACAACUCUGACU
20
1025





CCR5-673
+
AGAUAUUUCCUGCUCCCCAG
20
1026





CCR5-674
+
UUUCCUGCUCCCCAGUGGAU
20
1027





CCR5-675
+
UUCCUGCUCCCCAGUGGAUC
20
1028





CCR5-676
+
GUAAACUGAGCUUGCUCGCU
20
1029





CCR5-677
+
UAAACUGAGCUUGCUCGCUC
20
1030





CCR5-678
+
CUCGCUCGGGAGCCUCUUGC
20
1031





CCR5-679
+
ACAGCAUUUGCAGAAGCGUU
20
1032





CCR5-680
+
AGCGUUUGGCAAUGUGCUUU
20
1033





CCR5-681
+
GCUUUUGGAAGAAGACUAAG
20
1034





CCR5-682
+
UCUGAACUUCUCCCCGACAA
20
1035





CCR5-683
+
CCCGACAAAGGCAUAGAUGA
20
1036





CCR5-684
+
CCGACAAAGGCAUAGAUGAU
20
1037





CCR5-685
+
CGACAAAGGCAUAGAUGAUG
20
1038





CCR5-686
+
UCUCUGUCACCUGCAUAGCU
20
1039





CCR5-687
+
UAGAGCUACUGCAAUUAUUC
20
1040





CCR5-688
+
UAUUCAGGCCAAAGAAUUCC
20
1041





CCR5-689
+
CAGGCCAAAGAAUUCCUGGA
20
1042





CCR5-690
+
AGAAUUCCUGGAAGGUGUUC
20
1043





CCR5-691
+
CCUGGAAGGUGUUCAGGAGA
20
1044





CCR5-692
+
CAGGAGAAGGACAAUGUUGU
20
1045





CCR5-693
+
AGGAGAAGGACAAUGUUGUA
20
1046





CCR5-694
+
GAGAAAAUAAACAAUCAUGA
20
1047





CCR5-695
+
GACACCGAAGCAGAGUUUUU
20
1048





CCR5-696
+
CAGAUGACCAUGACAAGCAG
20
1049





CCR5-697
+
UGACCAUGACAAGCAGCGGC
20
1050





CCR5-698
+
AGAUGACUAUCUUUAAUGUC
20
1051





CCR5-699
+
CAGAAUUGAUACUGACUGUA
20
1052





CCR5-700
+
GUAUGGAAAAUGAGAGCUGC
20
1053





CCR5-701
+
UCAGAAUGUCUUUGACU
17
1054





CCR5-702
+
UCUUUGACUUGGCCCAG
17
1055





CCR5-703
+
CUUUGACUUGGCCCAGA
17
1056





CCR5-704
+
GACUUGGCCCAGAGGGU
17
1057





CCR5-705
+
ACUUGGCCCAGAGGGUA
17
1058





CCR5-706
+
CACAACUUAAGAGCAAA
17
1059





CCR5-707
+
UCACCGUUCAUAUUCAG
17
1060





CCR5-708
+
CCUUACCUGUACUAUGA
17
1061





CCR5-709
+
AAUAUACCCAAACACUA
17
1062





CCR5-710
+
AUAUACCCAAACACUAA
17
1063





CCR5-711
+
UAUACCCAAACACUAAG
17
1064





CCR5-712
+
GGGUAUAUUCAUUUCAA
17
1065





CCR5-713
+
GGUAUAUUCAUUUCAAA
17
1066





CCR5-714
+
AUAUUCAUUUCAAAGGG
17
1067





CCR5-715
+
UAUUCAUUUCAAAGGGA
17
1068





CCR5-716
+
AUUUUUUCUGUUGCUUC
17
1069





CCR5-717
+
GUUGCUUCUGGUUUGUC
17
1070





CCR5-718
+
UCUGGUUUGUCUGGAGA
17
1071





CCR5-719
+
UGUCUGGAGAAGGCAUC
17
1072





CCR5-720
+
UCUGGAAUAAGUACCUA
17
1073





CCR5-721
+
CCAUUCAGUCUGAAAUA
17
1074





CCR5-722
+
UUCAGUCUGAAAUACGG
17
1075





CCR5-723
+
GUCUGAAAUACGGAGGC
17
1076





CCR5-724
+
GGUAAAUUGUACUUUUG
17
1077





CCR5-725
+
GUAAAUUGUACUUUUGU
17
1078





CCR5-726
+
UACUUUUGUGGGUUUUA
17
1079





CCR5-727
+
GUGGGUUUUAAGGCUCA
17
1080





CCR5-728
+
CCCCCUUUGCCUAUUGA
17
1081





CCR5-729
+
CCUACACUUGUGUGCAC
17
1082





CCR5-730
+
CUACACUUGUGUGCACU
17
1083





CCR5-731
+
ACUUGUGUGCACUGGGC
17
1084





CCR5-732
+
CAGCAUCUUAGUUUUUC
17
1085





CCR5-733
+
GGCUUCCCUCACCUCUA
17
1086





CCR5-734
+
GCUUCCCUCACCUCUAU
17
1087





CCR5-735
+
GUGCUAAAUGCUGCCUG
17
1088





CCR5-736
+
CCCAUGAAAUGACUACU
17
1089





CCR5-737
+
UAAAUCUAGUCUCCUCC
17
1090





CCR5-738
+
CCCCUCAGUAUUUCAGC
17
1091





CCR5-739
+
CCCUCAGUAUUUCAGCU
17
1092





CCR5-740
+
CAGUAUUUCAGCUGGGA
17
1093





CCR5-741
+
AGUAUUUCAGCUGGGAU
17
1094





CCR5-742
+
UUUCAGCUGGGAUGGGA
17
1095





CCR5-743
+
UUCAGUGAAAGACAGCC
17
1096





CCR5-744
+
AAAGACAGCCUGGAGUC
17
1097





CCR5-745
+
AAGACAGCCUGGAGUCU
17
1098





CCR5-746
+
UGCUUGAUGUCUUUUCA
17
1099





CCR5-747
+
GCUUGAUGUCUUUUCAA
17
1100





CCR5-748
+
CAAUCUGCUUGAAGACU
17
1101





CCR5-749
+
AAUCUGCUUGAAGACUA
17
1102





CCR5-750
+
CGCCUUGAGCUUAGCAG
17
1103





CCR5-751
+
AUCCUCACCCUGACCUG
17
1104





CCR5-752
+
UCCUCACCCUGACCUGA
17
1105





CCR5-753
+
CCUGACCUGAGGGCUGU
17
1106





CCR5-754
+
GACCUGAGGGCUGUUGG
17
1107





CCR5-755
+
CCUUCCUGACCCUCCUU
17
1108





CCR5-756
+
CUUCUGCAACACCAACC
17
1109





CCR5-757
+
UCAGCUCAUGACUUAGA
17
1110





CCR5-758
+
ACGGAGCAAUGCCGUCA
17
1111





CCR5-759
+
AUGCAGUGCUUGCAGUG
17
1112





CCR5-760
+
GCUUCCCCAGCUCUCCC
17
1113





CCR5-761
+
GCCACAAGUCUCUCGCC
17
1114





CCR5-762
+
ACUUAUUAACCAUACCU
17
1115





CCR5-763
+
UAUUAACCAUACCUUGG
17
1116





CCR5-764
+
AUUAACCAUACCUUGGA
17
1117





CCR5-765
+
UUAACCAUACCUUGGAG
17
1118





CCR5-766
+
AUAUGUUGCCUUGUACU
17
1119





CCR5-767
+
CAUUUCUGAAAUAAUUU
17
1120





CCR5-768
+
GAAUCAGCAAUUCUCUG
17
1121





CCR5-769
+
UCUUUUAAAUAUACAUA
17
1122





CCR5-770
+
UAUACAUAAGGAACUUU
17
1123





CCR5-771
+
AGGAACUUUCGGAGUGA
17
1124





CCR5-772
+
GGAACUUUCGGAGUGAA
17
1125





CCR5-773
+
UAACUUGAUGCAUGUGA
17
1126





CCR5-774
+
AACUUGAUGCAUGUGAA
17
1127





CCR5-775
+
ACUUGAUGCAUGUGAAG
17
1128





CCR5-776
+
GUGAAGGGGAGAUAAAA
17
1129





CCR5-777
+
AUCAACAUAUUUUGAUU
17
1130





CCR5-778
+
UGGCUUUCUAUAAUUGA
17
1131





CCR5-779
+
GGCUUUCUAUAAUUGAU
17
1132





CCR5-780
+
AACAGAUGCCAAAUAAA
17
1133





CCR5-781
+
CACCCCACCCCCAGCCC
17
1134





CCR5-782
+
AUGUGCACAACUCUGAC
17
1135





CCR5-783
+
UGUGCACAACUCUGACU
17
1136





CCR5-784
+
UAUUUCCUGCUCCCCAG
17
1137





CCR5-785
+
CCUGCUCCCCAGUGGAU
17
1138





CCR5-786
+
CUGCUCCCCAGUGGAUC
17
1139





CCR5-787
+
AACUGAGCUUGCUCGCU
17
1140





CCR5-788
+
ACUGAGCUUGCUCGCUC
17
1141





CCR5-789
+
GCUCGGGAGCCUCUUGC
17
1142





CCR5-790
+
GCAUUUGCAGAAGCGUU
17
1143





CCR5-791
+
GUUUGGCAAUGUGCUUU
17
1144





CCR5-792
+
UUUGGAAGAAGACUAAG
17
1145





CCR5-793
+
GAACUUCUCCCCGACAA
17
1146





CCR5-794
+
GACAAAGGCAUAGAUGA
17
1147





CCR5-795
+
ACAAAGGCAUAGAUGAU
17
1148





CCR5-796
+
CAAAGGCAUAGAUGAUG
17
1149





CCR5-797
+
CUGUCACCUGCAUAGCU
17
1150





CCR5-798
+
AGCUACUGCAAUUAUUC
17
1151





CCR5-799
+
UCAGGCCAAAGAAUUCC
17
1152





CCR5-800
+
GCCAAAGAAUUCCUGGA
17
1153





CCR5-801
+
AUUCCUGGAAGGUGUUC
17
1154





CCR5-802
+
GGAAGGUGUUCAGGAGA
17
1155





CCR5-803
+
GAGAAGGACAAUGUUGU
17
1156





CCR5-804
+
AGAAGGACAAUGUUGUA
17
1157





CCR5-805
+
AAAAUAAACAAUCAUGA
17
1158





CCR5-806
+
ACCGAAGCAGAGUUUUU
17
1159





CCR5-807
+
AUGACCAUGACAAGCAG
17
1160





CCR5-808
+
CCAUGACAAGCAGCGGC
17
1161





CCR5-809
+
UGACUAUCUUUAAUGUC
17
1162





CCR5-810
+
AAUUGAUACUGACUGUA
17
1163





CCR5-811
+
UGGAAAAUGAGAGCUGC
17
1164









Table 1E provides targeting domains for knocking out the CCR5 gene. In an embodiment, the targeting domain is the exact complement of the target domain. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that gives double stranded cleavage. Any of the targeting domains in the table can be used with a S. aureus Cas9 single-stranded break nucleases (nickases). In an embodiment, dual targeting is used to create two nicks.













TABLE 1E








Target
SEQ



DNA

Site
ID


gRNA Name
Strand
Targeting Domain
Length
NO



















CCR5-812

AUGACAUCAAUUAUUAUACA
20
1165





CCR5-813

UGACAUCAAUUAUUAUACAU
20
1166





CCR5-814

AGCCCUGCCAAAAAAUCAAU
20
1167





CCR5-815

UGGUGUUCAUCUUUGGUUUU
20
1168





CCR5-816

UCCUGAUAAACUGCAAAAGG
20
1169





CCR5-817

UGAUAAACUGCAAAAGGCUG
20
1170





CCR5-818

UUCCUUCUUACUGUCCCCUU
20
1171





CCR5-819

GCUCACUAUGCUGCCGCCCA
20
1172





CCR5-820

CUCACUAUGCUGCCGCCCAG
20
1173





CCR5-821

UGCUGCCGCCCAGUGGGACU
20
1174





CCR5-822

GCUGCCGCCCAGUGGGACUU
20
1175





CCR5-823

UACAAUGUGUCAACUCUUGA
20
1176





CCR5-824

CUAUUUUAUAGGCUUCUUCU
20
1177





CCR5-825

UAUUUUAUAGGCUUCUUCUC
20
1178





CCR5-826

GCUGUGUUUGCUUUAAAAGC
20
1179





CCR5-827

AAAAGCCAGGACGGUCACCU
20
1180





CCR5-828

AAAGCCAGGACGGUCACCUU
20
1181





CCR5-829

GUGGUGACAAGUGUGAUCAC
20
1182





CCR5-830

GGCUGUGUUUGCGUCUCUCC
20
1183





CCR5-831

GCUGUGUUUGCGUCUCUCCC
20
1184





CCR5-832

ACAUCAAUUAUUAUACA
17
1185





CCR5-833

CAUCAAUUAUUAUACAU
17
1186





CCR5-834

CCUGCCAAAAAAUCAAU
17
1187





CCR5-835

UGUUCAUCUUUGGUUUU
17
1188





CCR5-836

UGAUAAACUGCAAAAGG
17
1189





CCR5-837

UAAACUGCAAAAGGCUG
17
1190





CCR5-838

CUUCUUACUGUCCCCUU
17
1191





CCR5-839

CACUAUGCUGCCGCCCA
17
1192





CCR5-840

ACUAUGCUGCCGCCCAG
17
1193





CCR5-841

UGCCGCCCAGUGGGACU
17
1194





CCR5-842

GCCGCCCAGUGGGACUU
17
1195





CCR5-843

AAUGUGUCAACUCUUGA
17
1196





CCR5-844

UUUUAUAGGCUUCUUCU
17
1197





CCR5-845

UUUAUAGGCUUCUUCUC
17
1198





CCR5-846

GUGUUUGCUUUAAAAGC
17
1199





CCR5-847

AGCCAGGACGGUCACCU
17
1200





CCR5-848

GCCAGGACGGUCACCUU
17
1201





CCR5-849

GUGACAAGUGUGAUCAC
17
1202





CCR5-850

UGUGUUUGCGUCUCUCC
17
1203





CCR5-851

GUGUUUGCGUCUCUCCC
17
1204





CCR5-852
+
GCUUUUAAAGCAAACACAGC
20
1205





CCR5-853
+
GCCAGGUACCUAUCGAUUGU
20
1206





CCR5-854
+
CCAGGUACCUAUCGAUUGUC
20
1207





CCR5-855
+
AGGUACCUAUCGAUUGUCAG
20
1208





CCR5-856
+
UAUCGAUUGUCAGGAGGAUG
20
1209





CCR5-857
+
CGAUUGUCAGGAGGAUGAUG
20
1210





CCR5-858
+
GAGGAUGAUGAAGAAGAUUC
20
1211





CCR5-859
+
GGAUGAUGAAGAAGAUUCCA
20
1212





CCR5-860
+
UGAUGAAGAAGAUUCCAGAG
20
1213





CCR5-861
+
CAGAGAAGAAGCCUAUAAAA
20
1214





CCR5-862
+
CUAUAAAAUAGAGCCCUGUC
20
1215





CCR5-863
+
AUUGUAUUUCCAAAGUCCCA
20
1216





CCR5-864
+
UCCCACUGGGCGGCAGCAUA
20
1217





CCR5-865
+
GGGCGGCAGCAUAGUGAGCC
20
1218





CCR5-866
+
CGGCAGCAUAGUGAGCCCAG
20
1219





CCR5-867
+
GGCAGCAUAGUGAGCCCAGA
20
1220





CCR5-868
+
GCAGCAUAGUGAGCCCAGAA
20
1221





CCR5-869
+
UGAGCCCAGAAGGGGACAGU
20
1222





CCR5-870
+
GCCCAGAAGGGGACAGUAAG
20
1223





CCR5-871
+
CCCAGAAGGGGACAGUAAGA
20
1224





CCR5-872
+
AGUAAGAAGGAAAAACAGGU
20
1225





CCR5-873
+
ACAGGUCAGAGAUGGCCAGG
20
1226





CCR5-874
+
UUCAGCCUUUUGCAGUUUAU
20
1227





CCR5-875
+
GCCUUUUGCAGUUUAUCAGG
20
1228





CCR5-876
+
CUUUUGCAGUUUAUCAGGAU
20
1229





CCR5-877
+
UGUUGCCCACAAAACCAAAG
20
1230





CCR5-878
+
AAAACCAAAGAUGAACACCA
20
1231





CCR5-879
+
CAAAGAUGAACACCAGUGAG
20
1232





CCR5-880
+
GAUGAACACCAGUGAGUAGA
20
1233





CCR5-881
+
AUGAACACCAGUGAGUAGAG
20
1234





CCR5-882
+
ACCAGUGAGUAGAGCGGAGG
20
1235





CCR5-883
+
CCAGUGAGUAGAGCGGAGGC
20
1236





CCR5-884
+
GAGUAGAGCGGAGGCAGGAG
20
1237





CCR5-885
+
GCUUCACAUUGAUUUUUUGG
20
1238





CCR5-886
+
AUAAUAAUUGAUGUCAUAGA
20
1239





CCR5-887
+
UUUAAAGCAAACACAGC
17
1240





CCR5-888
+
AGGUACCUAUCGAUUGU
17
1241





CCR5-889
+
GGUACCUAUCGAUUGUC
17
1242





CCR5-890
+
UACCUAUCGAUUGUCAG
17
1243





CCR5-891
+
CGAUUGUCAGGAGGAUG
17
1244





CCR5-892
+
UUGUCAGGAGGAUGAUG
17
1245





CCR5-893
+
GAUGAUGAAGAAGAUUC
17
1246





CCR5-894
+
UGAUGAAGAAGAUUCCA
17
1247





CCR5-895
+
UGAAGAAGAUUCCAGAG
17
1248





CCR5-896
+
AGAAGAAGCCUAUAAAA
17
1249





CCR5-897
+
UAAAAUAGAGCCCUGUC
17
1250





CCR5-898
+
GUAUUUCCAAAGUCCCA
17
1251





CCR5-899
+
CACUGGGCGGCAGCAUA
17
1252





CCR5-900
+
CGGCAGCAUAGUGAGCC
17
1253





CCR5-901
+
CAGCAUAGUGAGCCCAG
17
1254





CCR5-902
+
AGCAUAGUGAGCCCAGA
17
1255





CCR5-903
+
GCAUAGUGAGCCCAGAA
17
1256





CCR5-904
+
GCCCAGAAGGGGACAGU
17
1257





CCR5-905
+
CAGAAGGGGACAGUAAG
17
1258





CCR5-906
+
AGAAGGGGACAGUAAGA
17
1259





CCR5-907
+
AAGAAGGAAAAACAGGU
17
1260





CCR5-908
+
GGUCAGAGAUGGCCAGG
17
1261





CCR5-909
+
AGCCUUUUGCAGUUUAU
17
1262





CCR5-910
+
UUUUGCAGUUUAUCAGG
17
1263





CCR5-911
+
UUGCAGUUUAUCAGGAU
17
1264





CCR5-912
+
UGCCCACAAAACCAAAG
17
1265





CCR5-913
+
ACCAAAGAUGAACACCA
17
1266





CCR5-914
+
AGAUGAACACCAGUGAG
17
1267





CCR5-915
+
GAACACCAGUGAGUAGA
17
1268





CCR5-916
+
AACACCAGUGAGUAGAG
17
1269





CCR5-917
+
AGUGAGUAGAGCGGAGG
17
1270





CCR5-918
+
GUGAGUAGAGCGGAGGC
17
1271





CCR5-919
+
UAGAGCGGAGGCAGGAG
17
1272





CCR5-920
+
UCACAUUGAUUUUUUGG
17
1273





CCR5-921
+
AUAAUUGAUGUCAUAGA
17
1274





CCR5-922

CCAUACAGUCAGUAUCAAUU
20
1275





CCR5-923

CAUACAGUCAGUAUCAAUUC
20
1276





CCR5-924

ACAGUCAGUAUCAAUUCUGG
20
1277





CCR5-925

AGACAUUAAAGAUAGUCAUC
20
1278





CCR5-926

GACAUUAAAGAUAGUCAUCU
20
1279





CCR5-927

UUGUCAUGGUCAUCUGCUAC
20
1280





CCR5-928

UGUCAUGGUCAUCUGCUACU
20
1281





CCR5-929

GUCAUGGUCAUCUGCUACUC
20
1282





CCR5-930

CUAAAAACUCUGCUUCGGUG
20
1283





CCR5-931

AACUCUGCUUCGGUGUCGAA
20
1284





CCR5-932

CUCUGCUUCGGUGUCGAAAU
20
1285





CCR5-933

UGCUUCGGUGUCGAAAUGAG
20
1286





CCR5-934

UUCGGUGUCGAAAUGAGAAG
20
1287





CCR5-935

CGAAAUGAGAAGAAGAGGCA
20
1288





CCR5-936

AGAAGAAGAGGCACAGGGCU
20
1289





CCR5-937

AUGAUUGUUUAUUUUCUCUU
20
1290





CCR5-938

CCUACAACAUUGUCCUUCUC
20
1291





CCR5-939

UCCUUCUCCUGAACACCUUC
20
1292





CCR5-940

CCUUCUCCUGAACACCUUCC
20
1293





CCR5-941

CCUUCCAGGAAUUCUUUGGC
20
1294





CCR5-942

AUUGCAGUAGCUCUAACAGG
20
1295





CCR5-943

GGACCAAGCUAUGCAGGUGA
20
1296





CCR5-944

UAUGCAGGUGACAGAGACUC
20
1297





CCR5-945

AUGCAGGUGACAGAGACUCU
20
1298





CCR5-946

CCCCAUCAUCUAUGCCUUUG
20
1299





CCR5-947

CCCAUCAUCUAUGCCUUUGU
20
1300





CCR5-948

CCAUCAUCUAUGCCUUUGUC
20
1301





CCR5-949

CAUCAUCUAUGCCUUUGUCG
20
1302





CCR5-950

UCAUCUAUGCCUUUGUCGGG
20
1303





CCR5-951

GCCUUUGUCGGGGAGAAGUU
20
1304





CCR5-952

AUGCUGUUCUAUUUUCCAGC
20
1305





CCR5-953

UAUUUUCCAGCAAGAGGCUC
20
1306





CCR5-954

UUCCAGCAAGAGGCUCCCGA
20
1307





CCR5-955

CUCAGUUUACACCCGAUCCA
20
1308





CCR5-956

UCAGUUUACACCCGAUCCAC
20
1309





CCR5-957

CAGUUUACACCCGAUCCACU
20
1310





CCR5-958

AGUUUACACCCGAUCCACUG
20
1311





CCR5-959

ACACCCGAUCCACUGGGGAG
20
1312





CCR5-960

CACCCGAUCCACUGGGGAGC
20
1313





CCR5-961

CUGGGGAGCAGGAAAUAUCU
20
1314





CCR5-962

AAUAUCUGUGGGCUUGUGAC
20
1315





CCR5-963

GGCUUGUGACACGGACUCAA
20
1316





CCR5-964

AAGUGGGCUGGUGACCCAGU
20
1317





CCR5-965

GCUUAGUUUUCAUACACAGC
20
1318





CCR5-966

GUUUUCAUACACAGCCUGGG
20
1319





CCR5-967

UUUUCAUACACAGCCUGGGC
20
1320





CCR5-968

UUUCAUACACAGCCUGGGCU
20
1321





CCR5-969

AUACACAGCCUGGGCUGGGG
20
1322





CCR5-970

UACACAGCCUGGGCUGGGGG
20
1323





CCR5-971

CAGCCUGGGCUGGGGGUGGG
20
1324





CCR5-972

AGCCUGGGCUGGGGGUGGGG
20
1325





CCR5-973

GCCUGGGCUGGGGGUGGGGU
20
1326





CCR5-974

CUGGGCUGGGGGUGGGGUGG
20
1327





CCR5-975

GUGGGAGAGGUCUUUUUUAA
20
1328





CCR5-976

UGGGAGAGGUCUUUUUUAAA
20
1329





CCR5-977

UUAAAAGGAAGUUACUGUUA
20
1330





CCR5-978

AAAAGGAAGUUACUGUUAUA
20
1331





CCR5-979

UCUUUUAAGCCCAUCAAUUA
20
1332





CCR5-980

AGCCAAAUCAAAAUAUGUUG
20
1333





CCR5-981

UGACAAACUCUCCCUUCACU
20
1334





CCR5-982

AGUUCCUUAUGUAUAUUUAA
20
1335





CCR5-983

GUAUAUUUAAAAGAAAGCCU
20
1336





CCR5-984

AUAUUUAAAAGAAAGCCUCA
20
1337





CCR5-985

CCUCAGAGAAUUGCUGAUUC
20
1338





CCR5-986

UGAUUCUUGAGUUUAGUGAU
20
1339





CCR5-987

CUUGAGUUUAGUGAUCUGAA
20
1340





CCR5-988

CAGAAAUACCAAAAUUAUUU
20
1341





CCR5-989

AAACAGGUCUUUGUCUUGCU
20
1342





CCR5-990

AACAGGUCUUUGUCUUGCUA
20
1343





CCR5-991

ACAGGUCUUUGUCUUGCUAU
20
1344





CCR5-992

CAGGUCUUUGUCUUGCUAUG
20
1345





CCR5-993

GGUCUUUGUCUUGCUAUGGG
20
1346





CCR5-994

UUGCUAUGGGGAGAAAAGAC
20
1347





CCR5-995

AGACAUGAAUAUGAUUAGUA
20
1348





CCR5-996

GUUAAUAAGUUUCACUGACU
20
1349





CCR5-997

UUUCACUGACUUAGAACCAG
20
1350





CCR5-998

UCACUGACUUAGAACCAGGC
20
1351





CCR5-999

CCAGGCGAGAGACUUGUGGC
20
1352





CCR5-1000

CAGGCGAGAGACUUGUGGCC
20
1353





CCR5-1001

AGGCGAGAGACUUGUGGCCU
20
1354





CCR5-1002

GCGAGAGACUUGUGGCCUGG
20
1355





CCR5-1003

AGACUUGUGGCCUGGGAGAG
20
1356





CCR5-1004

GACUUGUGGCCUGGGAGAGC
20
1357





CCR5-1005

ACUUGUGGCCUGGGAGAGCU
20
1358





CCR5-1006

CUUGUGGCCUGGGAGAGCUG
20
1359





CCR5-1007

GAGCUGGGGAAGCUUCUUAA
20
1360





CCR5-1008

GCUGGGGAAGCUUCUUAAAU
20
1361





CCR5-1009

GGGGAAGCUUCUUAAAUGAG
20
1362





CCR5-1010

GGGAAGCUUCUUAAAUGAGA
20
1363





CCR5-1011

CUUCUUAAAUGAGAAGGAAU
20
1364





CCR5-1012

UAAAUGAGAAGGAAUUUGAG
20
1365





CCR5-1013

UCAUCUAUUGCUGGCAAAGA
20
1366





CCR5-1014

AGCCUCACUGCAAGCACUGC
20
1367





CCR5-1015

UGCAUGGGCAAGCUUGGCUG
20
1368





CCR5-1016

AUGGGCAAGCUUGGCUGUAG
20
1369





CCR5-1017

UGGGCAAGCUUGGCUGUAGA
20
1370





CCR5-1018

AGCUUGGCUGUAGAAGGAGA
20
1371





CCR5-1019

GUAGAAGGAGACAGAGCUGG
20
1372





CCR5-1020

UAGAAGGAGACAGAGCUGGU
20
1373





CCR5-1021

AGAAGGAGACAGAGCUGGUU
20
1374





CCR5-1022

ACAGAGCUGGUUGGGAAGAC
20
1375





CCR5-1023

CAGAGCUGGUUGGGAAGACA
20
1376





CCR5-1024

AGAGCUGGUUGGGAAGACAU
20
1377





CCR5-1025

GAGCUGGUUGGGAAGACAUG
20
1378





CCR5-1026

GCUGGUUGGGAAGACAUGGG
20
1379





CCR5-1027

CUGGUUGGGAAGACAUGGGG
20
1380





CCR5-1028

GUUGGGAAGACAUGGGGAGG
20
1381





CCR5-1029

AGGAAGGACAAGGCUAGAUC
20
1382





CCR5-1030

AAGGACAAGGCUAGAUCAUG
20
1383





CCR5-1031

GGCAUUGCUCCGUCUAAGUC
20
1384





CCR5-1032

UGCUCCGUCUAAGUCAUGAG
20
1385





CCR5-1033

CGUCUAAGUCAUGAGCUGAG
20
1386





CCR5-1034

GUCUAAGUCAUGAGCUGAGC
20
1387





CCR5-1035

UCUAAGUCAUGAGCUGAGCA
20
1388





CCR5-1036

GGAGAUCCUGGUUGGUGUUG
20
1389





CCR5-1037

GAAGGUUUACUCUGUGGCCA
20
1390





CCR5-1038

AAGGUUUACUCUGUGGCCAA
20
1391





CCR5-1039

GGUUUACUCUGUGGCCAAAG
20
1392





CCR5-1040

CUCUGUGGCCAAAGGAGGGU
20
1393





CCR5-1041

UCUGUGGCCAAAGGAGGGUC
20
1394





CCR5-1042

GUGGCCAAAGGAGGGUCAGG
20
1395





CCR5-1043

CCAAAGGAGGGUCAGGAAGG
20
1396





CCR5-1044

GGUCAGGAAGGAUGAGCAUU
20
1397





CCR5-1045

GAAGGAUGAGCAUUUAGGGC
20
1398





CCR5-1046

AAGGAUGAGCAUUUAGGGCA
20
1399





CCR5-1047

ACCACCAACAGCCCUCAGGU
20
1400





CCR5-1048

CCAACAGCCCUCAGGUCAGG
20
1401





CCR5-1049

AACAGCCCUCAGGUCAGGGU
20
1402





CCR5-1050

GCCUCUGCUAAGCUCAAGGC
20
1403





CCR5-1051

CUCUGCUAAGCUCAAGGCGU
20
1404





CCR5-1052

GCUAAGCUCAAGGCGUGAGG
20
1405





CCR5-1053

CUAAGCUCAAGGCGUGAGGA
20
1406





CCR5-1054

UAAGCUCAAGGCGUGAGGAU
20
1407





CCR5-1055

GCUCAAGGCGUGAGGAUGGG
20
1408





CCR5-1056

CUCAAGGCGUGAGGAUGGGA
20
1409





CCR5-1057

CAAGGCGUGAGGAUGGGAAG
20
1410





CCR5-1058

AAGGCGUGAGGAUGGGAAGG
20
1411





CCR5-1059

AGGCGUGAGGAUGGGAAGGA
20
1412





CCR5-1060

GGAAGGAGGGAGGUAUUCGU
20
1413





CCR5-1061

GGAGGGAGGUAUUCGUAAGG
20
1414





CCR5-1062

GAGGGAGGUAUUCGUAAGGA
20
1415





CCR5-1063

AGGGAGGUAUUCGUAAGGAU
20
1416





CCR5-1064

GAGGUAUUCGUAAGGAUGGG
20
1417





CCR5-1065

AGGUAUUCGUAAGGAUGGGA
20
1418





CCR5-1066

GUAUUCGUAAGGAUGGGAAG
20
1419





CCR5-1067

UAUUCGUAAGGAUGGGAAGG
20
1420





CCR5-1068

AUUCGUAAGGAUGGGAAGGA
20
1421





CCR5-1069

GGGAGGUAUUCGUGCAGCAU
20
1422





CCR5-1070

GAGGUAUUCGUGCAGCAUAU
20
1423





CCR5-1071

UCGUGCAGCAUAUGAGGAUG
20
1424





CCR5-1072

AUAUGAGGAUGCAGAGUCAG
20
1425





CCR5-1073

AGGAUGCAGAGUCAGCAGAA
20
1426





CCR5-1074

GGAUGCAGAGUCAGCAGAAC
20
1427





CCR5-1075

GCAGAGUCAGCAGAACUGGG
20
1428





CCR5-1076

UCAGCAGAACUGGGGUGGAU
20
1429





CCR5-1077

AGAACUGGGGUGGAUUUGGG
20
1430





CCR5-1078

GAACUGGGGUGGAUUUGGGU
20
1431





CCR5-1079

GGGGUGGAUUUGGGUUGGAA
20
1432





CCR5-1080

GGUGGAUUUGGGUUGGAAGU
20
1433





CCR5-1081

UUUGGGUUGGAAGUGAGGGU
20
1434





CCR5-1082

UGGGUUGGAAGUGAGGGUCA
20
1435





CCR5-1083

GGUUGGAAGUGAGGGUCAGA
20
1436





CCR5-1084

GUUGGAAGUGAGGGUCAGAG
20
1437





CCR5-1085

AGUGAGGGUCAGAGAGGAGU
20
1438





CCR5-1086

UGAGGGUCAGAGAGGAGUCA
20
1439





CCR5-1087

AGGGUCAGAGAGGAGUCAGA
20
1440





CCR5-1088

AUCCCUAGUCUUCAAGCAGA
20
1441





CCR5-1089

UCCCUAGUCUUCAAGCAGAU
20
1442





CCR5-1090

CCUAGUCUUCAAGCAGAUUG
20
1443





CCR5-1091

CAAGCAGAUUGGAGAAACCC
20
1444





CCR5-1092

CCUUGAAAAGACAUCAAGCA
20
1445





CCR5-1093

UGAAAAGACAUCAAGCACAG
20
1446





CCR5-1094

GAAAAGACAUCAAGCACAGA
20
1447





CCR5-1095

AAAGACAUCAAGCACAGAAG
20
1448





CCR5-1096

AAGACAUCAAGCACAGAAGG
20
1449





CCR5-1097

GACAUCAAGCACAGAAGGAG
20
1450





CCR5-1098

ACAUCAAGCACAGAAGGAGG
20
1451





CCR5-1099

AUCAAGCACAGAAGGAGGAG
20
1452





CCR5-1100

UCAAGCACAGAAGGAGGAGG
20
1453





CCR5-1101

AGGAGGAGGAGGUUUAGGUC
20
1454





CCR5-1102

AGGAGGAGGUUUAGGUCAAG
20
1455





CCR5-1103

AGGUUUAGGUCAAGAAGAAG
20
1456





CCR5-1104

AAGAAGAUGGAUUGGUGUAA
20
1457





CCR5-1105

AGAUGGAUUGGUGUAAAAGG
20
1458





CCR5-1106

AAAAGGAUGGGUCUGGUUUG
20
1459





CCR5-1107

AUGGGUCUGGUUUGCAGAGC
20
1460





CCR5-1108

AGACUCCAGGCUGUCUUUCA
20
1461





CCR5-1109

AGAUUUCCUUCCCAUCCCAG
20
1462





CCR5-1110

UUCCCAUCCCAGCUGAAAUA
20
1463





CCR5-1111

CCCAUCCCAGCUGAAAUACU
20
1464





CCR5-1112

CCAUCCCAGCUGAAAUACUG
20
1465





CCR5-1113

CUGAAAUACUGAGGGGUCUC
20
1466





CCR5-1114

UGAAAUACUGAGGGGUCUCC
20
1467





CCR5-1115

AAAUACUGAGGGGUCUCCAG
20
1468





CCR5-1116

AAUACUGAGGGGUCUCCAGG
20
1469





CCR5-1117

UCCAGGAGGAGACUAGAUUU
20
1470





CCR5-1118

GAGACUAGAUUUAUGAAUAC
20
1471





CCR5-1119

GAUUUAUGAAUACACGAGGU
20
1472





CCR5-1120

AAUACACGAGGUAUGAGGUC
20
1473





CCR5-1121

AUACACGAGGUAUGAGGUCU
20
1474





CCR5-1122

GAACAUACUUCAGCUCACAC
20
1475





CCR5-1123

AGCUCACACAUGAGAUCUAG
20
1476





CCR5-1124

CUCACACAUGAGAUCUAGGU
20
1477





CCR5-1125

GAUUACCUAGUAGUCAUUUC
20
1478





CCR5-1126

AGUAGUCAUUUCAUGGGUUG
20
1479





CCR5-1127

GUAGUCAUUUCAUGGGUUGU
20
1480





CCR5-1128

UAGUCAUUUCAUGGGUUGUU
20
1481





CCR5-1129

GUCAUUUCAUGGGUUGUUGG
20
1482





CCR5-1130

UGGGUUGUUGGGAGGAUUCU
20
1483





CCR5-1131

CAAACUCUUAGUUACUCAUU
20
1484





CCR5-1132

AAACUCUUAGUUACUCAUUC
20
1485





CCR5-1133

UUACUCAUUCAGGGAUAGCA
20
1486





CCR5-1134

GGAUAGCACUGAGCAAAGCA
20
1487





CCR5-1135

ACUGAGCAAAGCAUUGAGCA
20
1488





CCR5-1136

CUGAGCAAAGCAUUGAGCAA
20
1489





CCR5-1137

CAUUGAGCAAAGGGGUCCCA
20
1490





CCR5-1138

AGCAAAGGGGUCCCAUAGAG
20
1491





CCR5-1139

CAAAGGGGUCCCAUAGAGGU
20
1492





CCR5-1140

AAAGGGGUCCCAUAGAGGUG
20
1493





CCR5-1141

AAGGGGUCCCAUAGAGGUGA
20
1494





CCR5-1142

CCCAUAGAGGUGAGGGAAGC
20
1495





CCR5-1143

CAUUUAACCGUCAAUAGGCA
20
1496





CCR5-1144

AUUUAACCGUCAAUAGGCAA
20
1497





CCR5-1145

UUUAACCGUCAAUAGGCAAA
20
1498





CCR5-1146

UUAACCGUCAAUAGGCAAAG
20
1499





CCR5-1147

UAACCGUCAAUAGGCAAAGG
20
1500





CCR5-1148

AACCGUCAAUAGGCAAAGGG
20
1501





CCR5-1149

CGUCAAUAGGCAAAGGGGGG
20
1502





CCR5-1150

GUCAAUAGGCAAAGGGGGGA
20
1503





CCR5-1151

GGGGGAAGGGACAUAUUCAU
20
1504





CCR5-1152

GGGGAAGGGACAUAUUCAUU
20
1505





CCR5-1153

UCAUUUGGAAAUAAGCUGCC
20
1506





CCR5-1154

ACCAGCCUCCGUAUUUCAGA
20
1507





CCR5-1155

GCCUCCGUAUUUCAGACUGA
20
1508





CCR5-1156

CCUCCGUAUUUCAGACUGAA
20
1509





CCR5-1157

CUCCGUAUUUCAGACUGAAU
20
1510





CCR5-1158

GUAUUUCAGACUGAAUGGGG
20
1511





CCR5-1159

UAUUUCAGACUGAAUGGGGG
20
1512





CCR5-1160

AUUUCAGACUGAAUGGGGGU
20
1513





CCR5-1161

UUUCAGACUGAAUGGGGGUG
20
1514





CCR5-1162

UUCAGACUGAAUGGGGGUGG
20
1515





CCR5-1163

UCAGACUGAAUGGGGGUGGG
20
1516





CCR5-1164

GAUGCCUUCUCCAGACAAAC
20
1517





CCR5-1165

UCCAGACAAACCAGAAGCAA
20
1518





CCR5-1166

AAAAUCGUCUCUCCCUCCCU
20
1519





CCR5-1167

CGUCUCUCCCUCCCUUUGAA
20
1520





CCR5-1168

AUGAAUAUACCCCUUAGUGU
20
1521





CCR5-1169

GUUUGGGUAUAUUCAUUUCA
20
1522





CCR5-1170

UUUGGGUAUAUUCAUUUCAA
20
1523





CCR5-1171

UUGGGUAUAUUCAUUUCAAA
20
1524





CCR5-1172

GGGUAUAUUCAUUUCAAAGG
20
1525





CCR5-1173

GUAUAUUCAUUUCAAAGGGA
20
1526





CCR5-1174

AUAUUCAUUUCAAAGGGAGA
20
1527





CCR5-1175

AUUCAUUUCAAAGGGAGAGA
20
1528





CCR5-1176

UCAUAUGAUUGUGCACAUAC
20
1529





CCR5-1177

UGCACAUACUUGAGACUGUU
20
1530





CCR5-1178

UACUUGAGACUGUUUUGAAU
20
1531





CCR5-1179

ACUUGAGACUGUUUUGAAUU
20
1532





CCR5-1180

CUUGAGACUGUUUUGAAUUU
20
1533





CCR5-1181

UUGAGACUGUUUUGAAUUUG
20
1534





CCR5-1182

ACCAUCAUAGUACAGGUAAG
20
1535





CCR5-1183

CAUCAUAGUACAGGUAAGGU
20
1536





CCR5-1184

AUCAUAGUACAGGUAAGGUG
20
1537





CCR5-1185

UCAUAGUACAGGUAAGGUGA
20
1538





CCR5-1186

AGGUGAGGGAAUAGUAAGUG
20
1539





CCR5-1187

GUGAGGGAAUAGUAAGUGGU
20
1540





CCR5-1188

AGUAAGUGGUGAGAACUACU
20
1541





CCR5-1189

GUAAGUGGUGAGAACUACUC
20
1542





CCR5-1190

UAAGUGGUGAGAACUACUCA
20
1543





CCR5-1191

UGGUGAGAACUACUCAGGGA
20
1544





CCR5-1192

UACUCAGGGAAUGAAGGUGU
20
1545





CCR5-1193

AAUGAAGGUGUCAGAAUAAU
20
1546





CCR5-1194

GCUACUGACUUUCUCAGCCU
20
1547





CCR5-1195

GACUUUCUCAGCCUCUGAAU
20
1548





CCR5-1196

UCAGCCUCUGAAUAUGAACG
20
1549





CCR5-1197

GUGAGCAUUGUGGCUGUCAG
20
1550





CCR5-1198

UGAGCAUUGUGGCUGUCAGC
20
1551





CCR5-1199

GUGGCUGUCAGCAGGAAGCA
20
1552





CCR5-1200

GCUGUCAGCAGGAAGCAACG
20
1553





CCR5-1201

CUGUCAGCAGGAAGCAACGA
20
1554





CCR5-1202

UGUCAGCAGGAAGCAACGAA
20
1555





CCR5-1203

UUUCCUUUUGCUCUUAAGUU
20
1556





CCR5-1204

UUCCUUUUGCUCUUAAGUUG
20
1557





CCR5-1205

CCUUUUGCUCUUAAGUUGUG
20
1558





CCR5-1206

UGGAGAGUGCAACAGUAGCA
20
1559





CCR5-1207

GUAGCAUAGGACCCUACCCU
20
1560





CCR5-1208

AUUUGCAUAUUCUUAUGUAU
20
1561





CCR5-1209

AUGUGAAAGUUACAAAUUGC
20
1562





CCR5-1210

GAAAGUUACAAAUUGCUUGA
20
1563





CCR5-1211

UACAGUCAGUAUCAAUU
17
1564





CCR5-1212

ACAGUCAGUAUCAAUUC
17
1565





CCR5-1213

GUCAGUAUCAAUUCUGG
17
1566





CCR5-1214

CAUUAAAGAUAGUCAUC
17
1567





CCR5-1215

AUUAAAGAUAGUCAUCU
17
1568





CCR5-1216

UCAUGGUCAUCUGCUAC
17
1569





CCR5-1217

CAUGGUCAUCUGCUACU
17
1570





CCR5-1218

AUGGUCAUCUGCUACUC
17
1571





CCR5-1219

AAAACUCUGCUUCGGUG
17
1572





CCR5-1220

UCUGCUUCGGUGUCGAA
17
1573





CCR5-1221

UGCUUCGGUGUCGAAAU
17
1574





CCR5-1222

UUCGGUGUCGAAAUGAG
17
1575





CCR5-1223

GGUGUCGAAAUGAGAAG
17
1576





CCR5-1224

AAUGAGAAGAAGAGGCA
17
1577





CCR5-1225

AGAAGAGGCACAGGGCU
17
1578





CCR5-1226

AUUGUUUAUUUUCUCUU
17
1579





CCR5-1227

ACAACAUUGUCCUUCUC
17
1580





CCR5-1228

UUCUCCUGAACACCUUC
17
1581





CCR5-1229

UCUCCUGAACACCUUCC
17
1582





CCR5-1230

UCCAGGAAUUCUUUGGC
17
1583





CCR5-1231

GCAGUAGCUCUAACAGG
17
1584





CCR5-1232

CCAAGCUAUGCAGGUGA
17
1585





CCR5-1233

GCAGGUGACAGAGACUC
17
1586





CCR5-1234

CAGGUGACAGAGACUCU
17
1587





CCR5-1235

CAUCAUCUAUGCCUUUG
17
1588





CCR5-1236

AUCAUCUAUGCCUUUGU
17
1589





CCR5-1237

UCAUCUAUGCCUUUGUC
17
1590





CCR5-1238

CAUCUAUGCCUUUGUCG
17
1591





CCR5-1239

UCUAUGCCUUUGUCGGG
17
1592





CCR5-1240

UUUGUCGGGGAGAAGUU
17
1593





CCR5-1241

CUGUUCUAUUUUCCAGC
17
1594





CCR5-1242

UUUCCAGCAAGAGGCUC
17
1595





CCR5-1243

CAGCAAGAGGCUCCCGA
17
1596





CCR5-1244

AGUUUACACCCGAUCCA
17
1597





CCR5-1245

GUUUACACCCGAUCCAC
17
1598





CCR5-1246

UUUACACCCGAUCCACU
17
1599





CCR5-1247

UUACACCCGAUCCACUG
17
1600





CCR5-1248

CCCGAUCCACUGGGGAG
17
1601





CCR5-1249

CCGAUCCACUGGGGAGC
17
1602





CCR5-1250

GGGAGCAGGAAAUAUCU
17
1603





CCR5-1251

AUCUGUGGGCUUGUGAC
17
1604





CCR5-1252

UUGUGACACGGACUCAA
17
1605





CCR5-1253

UGGGCUGGUGACCCAGU
17
1606





CCR5-1254

UAGUUUUCAUACACAGC
17
1607





CCR5-1255

UUCAUACACAGCCUGGG
17
1608





CCR5-1256

UCAUACACAGCCUGGGC
17
1609





CCR5-1257

CAUACACAGCCUGGGCU
17
1610





CCR5-1258

CACAGCCUGGGCUGGGG
17
1611





CCR5-1259

ACAGCCUGGGCUGGGGG
17
1612





CCR5-1260

CCUGGGCUGGGGGUGGG
17
1613





CCR5-1261

CUGGGCUGGGGGUGGGG
17
1614





CCR5-1262

UGGGCUGGGGGUGGGGU
17
1615





CCR5-1263

GGCUGGGGGUGGGGUGG
17
1616





CCR5-1264

GGAGAGGUCUUUUUUAA
17
1617





CCR5-1265

GAGAGGUCUUUUUUAAA
17
1618





CCR5-1266

AAAGGAAGUUACUGUUA
17
1619





CCR5-1267

AGGAAGUUACUGUUAUA
17
1620





CCR5-1268

UUUAAGCCCAUCAAUUA
17
1621





CCR5-1269

CAAAUCAAAAUAUGUUG
17
1622





CCR5-1270

CAAACUCUCCCUUCACU
17
1623





CCR5-1271

UCCUUAUGUAUAUUUAA
17
1624





CCR5-1272

UAUUUAAAAGAAAGCCU
17
1625





CCR5-1273

UUUAAAAGAAAGCCUCA
17
1626





CCR5-1274

CAGAGAAUUGCUGAUUC
17
1627





CCR5-1275

UUCUUGAGUUUAGUGAU
17
1628





CCR5-1276

GAGUUUAGUGAUCUGAA
17
1629





CCR5-1277

AAAUACCAAAAUUAUUU
17
1630





CCR5-1278

CAGGUCUUUGUCUUGCU
17
1631





CCR5-1279

AGGUCUUUGUCUUGCUA
17
1632





CCR5-1280

GGUCUUUGUCUUGCUAU
17
1633





CCR5-1281

GUCUUUGUCUUGCUAUG
17
1634





CCR5-1282

CUUUGUCUUGCUAUGGG
17
1635





CCR5-1283

CUAUGGGGAGAAAAGAC
17
1636





CCR5-1284

CAUGAAUAUGAUUAGUA
17
1637





CCR5-1285

AAUAAGUUUCACUGACU
17
1638





CCR5-1286

CACUGACUUAGAACCAG
17
1639





CCR5-1287

CUGACUUAGAACCAGGC
17
1640





CCR5-1288

GGCGAGAGACUUGUGGC
17
1641





CCR5-1289

GCGAGAGACUUGUGGCC
17
1642





CCR5-1290

CGAGAGACUUGUGGCCU
17
1643





CCR5-1291

AGAGACUUGUGGCCUGG
17
1644





CCR5-1292

CUUGUGGCCUGGGAGAG
17
1645





CCR5-1293

UUGUGGCCUGGGAGAGC
17
1646





CCR5-1294

UGUGGCCUGGGAGAGCU
17
1647





CCR5-1295

GUGGCCUGGGAGAGCUG
17
1648





CCR5-1296

CUGGGGAAGCUUCUUAA
17
1649





CCR5-1297

GGGGAAGCUUCUUAAAU
17
1650





CCR5-1298

GAAGCUUCUUAAAUGAG
17
1651





CCR5-1299

AAGCUUCUUAAAUGAGA
17
1652





CCR5-1300

CUUAAAUGAGAAGGAAU
17
1653





CCR5-1301

AUGAGAAGGAAUUUGAG
17
1654





CCR5-1302

UCUAUUGCUGGCAAAGA
17
1655





CCR5-1303

CUCACUGCAAGCACUGC
17
1656





CCR5-1304

AUGGGCAAGCUUGGCUG
17
1657





CCR5-1305

GGCAAGCUUGGCUGUAG
17
1658





CCR5-1306

GCAAGCUUGGCUGUAGA
17
1659





CCR5-1307

UUGGCUGUAGAAGGAGA
17
1660





CCR5-1308

GAAGGAGACAGAGCUGG
17
1661





CCR5-1309

AAGGAGACAGAGCUGGU
17
1662





CCR5-1310

AGGAGACAGAGCUGGUU
17
1663





CCR5-1311

GAGCUGGUUGGGAAGAC
17
1664





CCR5-1312

AGCUGGUUGGGAAGACA
17
1665





CCR5-1313

GCUGGUUGGGAAGACAU
17
1666





CCR5-1314

CUGGUUGGGAAGACAUG
17
1667





CCR5-1315

GGUUGGGAAGACAUGGG
17
1668





CCR5-1316

GUUGGGAAGACAUGGGG
17
1669





CCR5-1317

GGGAAGACAUGGGGAGG
17
1670





CCR5-1318

AAGGACAAGGCUAGAUC
17
1671





CCR5-1319

GACAAGGCUAGAUCAUG
17
1672





CCR5-1320

AUUGCUCCGUCUAAGUC
17
1673





CCR5-1321

UCCGUCUAAGUCAUGAG
17
1674





CCR5-1322

CUAAGUCAUGAGCUGAG
17
1675





CCR5-1323

UAAGUCAUGAGCUGAGC
17
1676





CCR5-1324

AAGUCAUGAGCUGAGCA
17
1677





CCR5-1325

GAUCCUGGUUGGUGUUG
17
1678





CCR5-1326

GGUUUACUCUGUGGCCA
17
1679





CCR5-1327

GUUUACUCUGUGGCCAA
17
1680





CCR5-1328

UUACUCUGUGGCCAAAG
17
1681





CCR5-1329

UGUGGCCAAAGGAGGGU
17
1682





CCR5-1330

GUGGCCAAAGGAGGGUC
17
1683





CCR5-1331

GCCAAAGGAGGGUCAGG
17
1684





CCR5-1332

AAGGAGGGUCAGGAAGG
17
1685





CCR5-1333

CAGGAAGGAUGAGCAUU
17
1686





CCR5-1334

GGAUGAGCAUUUAGGGC
17
1687





CCR5-1335

GAUGAGCAUUUAGGGCA
17
1688





CCR5-1336

ACCAACAGCCCUCAGGU
17
1689





CCR5-1337

ACAGCCCUCAGGUCAGG
17
1690





CCR5-1338

AGCCCUCAGGUCAGGGU
17
1691





CCR5-1339

UCUGCUAAGCUCAAGGC
17
1692





CCR5-1340

UGCUAAGCUCAAGGCGU
17
1693





CCR5-1341

AAGCUCAAGGCGUGAGG
17
1694





CCR5-1342

AGCUCAAGGCGUGAGGA
17
1695





CCR5-1343

GCUCAAGGCGUGAGGAU
17
1696





CCR5-1344

CAAGGCGUGAGGAUGGG
17
1697





CCR5-1345

AAGGCGUGAGGAUGGGA
17
1698





CCR5-1346

GGCGUGAGGAUGGGAAG
17
1699





CCR5-1347

GCGUGAGGAUGGGAAGG
17
1700





CCR5-1348

CGUGAGGAUGGGAAGGA
17
1701





CCR5-1349

AGGAGGGAGGUAUUCGU
17
1702





CCR5-1350

GGGAGGUAUUCGUAAGG
17
1703





CCR5-1351

GGAGGUAUUCGUAAGGA
17
1704





CCR5-1352

GAGGUAUUCGUAAGGAU
17
1705





CCR5-1353

GUAUUCGUAAGGAUGGG
17
1706





CCR5-1354

UAUUCGUAAGGAUGGGA
17
1707





CCR5-1355

UUCGUAAGGAUGGGAAG
17
1708





CCR5-1356

UCGUAAGGAUGGGAAGG
17
1709





CCR5-1357

CGUAAGGAUGGGAAGGA
17
1710





CCR5-1358

AGGUAUUCGUGCAGCAU
17
1711





CCR5-1359

GUAUUCGUGCAGCAUAU
17
1712





CCR5-1360

UGCAGCAUAUGAGGAUG
17
1713





CCR5-1361

UGAGGAUGCAGAGUCAG
17
1714





CCR5-1362

AUGCAGAGUCAGCAGAA
17
1715





CCR5-1363

UGCAGAGUCAGCAGAAC
17
1716





CCR5-1364

GAGUCAGCAGAACUGGG
17
1717





CCR5-1365

GCAGAACUGGGGUGGAU
17
1718





CCR5-1366

ACUGGGGUGGAUUUGGG
17
1719





CCR5-1367

CUGGGGUGGAUUUGGGU
17
1720





CCR5-1368

GUGGAUUUGGGUUGGAA
17
1721





CCR5-1369

GGAUUUGGGUUGGAAGU
17
1722





CCR5-1370

GGGUUGGAAGUGAGGGU
17
1723





CCR5-1371

GUUGGAAGUGAGGGUCA
17
1724





CCR5-1372

UGGAAGUGAGGGUCAGA
17
1725





CCR5-1373

GGAAGUGAGGGUCAGAG
17
1726





CCR5-1374

GAGGGUCAGAGAGGAGU
17
1727





CCR5-1375

GGGUCAGAGAGGAGUCA
17
1728





CCR5-1376

GUCAGAGAGGAGUCAGA
17
1729





CCR5-1377

CCUAGUCUUCAAGCAGA
17
1730





CCR5-1378

CUAGUCUUCAAGCAGAU
17
1731





CCR5-1379

AGUCUUCAAGCAGAUUG
17
1732





CCR5-1380

GCAGAUUGGAGAAACCC
17
1733





CCR5-1381

UGAAAAGACAUCAAGCA
17
1734





CCR5-1382

AAAGACAUCAAGCACAG
17
1735





CCR5-1383

AAGACAUCAAGCACAGA
17
1736





CCR5-1384

GACAUCAAGCACAGAAG
17
1737





CCR5-1385

ACAUCAAGCACAGAAGG
17
1738





CCR5-1386

AUCAAGCACAGAAGGAG
17
1739





CCR5-1387

UCAAGCACAGAAGGAGG
17
1740





CCR5-1388

AAGCACAGAAGGAGGAG
17
1741





CCR5-1389

AGCACAGAAGGAGGAGG
17
1742





CCR5-1390

AGGAGGAGGUUUAGGUC
17
1743





CCR5-1391

AGGAGGUUUAGGUCAAG
17
1744





CCR5-1392

UUUAGGUCAAGAAGAAG
17
1745





CCR5-1393

AAGAUGGAUUGGUGUAA
17
1746





CCR5-1394

UGGAUUGGUGUAAAAGG
17
1747





CCR5-1395

AGGAUGGGUCUGGUUUG
17
1748





CCR5-1396

GGUCUGGUUUGCAGAGC
17
1749





CCR5-1397

CUCCAGGCUGUCUUUCA
17
1750





CCR5-1398

UUUCCUUCCCAUCCCAG
17
1751





CCR5-1399

CCAUCCCAGCUGAAAUA
17
1752





CCR5-1400

AUCCCAGCUGAAAUACU
17
1753





CCR5-1401

UCCCAGCUGAAAUACUG
17
1754





CCR5-1402

AAAUACUGAGGGGUCUC
17
1755





CCR5-1403

AAUACUGAGGGGUCUCC
17
1756





CCR5-1404

UACUGAGGGGUCUCCAG
17
1757





CCR5-1405

ACUGAGGGGUCUCCAGG
17
1758





CCR5-1406

AGGAGGAGACUAGAUUU
17
1759





CCR5-1407

ACUAGAUUUAUGAAUAC
17
1760





CCR5-1408

UUAUGAAUACACGAGGU
17
1761





CCR5-1409

ACACGAGGUAUGAGGUC
17
1762





CCR5-1410

CACGAGGUAUGAGGUCU
17
1763





CCR5-1411

CAUACUUCAGCUCACAC
17
1764





CCR5-1412

UCACACAUGAGAUCUAG
17
1765





CCR5-1413

ACACAUGAGAUCUAGGU
17
1766





CCR5-1414

UACCUAGUAGUCAUUUC
17
1767





CCR5-1415

AGUCAUUUCAUGGGUUG
17
1768





CCR5-1416

GUCAUUUCAUGGGUUGU
17
1769





CCR5-1417

UCAUUUCAUGGGUUGUU
17
1770





CCR5-1418

AUUUCAUGGGUUGUUGG
17
1771





CCR5-1419

GUUGUUGGGAGGAUUCU
17
1772





CCR5-1420

ACUCUUAGUUACUCAUU
17
1773





CCR5-1421

CUCUUAGUUACUCAUUC
17
1774





CCR5-1422

CUCAUUCAGGGAUAGCA
17
1775





CCR5-1423

UAGCACUGAGCAAAGCA
17
1776





CCR5-1424

GAGCAAAGCAUUGAGCA
17
1777





CCR5-1425

AGCAAAGCAUUGAGCAA
17
1778





CCR5-1426

UGAGCAAAGGGGUCCCA
17
1779





CCR5-1427

AAAGGGGUCCCAUAGAG
17
1780





CCR5-1428

AGGGGUCCCAUAGAGGU
17
1781





CCR5-1429

GGGGUCCCAUAGAGGUG
17
1782





CCR5-1430

GGGUCCCAUAGAGGUGA
17
1783





CCR5-1431

AUAGAGGUGAGGGAAGC
17
1784





CCR5-1432

UUAACCGUCAAUAGGCA
17
1785





CCR5-1433

UAACCGUCAAUAGGCAA
17
1786





CCR5-1434

AACCGUCAAUAGGCAAA
17
1787





CCR5-1435

ACCGUCAAUAGGCAAAG
17
1788





CCR5-1436

CCGUCAAUAGGCAAAGG
17
1789





CCR5-1437

CGUCAAUAGGCAAAGGG
17
1790





CCR5-1438

CAAUAGGCAAAGGGGGG
17
1791





CCR5-1439

AAUAGGCAAAGGGGGGA
17
1792





CCR5-1440

GGAAGGGACAUAUUCAU
17
1793





CCR5-1441

GAAGGGACAUAUUCAUU
17
1794





CCR5-1442

UUUGGAAAUAAGCUGCC
17
1795





CCR5-1443

AGCCUCCGUAUUUCAGA
17
1796





CCR5-1444

UCCGUAUUUCAGACUGA
17
1797





CCR5-1445

CCGUAUUUCAGACUGAA
17
1798





CCR5-1446

CGUAUUUCAGACUGAAU
17
1799





CCR5-1447

UUUCAGACUGAAUGGGG
17
1800





CCR5-1448

UUCAGACUGAAUGGGGG
17
1801





CCR5-1449

UCAGACUGAAUGGGGGU
17
1802





CCR5-1450

CAGACUGAAUGGGGGUG
17
1803





CCR5-1451

AGACUGAAUGGGGGUGG
17
1804





CCR5-1452

GACUGAAUGGGGGUGGG
17
1805





CCR5-1453

GCCUUCUCCAGACAAAC
17
1806





CCR5-1454

AGACAAACCAGAAGCAA
17
1807





CCR5-1455

AUCGUCUCUCCCUCCCU
17
1808





CCR5-1456

CUCUCCCUCCCUUUGAA
17
1809





CCR5-1457

AAUAUACCCCUUAGUGU
17
1810





CCR5-1458

UGGGUAUAUUCAUUUCA
17
1811





CCR5-1459

GGGUAUAUUCAUUUCAA
17
1812





CCR5-1460

GGUAUAUUCAUUUCAAA
17
1813





CCR5-1461

UAUAUUCAUUUCAAAGG
17
1814





CCR5-1462

UAUUCAUUUCAAAGGGA
17
1815





CCR5-1463

UUCAUUUCAAAGGGAGA
17
1816





CCR5-1464

CAUUUCAAAGGGAGAGA
17
1817





CCR5-1465

UAUGAUUGUGCACAUAC
17
1818





CCR5-1466

ACAUACUUGAGACUGUU
17
1819





CCR5-1467

UUGAGACUGUUUUGAAU
17
1820





CCR5-1468

UGAGACUGUUUUGAAUU
17
1821





CCR5-1469

GAGACUGUUUUGAAUUU
17
1822





CCR5-1470

AGACUGUUUUGAAUUUG
17
1823





CCR5-1471

AUCAUAGUACAGGUAAG
17
1824





CCR5-1472

CAUAGUACAGGUAAGGU
17
1825





CCR5-1473

AUAGUACAGGUAAGGUG
17
1826





CCR5-1474

UAGUACAGGUAAGGUGA
17
1827





CCR5-1475

UGAGGGAAUAGUAAGUG
17
1828





CCR5-1476

AGGGAAUAGUAAGUGGU
17
1829





CCR5-1477

AAGUGGUGAGAACUACU
17
1830





CCR5-1478

AGUGGUGAGAACUACUC
17
1831





CCR5-1479

GUGGUGAGAACUACUCA
17
1832





CCR5-1480

UGAGAACUACUCAGGGA
17
1833





CCR5-1481

UCAGGGAAUGAAGGUGU
17
1834





CCR5-1482

GAAGGUGUCAGAAUAAU
17
1835





CCR5-1483

ACUGACUUUCUCAGCCU
17
1836





CCR5-1484

UUUCUCAGCCUCUGAAU
17
1837





CCR5-1485

GCCUCUGAAUAUGAACG
17
1838





CCR5-1486

AGCAUUGUGGCUGUCAG
17
1839





CCR5-1487

GCAUUGUGGCUGUCAGC
17
1840





CCR5-1488

GCUGUCAGCAGGAAGCA
17
1841





CCR5-1489

GUCAGCAGGAAGCAACG
17
1842





CCR5-1490

UCAGCAGGAAGCAACGA
17
1843





CCR5-1491

CAGCAGGAAGCAACGAA
17
1844





CCR5-1492

CCUUUUGCUCUUAAGUU
17
1845





CCR5-1493

CUUUUGCUCUUAAGUUG
17
1846





CCR5-1494

UUUGCUCUUAAGUUGUG
17
1847





CCR5-1495

AGAGUGCAACAGUAGCA
17
1848





CCR5-1496

GCAUAGGACCCUACCCU
17
1849





CCR5-1497

UGCAUAUUCUUAUGUAU
17
1850





CCR5-1498

UGAAAGUUACAAAUUGC
17
1851





CCR5-1499

AGUUACAAAUUGCUUGA
17
1852





CCR5-1500
+
UUUGUAACUUUCACAUACAU
20
1853





CCR5-1501
+
AUAUGCAAAUACUAAGAUGU
20
1854





CCR5-1502
+
AGAAUGUCUUUGACUUGGCC
20
1855





CCR5-1503
+
AAUGUCUUUGACUUGGCCCA
20
1856





CCR5-1504
+
CUUUGACUUGGCCCAGAGGG
20
1857





CCR5-1505
+
UGUUGCACUCUCCACAACUU
20
1858





CCR5-1506
+
UCUCCACAACUUAAGAGCAA
20
1859





CCR5-1507
+
CUCCACAACUUAAGAGCAAA
20
1860





CCR5-1508
+
CAAUGCUCACCGUUCAUAUU
20
1861





CCR5-1509
+
UCACCGUUCAUAUUCAGAGG
20
1862





CCR5-1510
+
ACCGUUCAUAUUCAGAGGCU
20
1863





CCR5-1511
+
UAUUCUGACACCUUCAUUCC
20
1864





CCR5-1512
+
UCAAGUAUGUGCACAAUCAU
20
1865





CCR5-1513
+
AUGUGCACAAUCAUAUGAGA
20
1866





CCR5-1514
+
CACAAUCAUAUGAGACAGAA
20
1867





CCR5-1515
+
AAAAACCUCUCUCUCUCCCU
20
1868





CCR5-1516
+
CCUCUCUCUCUCCCUUUGAA
20
1869





CCR5-1517
+
AAUGAAUAUACCCAAACACU
20
1870





CCR5-1518
+
AUGAAUAUACCCAAACACUA
20
1871





CCR5-1519
+
UAAGGGGUAUAUUCAUUUCA
20
1872





CCR5-1520
+
AAGGGGUAUAUUCAUUUCAA
20
1873





CCR5-1521
+
AGGGGUAUAUUCAUUUCAAA
20
1874





CCR5-1522
+
GGGUAUAUUCAUUUCAAAGG
20
1875





CCR5-1523
+
GGUAUAUUCAUUUCAAAGGG
20
1876





CCR5-1524
+
GUAUAUUCAUUUCAAAGGGA
20
1877





CCR5-1525
+
AUAUUCAUUUCAAAGGGAGG
20
1878





CCR5-1526
+
UUCUGUUGCUUCUGGUUUGU
20
1879





CCR5-1527
+
UCUGUUGCUUCUGGUUUGUC
20
1880





CCR5-1528
+
UGUUGCUUCUGGUUUGUCUG
20
1881





CCR5-1529
+
GGUUUGUCUGGAGAAGGCAU
20
1882





CCR5-1530
+
GUUUGUCUGGAGAAGGCAUC
20
1883





CCR5-1531
+
CCCCCCCACCCCCAUUCAGU
20
1884





CCR5-1532
+
ACCCCCAUUCAGUCUGAAAU
20
1885





CCR5-1533
+
CCCCCAUUCAGUCUGAAAUA
20
1886





CCR5-1534
+
GGCUGGUAAAUUGUACUUUU
20
1887





CCR5-1535
+
UCAAGGCAGCUUAUUUCCAA
20
1888





CCR5-1536
+
UGCCUAUUGACGGUUAAAUG
20
1889





CCR5-1537
+
GAUACCUACACUUGUGUGCA
20
1890





CCR5-1538
+
UUCAGGCUUCCCUCACCUCU
20
1891





CCR5-1539
+
UCAGGCUUCCCUCACCUCUA
20
1892





CCR5-1540
+
UGCUUUGCUCAGUGCUAUCC
20
1893





CCR5-1541
+
UUGCUCAGUGCUAUCCCUGA
20
1894





CCR5-1542
+
CUAUCCCUGAAUGAGUAACU
20
1895





CCR5-1543
+
AACUAAGAGUUUGAUGCUUA
20
1896





CCR5-1544
+
UGCUGCCUGUGGUUGCCUCA
20
1897





CCR5-1545
+
UAGAAUCCUCCCAACAACCC
20
1898





CCR5-1546
+
UCCUCACCUAGAUCUCAUGU
20
1899





CCR5-1547
+
ACCUAGAUCUCAUGUGUGAG
20
1900





CCR5-1548
+
UUCAUAAAUCUAGUCUCCUC
20
1901





CCR5-1549
+
UCAUAAAUCUAGUCUCCUCC
20
1902





CCR5-1550
+
GAGACCCCUCAGUAUUUCAG
20
1903





CCR5-1551
+
AGACCCCUCAGUAUUUCAGC
20
1904





CCR5-1552
+
CCCUCAGUAUUUCAGCUGGG
20
1905





CCR5-1553
+
CCUCAGUAUUUCAGCUGGGA
20
1906





CCR5-1554
+
CUCAGUAUUUCAGCUGGGAU
20
1907





CCR5-1555
+
AGUAUUUCAGCUGGGAUGGG
20
1908





CCR5-1556
+
GUAUUUCAGCUGGGAUGGGA
20
1909





CCR5-1557
+
CUGGGAUGGGAAGGAAAUCU
20
1910





CCR5-1558
+
GGGAAGGAAAUCUAUGAAGU
20
1911





CCR5-1559
+
UAUGAAGUCAGAAGCAUUCA
20
1912





CCR5-1560
+
AGCAUUCAGUGAAAGACAGC
20
1913





CCR5-1561
+
GCAUUCAGUGAAAGACAGCC
20
1914





CCR5-1562
+
AGUGAAAGACAGCCUGGAGU
20
1915





CCR5-1563
+
AAAGACAGCCUGGAGUCUGG
20
1916





CCR5-1564
+
UCUGUGCUUGAUGUCUUUUC
20
1917





CCR5-1565
+
CAAGGGUUUCUCCAAUCUGC
20
1918





CCR5-1566
+
UCUCCAAUCUGCUUGAAGAC
20
1919





CCR5-1567
+
CUCCAAUCUGCUUGAAGACU
20
1920





CCR5-1568
+
UCUGCAUCCUCAUAUGCUGC
20
1921





CCR5-1569
+
CCUCCCUCCUUCCCAUCCUU
20
1922





CCR5-1570
+
CUCCUUCCCAUCCUCACGCC
20
1923





CCR5-1571
+
UCCUCACGCCUUGAGCUUAG
20
1924





CCR5-1572
+
GAGGCCAUCCUCACCCUGAC
20
1925





CCR5-1573
+
GGCCAUCCUCACCCUGACCU
20
1926





CCR5-1574
+
UCCUGACCCUCCUUUGGCCA
20
1927





CCR5-1575
+
AAACCUUCUGCAACACCAAC
20
1928





CCR5-1576
+
CUGCUCAGCUCAUGACUUAG
20
1929





CCR5-1577
+
UGCUCAGCUCAUGACUUAGA
20
1930





CCR5-1578
+
UUGCCCAUGCAGUGCUUGCA
20
1931





CCR5-1579
+
ACUCAAAUUCCUUCUCAUUU
20
1932





CCR5-1580
+
UCUCGCCUGGUUCUAAGUCA
20
1933





CCR5-1581
+
UGAAACUUAUUAACCAUACC
20
1934





CCR5-1582
+
GAAACUUAUUAACCAUACCU
20
1935





CCR5-1583
+
AACUUAUUAACCAUACCUUG
20
1936





CCR5-1584
+
ACUUAUUAACCAUACCUUGG
20
1937





CCR5-1585
+
CUUAUUAACCAUACCUUGGA
20
1938





CCR5-1586
+
UUAUUAACCAUACCUUGGAG
20
1939





CCR5-1587
+
CCUUGGAGGGGAAAUCACAC
20
1940





CCR5-1588
+
AGGUAAAAAGUUGUACAUUU
20
1941





CCR5-1589
+
CUGUUCAGAUCACUAAACUC
20
1942





CCR5-1590
+
ACUCAAGAAUCAGCAAUUCU
20
1943





CCR5-1591
+
GCUUUCUUUUAAAUAUACAU
20
1944





CCR5-1592
+
CUUUCUUUUAAAUAUACAUA
20
1945





CCR5-1593
+
UAAAUAUACAUAAGGAACUU
20
1946





CCR5-1594
+
AAAUAUACAUAAGGAACUUU
20
1947





CCR5-1595
+
AUACAUAAGGAACUUUCGGA
20
1948





CCR5-1596
+
CAUAAGGAACUUUCGGAGUG
20
1949





CCR5-1597
+
AUAAGGAACUUUCGGAGUGA
20
1950





CCR5-1598
+
UAAGGAACUUUCGGAGUGAA
20
1951





CCR5-1599
+
AGGAACUUUCGGAGUGAAGG
20
1952





CCR5-1600
+
UUGUCAAUAACUUGAUGCAU
20
1953





CCR5-1601
+
UCAAUAACUUGAUGCAUGUG
20
1954





CCR5-1602
+
CAAUAACUUGAUGCAUGUGA
20
1955





CCR5-1603
+
AAUAACUUGAUGCAUGUGAA
20
1956





CCR5-1604
+
AUAACUUGAUGCAUGUGAAG
20
1957





CCR5-1605
+
GAUUUGGCUUUCUAUAAUUG
20
1958





CCR5-1606
+
UUUAAACAGAUGCCAAAUAA
20
1959





CCR5-1607
+
AACAGAUGCCAAAUAAAUGG
20
1960





CCR5-1608
+
ACCCCCAGCCCAGGCUGUGU
20
1961





CCR5-1609
+
AGCCAUGUGCACAACUCUGA
20
1962





CCR5-1610
+
UGACUGGGUCACCAGCCCAC
20
1963





CCR5-1611
+
CAGAUAUUUCCUGCUCCCCA
20
1964





CCR5-1612
+
AUUUCCUGCUCCCCAGUGGA
20
1965





CCR5-1613
+
CCCAGUGGAUCGGGUGUAAA
20
1966





CCR5-1614
+
UGUAAACUGAGCUUGCUCGC
20
1967





CCR5-1615
+
GUAAACUGAGCUUGCUCGCU
20
1968





CCR5-1616
+
UAAACUGAGCUUGCUCGCUC
20
1969





CCR5-1617
+
GCUCGCUCGGGAGCCUCUUG
20
1970





CCR5-1618
+
CUCGCUCGGGAGCCUCUUGC
20
1971





CCR5-1619
+
GGGAGCCUCUUGCUGGAAAA
20
1972





CCR5-1620
+
GGAAAAUAGAACAGCAUUUG
20
1973





CCR5-1621
+
AAGCGUUUGGCAAUGUGCUU
20
1974





CCR5-1622
+
AGCGUUUGGCAAUGUGCUUU
20
1975





CCR5-1623
+
GUUUGGCAAUGUGCUUUUGG
20
1976





CCR5-1624
+
UGUGCUUUUGGAAGAAGACU
20
1977





CCR5-1625
+
AGAAGACUAAGAGGUAGUUU
20
1978





CCR5-1626
+
CCCCGACAAAGGCAUAGAUG
20
1979





CCR5-1627
+
CCCGACAAAGGCAUAGAUGA
20
1980





CCR5-1628
+
AUGCAGCAGUGCGUCAUCCC
20
1981





CCR5-1629
+
CAUAGCUUGGUCCAACCUGU
20
1982





CCR5-1630
+
UACUGCAAUUAUUCAGGCCA
20
1983





CCR5-1631
+
UUAUUCAGGCCAAAGAAUUC
20
1984





CCR5-1632
+
UAUUCAGGCCAAAGAAUUCC
20
1985





CCR5-1633
+
AAGAAUUCCUGGAAGGUGUU
20
1986





CCR5-1634
+
AGAAUUCCUGGAAGGUGUUC
20
1987





CCR5-1635
+
AAUUCCUGGAAGGUGUUCAG
20
1988





CCR5-1636
+
UCCUGGAAGGUGUUCAGGAG
20
1989





CCR5-1637
+
UCAGGAGAAGGACAAUGUUG
20
1990





CCR5-1638
+
CAGGAGAAGGACAAUGUUGU
20
1991





CCR5-1639
+
AGGAGAAGGACAAUGUUGUA
20
1992





CCR5-1640
+
GGACAAUGUUGUAGGGAGCC
20
1993





CCR5-1641
+
CAAUGUUGUAGGGAGCCCAG
20
1994





CCR5-1642
+
AUGUUGUAGGGAGCCCAGAA
20
1995





CCR5-1643
+
GAAAAUAAACAAUCAUGAUG
20
1996





CCR5-1644
+
CUCUUCUUCUCAUUUCGACA
20
1997





CCR5-1645
+
UUCUCAUUUCGACACCGAAG
20
1998





CCR5-1646
+
CGACACCGAAGCAGAGUUUU
20
1999





CCR5-1647
+
AAGCAGAGUUUUUAGGAUUC
20
2000





CCR5-1648
+
AUGACCAUGACAAGCAGCGG
20
2001





CCR5-1649
+
AAGAUGACUAUCUUUAAUGU
20
2002





CCR5-1650
+
AGAUGACUAUCUUUAAUGUC
20
2003





CCR5-1651
+
UUAAUGUCUGGAAAUUCUUC
20
2004





CCR5-1652
+
CCAGAAUUGAUACUGACUGU
20
2005





CCR5-1653
+
CAGAAUUGAUACUGACUGUA
20
2006





CCR5-1654
+
UGAUACUGACUGUAUGGAAA
20
2007





CCR5-1655
+
AUACUGACUGUAUGGAAAAU
20
2008





CCR5-1656
+
AAAUGAGAGCUGCAGGUGUA
20
2009





CCR5-1657
+
GUGUAAUGAAGACCUUCUUU
20
2010





CCR5-1658
+
GUAACUUUCACAUACAU
17
2011





CCR5-1659
+
UGCAAAUACUAAGAUGU
17
2012





CCR5-1660
+
AUGUCUUUGACUUGGCC
17
2013





CCR5-1661
+
GUCUUUGACUUGGCCCA
17
2014





CCR5-1662
+
UGACUUGGCCCAGAGGG
17
2015





CCR5-1663
+
UGCACUCUCCACAACUU
17
2016





CCR5-1664
+
CCACAACUUAAGAGCAA
17
2017





CCR5-1665
+
CACAACUUAAGAGCAAA
17
2018





CCR5-1666
+
UGCUCACCGUUCAUAUU
17
2019





CCR5-1667
+
CCGUUCAUAUUCAGAGG
17
2020





CCR5-1668
+
GUUCAUAUUCAGAGGCU
17
2021





CCR5-1669
+
UCUGACACCUUCAUUCC
17
2022





CCR5-1670
+
AGUAUGUGCACAAUCAU
17
2023





CCR5-1671
+
UGCACAAUCAUAUGAGA
17
2024





CCR5-1672
+
AAUCAUAUGAGACAGAA
17
2025





CCR5-1673
+
AACCUCUCUCUCUCCCU
17
2026





CCR5-1674
+
CUCUCUCUCCCUUUGAA
17
2027





CCR5-1675
+
GAAUAUACCCAAACACU
17
2028





CCR5-1676
+
AAUAUACCCAAACACUA
17
2029





CCR5-1677
+
GGGGUAUAUUCAUUUCA
17
2030





CCR5-1678
+
GGGUAUAUUCAUUUCAA
17
2031





CCR5-1679
+
GGUAUAUUCAUUUCAAA
17
2032





CCR5-1680
+
UAUAUUCAUUUCAAAGG
17
2033





CCR5-1681
+
AUAUUCAUUUCAAAGGG
17
2034





CCR5-1682
+
UAUUCAUUUCAAAGGGA
17
2035





CCR5-1683
+
UUCAUUUCAAAGGGAGG
17
2036





CCR5-1684
+
UGUUGCUUCUGGUUUGU
17
2037





CCR5-1685
+
GUUGCUUCUGGUUUGUC
17
2038





CCR5-1686
+
UGCUUCUGGUUUGUCUG
17
2039





CCR5-1687
+
UUGUCUGGAGAAGGCAU
17
2040





CCR5-1688
+
UGUCUGGAGAAGGCAUC
17
2041





CCR5-1689
+
CCCCACCCCCAUUCAGU
17
2042





CCR5-1690
+
CCCAUUCAGUCUGAAAU
17
2043





CCR5-1691
+
CCAUUCAGUCUGAAAUA
17
2044





CCR5-1692
+
UGGUAAAUUGUACUUUU
17
2045





CCR5-1693
+
AGGCAGCUUAUUUCCAA
17
2046





CCR5-1694
+
CUAUUGACGGUUAAAUG
17
2047





CCR5-1695
+
ACCUACACUUGUGUGCA
17
2048





CCR5-1696
+
AGGCUUCCCUCACCUCU
17
2049





CCR5-1697
+
GGCUUCCCUCACCUCUA
17
2050





CCR5-1698
+
UUUGCUCAGUGCUAUCC
17
2051





CCR5-1699
+
CUCAGUGCUAUCCCUGA
17
2052





CCR5-1700
+
UCCCUGAAUGAGUAACU
17
2053





CCR5-1701
+
UAAGAGUUUGAUGCUUA
17
2054





CCR5-1702
+
UGCCUGUGGUUGCCUCA
17
2055





CCR5-1703
+
AAUCCUCCCAACAACCC
17
2056





CCR5-1704
+
UCACCUAGAUCUCAUGU
17
2057





CCR5-1705
+
UAGAUCUCAUGUGUGAG
17
2058





CCR5-1706
+
AUAAAUCUAGUCUCCUC
17
2059





CCR5-1707
+
UAAAUCUAGUCUCCUCC
17
2060





CCR5-1708
+
ACCCCUCAGUAUUUCAG
17
2061





CCR5-1709
+
CCCCUCAGUAUUUCAGC
17
2062





CCR5-1710
+
UCAGUAUUUCAGCUGGG
17
2063





CCR5-1711
+
CAGUAUUUCAGCUGGGA
17
2064





CCR5-1712
+
AGUAUUUCAGCUGGGAU
17
2065





CCR5-1713
+
AUUUCAGCUGGGAUGGG
17
2066





CCR5-1714
+
UUUCAGCUGGGAUGGGA
17
2067





CCR5-1715
+
GGAUGGGAAGGAAAUCU
17
2068





CCR5-1716
+
AAGGAAAUCUAUGAAGU
17
2069





CCR5-1717
+
GAAGUCAGAAGCAUUCA
17
2070





CCR5-1718
+
AUUCAGUGAAAGACAGC
17
2071





CCR5-1719
+
UUCAGUGAAAGACAGCC
17
2072





CCR5-1720
+
GAAAGACAGCCUGGAGU
17
2073





CCR5-1721
+
GACAGCCUGGAGUCUGG
17
2074





CCR5-1722
+
GUGCUUGAUGUCUUUUC
17
2075





CCR5-1723
+
GGGUUUCUCCAAUCUGC
17
2076





CCR5-1724
+
CCAAUCUGCUUGAAGAC
17
2077





CCR5-1725
+
CAAUCUGCUUGAAGACU
17
2078





CCR5-1726
+
GCAUCCUCAUAUGCUGC
17
2079





CCR5-1727
+
CCCUCCUUCCCAUCCUU
17
2080





CCR5-1728
+
CUUCCCAUCCUCACGCC
17
2081





CCR5-1729
+
UCACGCCUUGAGCUUAG
17
2082





CCR5-1730
+
GCCAUCCUCACCCUGAC
17
2083





CCR5-1731
+
CAUCCUCACCCUGACCU
17
2084





CCR5-1732
+
UGACCCUCCUUUGGCCA
17
2085





CCR5-1733
+
CCUUCUGCAACACCAAC
17
2086





CCR5-1734
+
CUCAGCUCAUGACUUAG
17
2087





CCR5-1735
+
UCAGCUCAUGACUUAGA
17
2088





CCR5-1736
+
CCCAUGCAGUGCUUGCA
17
2089





CCR5-1737
+
CAAAUUCCUUCUCAUUU
17
2090





CCR5-1738
+
CGCCUGGUUCUAAGUCA
17
2091





CCR5-1739
+
AACUUAUUAACCAUACC
17
2092





CCR5-1740
+
ACUUAUUAACCAUACCU
17
2093





CCR5-1741
+
UUAUUAACCAUACCUUG
17
2094





CCR5-1742
+
UAUUAACCAUACCUUGG
17
2095





CCR5-1743
+
AUUAACCAUACCUUGGA
17
2096





CCR5-1744
+
UUAACCAUACCUUGGAG
17
2097





CCR5-1745
+
UGGAGGGGAAAUCACAC
17
2098





CCR5-1746
+
UAAAAAGUUGUACAUUU
17
2099





CCR5-1747
+
UUCAGAUCACUAAACUC
17
2100





CCR5-1748
+
CAAGAAUCAGCAAUUCU
17
2101





CCR5-1749
+
UUCUUUUAAAUAUACAU
17
2102





CCR5-1750
+
UCUUUUAAAUAUACAUA
17
2103





CCR5-1751
+
AUAUACAUAAGGAACUU
17
2104





CCR5-1752
+
UAUACAUAAGGAACUUU
17
2105





CCR5-1753
+
CAUAAGGAACUUUCGGA
17
2106





CCR5-1754
+
AAGGAACUUUCGGAGUG
17
2107





CCR5-1755
+
AGGAACUUUCGGAGUGA
17
2108





CCR5-1756
+
GGAACUUUCGGAGUGAA
17
2109





CCR5-1757
+
AACUUUCGGAGUGAAGG
17
2110





CCR5-1758
+
UCAAUAACUUGAUGCAU
17
2111





CCR5-1759
+
AUAACUUGAUGCAUGUG
17
2112





CCR5-1760
+
UAACUUGAUGCAUGUGA
17
2113





CCR5-1761
+
AACUUGAUGCAUGUGAA
17
2114





CCR5-1762
+
ACUUGAUGCAUGUGAAG
17
2115





CCR5-1763
+
UUGGCUUUCUAUAAUUG
17
2116





CCR5-1764
+
AAACAGAUGCCAAAUAA
17
2117





CCR5-1765
+
AGAUGCCAAAUAAAUGG
17
2118





CCR5-1766
+
CCCAGCCCAGGCUGUGU
17
2119





CCR5-1767
+
CAUGUGCACAACUCUGA
17
2120





CCR5-1768
+
CUGGGUCACCAGCCCAC
17
2121





CCR5-1769
+
AUAUUUCCUGCUCCCCA
17
2122





CCR5-1770
+
UCCUGCUCCCCAGUGGA
17
2123





CCR5-1771
+
AGUGGAUCGGGUGUAAA
17
2124





CCR5-1772
+
AAACUGAGCUUGCUCGC
17
2125





CCR5-1773
+
AACUGAGCUUGCUCGCU
17
2126





CCR5-1774
+
ACUGAGCUUGCUCGCUC
17
2127





CCR5-1775
+
CGCUCGGGAGCCUCUUG
17
2128





CCR5-1776
+
GCUCGGGAGCCUCUUGC
17
2129





CCR5-1777
+
AGCCUCUUGCUGGAAAA
17
2130





CCR5-1778
+
AAAUAGAACAGCAUUUG
17
2131





CCR5-1779
+
CGUUUGGCAAUGUGCUU
17
2132





CCR5-1780
+
GUUUGGCAAUGUGCUUU
17
2133





CCR5-1781
+
UGGCAAUGUGCUUUUGG
17
2134





CCR5-1782
+
GCUUUUGGAAGAAGACU
17
2135





CCR5-1783
+
AGACUAAGAGGUAGUUU
17
2136





CCR5-1784
+
CGACAAAGGCAUAGAUG
17
2137





CCR5-1785
+
GACAAAGGCAUAGAUGA
17
2138





CCR5-1786
+
CAGCAGUGCGUCAUCCC
17
2139





CCR5-1787
+
AGCUUGGUCCAACCUGU
17
2140





CCR5-1788
+
UGCAAUUAUUCAGGCCA
17
2141





CCR5-1789
+
UUCAGGCCAAAGAAUUC
17
2142





CCR5-1790
+
UCAGGCCAAAGAAUUCC
17
2143





CCR5-1791
+
AAUUCCUGGAAGGUGUU
17
2144





CCR5-1792
+
AUUCCUGGAAGGUGUUC
17
2145





CCR5-1793
+
UCCUGGAAGGUGUUCAG
17
2146





CCR5-1794
+
UGGAAGGUGUUCAGGAG
17
2147





CCR5-1795
+
GGAGAAGGACAAUGUUG
17
2148





CCR5-1796
+
GAGAAGGACAAUGUUGU
17
2149





CCR5-1797
+
AGAAGGACAAUGUUGUA
17
2150





CCR5-1798
+
CAAUGUUGUAGGGAGCC
17
2151





CCR5-1799
+
UGUUGUAGGGAGCCCAG
17
2152





CCR5-1800
+
UUGUAGGGAGCCCAGAA
17
2153





CCR5-1801
+
AAUAAACAAUCAUGAUG
17
2154





CCR5-1802
+
UUCUUCUCAUUUCGACA
17
2155





CCR5-1803
+
UCAUUUCGACACCGAAG
17
2156





CCR5-1804
+
CACCGAAGCAGAGUUUU
17
2157





CCR5-1805
+
CAGAGUUUUUAGGAUUC
17
2158





CCR5-1806
+
ACCAUGACAAGCAGCGG
17
2159





CCR5-1807
+
AUGACUAUCUUUAAUGU
17
2160





CCR5-1808
+
UGACUAUCUUUAAUGUC
17
2161





CCR5-1809
+
AUGUCUGGAAAUUCUUC
17
2162





CCR5-1810
+
GAAUUGAUACUGACUGU
17
2163





CCR5-1811
+
AAUUGAUACUGACUGUA
17
2164





CCR5-1812
+
UACUGACUGUAUGGAAA
17
2165





CCR5-1813
+
CUGACUGUAUGGAAAAU
17
2166





CCR5-1814
+
UGAGAGCUGCAGGUGUA
17
2167





CCR5-1815
+
UAAUGAAGACCUUCUUU
17
2168









Table 1F provides exemplary targeting domains for knocking out the CCR5 gene. In an embodiment, the targeting domain is the exact complement of the target domain. Any of the targeting domains in the table can be used with an N. meningitides Cas9 molecule that gives double stranded cleavage. Any of the targeting domains in the table can be used with an N. meningitides Cas9 single-stranded break nucleases (nickases). In an embodiment, dual targeting is used to create two nicks.













TABLE 1F








Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO







CCR5-1816
+
AUGGACGACAGCCAGGUACC
20
2169





CCR5-1817
+
GAUUGUCAGGAGGAUGAUGA
20
2170





CCR5-1818
+
GAGCGGAGGCAGGAGGCGGG
20
2171





CCR5-1819
+
GCGGGCUGCGAUUUGCUUCA
20
2172





CCR5-1820
+
CGAUGUAUAAUAAUUGAUGU
20
2173





CCR5-1821
+
GACGACAGCCAGGUACC
17
2174





CCR5-1822
+
UGUCAGGAGGAUGAUGA
17
2175





CCR5-1823
+
CGGAGGCAGGAGGCGGG
17
2176





CCR5-1824
+
GGCUGCGAUUUGCUUCA
17
2177





CCR5-1825
+
UGUAUAAUAAUUGAUGU
17
2178





CCR5-1826

UGUGAGGCUUAUCUUCACCA
20
2179





CCR5-1827

AAGUUACUGUUAUAGAGGGU
20
2180





CCR5-1828

UUUAUUUGGCAUCUGUUUAA
20
2181





CCR5-1829

AAAAGAAAGCCUCAGAGAAU
20
2182





CCR5-1830

UAUGGGGAGAAAAGACAUGA
20
2183





CCR5-1831

AAAGAAAUGACACUUUUCAU
20
2184





CCR5-1832

UGCAGAGUCAGCAGAACUGG
20
2185





CCR5-1833

GAGAGAAUCCCUAGUCUUCA
20
2186





CCR5-1834

GAGGUUUAGGUCAAGAAGAA
20
2187





CCR5-1835

UCACUGAAUGCUUCUGACUU
20
2188





CCR5-1836

UGAGGGGUCUCCAGGAGGAG
20
2189





CCR5-1837

GCUCACACAUGAGAUCUAGG
20
2190





CCR5-1838

ACACAUGAGAUCUAGGUGAG
20
2191





CCR5-1839

AGUCAUUUCAUGGGUUGUUG
20
2192





CCR5-1840

GUUUUUUUCUGUUCUGUCUC
20
2193





CCR5-1841

GAGGCUUAUCUUCACCA
17
2194





CCR5-1842

UUACUGUUAUAGAGGGU
17
2195





CCR5-1843

AUUUGGCAUCUGUUUAA
17
2196





CCR5-1844

AGAAAGCCUCAGAGAAU
17
2197





CCR5-1845

GGGGAGAAAAGACAUGA
17
2198





CCR5-1846

GAAAUGACACUUUUCAU
17
2199





CCR5-1847

AGAGUCAGCAGAACUGG
17
2200





CCR5-1848

AGAAUCCCUAGUCUUCA
17
2201





CCR5-1849

GUUUAGGUCAAGAAGAA
17
2202





CCR5-1850

CUGAAUGCUUCUGACUU
17
2203





CCR5-1851

GGGGUCUCCAGGAGGAG
17
2204





CCR5-1852

CACACAUGAGAUCUAGG
17
2205





CCR5-1853

CAUGAGAUCUAGGUGAG
17
2206





CCR5-1854

CAUUUCAUGGGUUGUUG
17
2207





CCR5-1855

UUUUUCUGUUCUGUCUC
17
2208





CCR5-1856
+
UUCAUUUCAAAGGGAGGGAG
20
2209





CCR5-1857
+
UCUCCAAUCUGCUUGAAGAC
20
2210





CCR5-1858
+
UGCUAUUUUUCAUCAACAUA
20
2211





CCR5-1859
+
UCGACACCGAAGCAGAGUUU
20
2212





CCR5-1860
+
AUUUCAAAGGGAGGGAG
17
2213





CCR5-1861
+
CCAAUCUGCUUGAAGAC
17
2214





CCR5-1862
+
UAUUUUUCAUCAACAUA
17
2215





CCR5-1863
+
ACACCGAAGCAGAGUUU
17
2216









Table 2A provides exemplary targeting domains for knocking out the CCR5 gene selected according to the first tier parameters. The targeting domains bind within the first 500 bp of the coding sequence (e.g., within 500 bp downstream from the start codon) and have a high level of orthogonality. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 2A







1st Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-115

ACUAUGCUGCCGCCCAG
17
4343





CCR5-121

UCCUCCUGACAAUCGAU
17
4344





CCR5-116

CUAUGCUGCCGCCCAGU
17
4345





CCR5-3

GCCGCCCAGUGGGACUU
17
4346





CCR5-53

UUGACAGGGCUCUAUUUUAU
20
4347





CCR5-75

UCACUAUGCUGCCGCCCAGU
20
4348









Table 2B provides exemplary targeting domains for knocking out the CCR5 gene selected according to the second tier parameters. The targeting domains bind within the first 500 bp of the coding sequence (e.g., within 500 bp downstream from the start codon). It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 2B







2nd Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-111

UCCUGAUAAACUGCAAA
17
4349





CCR5-135
+
ACUUGUCACCACCCCAA
17
4350





CCR5-4
+
GCAUAGUGAGCCCAGAA
17
4351





CCR5-1864

CUUUUUAUUUAUGCACA
17
4352





CCR5-118

UGUGUCAACUCUUGACA
17
4353





CCR5-151
+
UUAAAGCAAACACAGCA
17
4354





CCR5-132
+
ACAUUGAUUUUUUGGCA
17
4355





CCR5-1865

ACCAGAUCUCAAAAAGA
17
4356





CCR5-1866

CACAGGGUGGAACAAGA
17
4357





CCR5-136
+
AGAAGGGGACAGUAAGA
17
4358





CCR5-139
+
AGCAUAGUGAGCCCAGA
17
4359





CCR5-5
+
GAAAAACAGGUCAGAGA
17
4360





CCR5-123

UGCUUUAAAAGCCAGGA
17
4361





CCR5-144
+
CAGUAAGAAGGAAAAAC
17
4362





CCR5-148
+
UAUUUCCAAAGUCCCAC
17
4363





CCR5-1867

ACUUUUUAUUUAUGCAC
17
4364





CCR5-1

GCCUCCGCUCUACUCAC
17
4365





CCR5-52

AUGUGUCAACUCUUGAC
17
4366





CCR5-112

CAUCUACCUGCUCAACC
17
4367





CCR5-10

GACAAUCGAUAGGUACC
17
4368





CCR5-129

GUGUUUGCGUCUCUCCC
17
4369





CCR5-122

UGUUUGCUUUAAAAGCC
17
4370





CCR5-143
+
CAGCAUGGACGACAGCC
17
4371





CCR5-131
+
ACAGGUCAGAGAUGGCC
17
4372





CCR5-146
+
CCCAAAGGUGACCGUCC
17
4373





CCR5-1868
+
CUGGUAAAGAUGAUUCC
17
4374





CCR5-138
+
AGAUGGCCAGGUUGAGC
17
4375





CCR5-8
+
GAGCGGAGGCAGGAGGC
17
4376





CCR5-7
+
GUGAGUAGAGCGGAGGC
17
4377





CCR5-64
+
CACAUUGAUUUUUUGGC
17
4378





CCR5-110

UUUUGUGGGCAACAUGC
17
4379





CCR5-1869
+
ACCUUCUUUUUGAGAUC
17
4380





CCR5-6
+
GCCUUUUGCAGUUUAUC
17
4381





CCR5-120

UUUAUAGGCUUCUUCUC
17
4382





CCR5-14
+
GGUACCUAUCGAUUGUC
17
4383





CCR5-113

UUCUUACUGUCCCCUUC
17
4384





CCR5-145
+
CAUAGUGAGCCCAGAAG
17
4385





CCR5-130
+
AACACCAGUGAGUAGAG
17
4386





CCR5-65
+
AGUAGAGCGGAGGCAGG
17
4387





CCR5-134
+
ACCUAUCGAUUGUCAGG
17
4388





CCR5-137
+
AGAGCGGAGGCAGGAGG
17
4389





CCR5-133
+
ACCAGUGAGUAGAGCGG
17
4390





CCR5-1870

UUUAUUUAUGCACAGGG
17
4391





CCR5-12

GACGGUCACCUUUGGGG
17
4392





CCR5-149
+
UCCAAAGUCCCACUGGG
17
4393





CCR5-127

AAGUGUGAUCACUUGGG
17
4394





CCR5-128

UGUGAUCACUUGGGUGG
17
4395





CCR5-150
+
UGCAGUUUAUCAGGAUG
17
4396





CCR5-125

CAGGACGGUCACCUUUG
17
4397





CCR5-2

GUUCAUCUUUGGUUUUG
17
4398





CCR5-107

CAUCAAUUAUUAUACAU
17
4399





CCR5-147
+
UAAUUGAUGUCAUAGAU
17
4400





CCR5-119

ACAGGGCUCUAUUUUAU
17
4401





CCR5-141
+
AUUUCCAAAGUCCCACU
17
4402





CCR5-126

UGACAAGUGUGAUCACU
17
4403





CCR5-1871
+
UGGUAAAGAUGAUUCCU
17
4404





CCR5-114

UCUUACUGUCCCCUUCU
17
4405





CCR5-109

UUCAUCUUUGGUUUUGU
17
4406





CCR5-13

GACAAGUGUGAUCACUU
17
4407





CCR5-11

GCCAGGACGGUCACCUU
17
4408





CCR5-108

UCACUGGUGUUCAUCUU
17
4409





CCR5-124

CCAGGACGGUCACCUUU
17
4410





CCR5-9
+
GCUUCACAUUGAUUUUU
17
4411





CCR5-70

UCAUCCUGAUAAACUGCAAA
20
4412





CCR5-94
+
CACACUUGUCACCACCCCAA
20
4413





CCR5-47
+
GCAGCAUAGUGAGCCCAGAA
20
4414





CCR5-76

CAAUGUGUCAACUCUUGACA
20
4415





CCR5-100
+
CUUUUAAAGCAAACACAGCA
20
4416





CCR5-103
+
UUCACAUUGAUUUUUUGGCA
20
4417





CCR5-1872

UUUACCAGAUCUCAAAAAGA
20
4418





CCR5-1873

AUGCACAGGGUGGAACAAGA
20
4419





CCR5-99
+
CCCAGAAGGGGACAGUAAGA
20
4420





CCR5-46
+
GGCAGCAUAGUGAGCCCAGA
20
4421





CCR5-89
+
AAGGAAAAACAGGUCAGAGA
20
4422





CCR5-79

GUUUGCUUUAAAAGCCAGGA
20
4423





CCR5-48
+
GGACAGUAAGAAGGAAAAAC
20
4424





CCR5-104
+
UUGUAUUUCCAAAGUCCCAC
20
4425





CCR5-66

CCUGCCUCCGCUCUACUCAC
20
4426





CCR5-51

ACAAUGUGUCAACUCUUGAC
20
4427





CCR5-71

UGACAUCUACCUGCUCAACC
20
4428





CCR5-57

CCUGACAAUCGAUAGGUACC
20
4429





CCR5-59

GCUGUGUUUGCGUCUCUCCC
20
4430





CCR5-78

CUGUGUUUGCUUUAAAAGCC
20
4431





CCR5-90
+
ACACAGCAUGGACGACAGCC
20
4432





CCR5-87
+
AAAACAGGUCAGAGAUGGCC
20
4433





CCR5-95
+
CACCCCAAAGGUGACCGUCC
20
4434





CCR5-1874
+
GAUCUGGUAAAGAUGAUUCC
20
4435





CCR5-96
+
CAGAGAUGGCCAGGUUGAGC
20
4436





CCR5-50
+
GUAGAGCGGAGGCAGGAGGC
20
4437





CCR5-98
+
CCAGUGAGUAGAGCGGAGGC
20
4438





CCR5-63
+
CUUCACAUUGAUUUUUUGGC
20
4439





CCR5-69

UGGUUUUGUGGGCAACAUGC
20
4440





CCR5-1875
+
AAGACCUUCUUUUUGAGAUC
20
4441





CCR5-62
+
UCAGCCUUUUGCAGUUUAUC
20
4442





CCR5-77

UAUUUUAUAGGCUUCUUCUC
20
4443





CCR5-60
+
CCAGGUACCUAUCGAUUGUC
20
4444





CCR5-72

UCCUUCUUACUGUCCCCUUC
20
4445





CCR5-97
+
CAGCAUAGUGAGCCCAGAAG
20
4446





CCR5-74

CUCACUAUGCUGCCGCCCAG
20
4447





CCR5-92
+
AUGAACACCAGUGAGUAGAG
20
4448





CCR5-49
+
GUGAGUAGAGCGGAGGCAGG
20
4449





CCR5-45
+
GGUACCUAUCGAUUGUCAGG
20
4450





CCR5-91
+
AGUAGAGCGGAGGCAGGAGG
20
4451





CCR5-88
+
AACACCAGUGAGUAGAGCGG
20
4452





CCR5-1876

CUUUUUAUUUAUGCACAGGG
20
4453





CCR5-83

CAGGACGGUCACCUUUGGGG
20
4454





CCR5-93
+
AUUUCCAAAGUCCCACUGGG
20
4455





CCR5-85

GACAAGUGUGAUCACUUGGG
20
4456





CCR5-86

AAGUGUGAUCACUUGGGUGG
20
4457





CCR5-106
+
UUUUGCAGUUUAUCAGGAUG
20
4458





CCR5-82

AGCCAGGACGGUCACCUUUG
20
4459





CCR5-41

GGUGUUCAUCUUUGGUUUUG
20
4460





CCR5-67

UGACAUCAAUUAUUAUACAU
20
4461





CCR5-101
+
UAAUAAUUGAUGUCAUAGAU
20
4462





CCR5-55

UCAUCCUCCUGACAAUCGAU
20
4463





CCR5-102
+
UGUAUUUCCAAAGUCCCACU
20
4464





CCR5-84

UGGUGACAAGUGUGAUCACU
20
4465





CCR5-1877
+
AUCUGGUAAAGAUGAUUCCU
20
4466





CCR5-73

CCUUCUUACUGUCCCCUUCU
20
4467





CCR5-42

GUGUUCAUCUUUGGUUUUGU
20
4468





CCR5-58

GGUGACAAGUGUGAUCACUU
20
4469





CCR5-43

GCUGCCGCCCAGUGGGACUU
20
4470





CCR5-80

AAAGCCAGGACGGUCACCUU
20
4471





CCR5-68

UACUCACUGGUGUUCAUCUU
20
4472





CCR5-81

AAGCCAGGACGGUCACCUUU
20
4473





CCR5-105
+
UUUGCUUCACAUUGAUUUUU
20
4474









Table 2C provides exemplary targeting domains for knocking out the CCR5 gene selected according to the third tier parameters. The targeting domains fall in the coding sequence of the gene, downstream of the first 500 bp of coding sequence (e.g., anywhere from +500 (relative to the start codon) to the stop codon of the gene). It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 2C







3rd Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO














CCR5-793
+
GAACUUCUCCCCGACAA
17
4475





CCR5-382

UGAGAAGAAGAGGCACA
17
4476





CCR5-403

UCUGUGGGCUUGUGACA
17
4477





CCR5-376

CCUGCCGCUGCUUGUCA
17
4478





CCR5-1865

ACCAGAUCUCAAAAAGA
17
4479





CCR5-802
+
GGAAGGUGUUCAGGAGA
17
4480





CCR5-800
+
GCCAAAGAAUUCCUGGA
17
4481





CCR5-805
+
AAAAUAAACAAUCAUGA
17
4482





CCR5-794
+
GACAAAGGCAUAGAUGA
17
4483





CCR5-810
+
AAUUGAUACUGACUGUA
17
4484





CCR5-804
+
AGAAGGACAAUGUUGUA
17
4485





CCR5-388

AUUGCAGUAGCUCUAAC
17
4486





CCR5-397

GUUUACACCCGAUCCAC
17
4487





CCR5-381

AUGAGAAGAAGAGGCAC
17
4488





CCR5-799
+
UCAGGCCAAAGAAUUCC
17
4489





CCR5-1868
+
CUGGUAAAGAUGAUUCC
17
4490





CCR5-386

UCUCCUGAACACCUUCC
17
4491





CCR5-400

CCGAUCCACUGGGGAGC
17
4492





CCR5-808
+
CCAUGACAAGCAGCGGC
17
4493





CCR5-375

GAUAGUCAUCUUGGGGC
17
4494





CCR5-406

CACGGACUCAAGUGGGC
17
4495





CCR5-390

GUUGGACCAAGCUAUGC
17
4496





CCR5-811
+
UGGAAAAUGAGAGCUGC
17
4497





CCR5-789
+
GCUCGGGAGCCUCUUGC
17
4498





CCR5-1869
+
ACCUUCUUUUUGAGAUC
17
4499





CCR5-786
+
CUGCUCCCCAGUGGAUC
17
4500





CCR5-378

AUGGUCAUCUGCUACUC
17
4501





CCR5-788
+
ACUGAGCUUGCUCGCUC
17
4502





CCR5-809
+
UGACUAUCUUUAAUGUC
17
4503





CCR5-394

UCAUCUAUGCCUUUGUC
17
4504





CCR5-371

ACAGUCAGUAUCAAUUC
17
4505





CCR5-798
+
AGCUACUGCAAUUAUUC
17
4506





CCR5-384

UUGUUUAUUUUCUCUUC
17
4507





CCR5-801
+
AUUCCUGGAAGGUGUUC
17
4508





CCR5-396

UUCUAUUUUCCAGCAAG
17
4509





CCR5-404

UGUGACACGGACUCAAG
17
4510





CCR5-380

GUCGAAAUGAGAAGAAG
17
4511





CCR5-792
+
UUUGGAAGAAGACUAAG
17
4512





CCR5-784
+
UAUUUCCUGCUCCCCAG
17
4513





CCR5-807
+
AUGACCAUGACAAGCAG
17
4514





CCR5-395

CAUCUAUGCCUUUGUCG
17
4515





CCR5-796
+
CAAAGGCAUAGAUGAUG
17
4516





CCR5-399

UUACACCCGAUCCACUG
17
4517





CCR5-401

GGAGCAGGAAAUAUCUG
17
4518





CCR5-383

AGAGGCACAGGGCUGUG
17
4519





CCR5-374

UAAAGAUAGUCAUCUUG
17
4520





CCR5-785
+
CCUGCUCCCCAGUGGAU
17
4521





CCR5-795
+
ACAAAGGCAUAGAUGAU
17
4522





CCR5-398

UUUACACCCGAUCCACU
17
4523





CCR5-377

CAUGGUCAUCUGCUACU
17
4524





CCR5-1871
+
UGGUAAAGAUGAUUCCU
17
4525





CCR5-797
+
CUGUCACCUGCAUAGCU
17
4526





CCR5-787
+
AACUGAGCUUGCUCGCU
17
4527





CCR5-372

AUUAAAGAUAGUCAUCU
17
4528





CCR5-391

CAGGUGACAGAGACUCU
17
4529





CCR5-385

UGUUUAUUUUCUCUUCU
17
4530





CCR5-405

GUGACACGGACUCAAGU
17
4531





CCR5-389

CAGUAGCUCUAACAGGU
17
4532





CCR5-402

GAGCAGGAAAUAUCUGU
17
4533





CCR5-803
+
GAGAAGGACAAUGUUGU
17
4534





CCR5-393

AUCAUCUAUGCCUUUGU
17
4535





CCR5-379

UCCUAAAAACUCUGCUU
17
4536





CCR5-373

UUAAAGAUAGUCAUCUU
17
4537





CCR5-392

AGGUGACAGAGACUCUU
17
4538





CCR5-387

ACCUUCCAGGAAUUCUU
17
4539





CCR5-790
+
GCAUUUGCAGAAGCGUU
17
4540





CCR5-791
+
GUUUGGCAAUGUGCUUU
17
4541





CCR5-806
+
ACCGAAGCAGAGUUUUU
17
4542





CCR5-682
+
UCUGAACUUCUCCCCGACAA
20
4543





CCR5-163

AAAUGAGAAGAAGAGGCACA
20
4544





CCR5-184

AUAUCUGUGGGCUUGUGACA
20
4545





CCR5-157

GGUCCUGCCGCUGCUUGUCA
20
4546





CCR5-1872

UUUACCAGAUCUCAAAAAGA
20
4547





CCR5-691
+
CCUGGAAGGUGUUCAGGAGA
20
4548





CCR5-689
+
CAGGCCAAAGAAUUCCUGGA
20
4549





CCR5-694
+
GAGAAAAUAAACAAUCAUGA
20
4550





CCR5-683
+
CCCGACAAAGGCAUAGAUGA
20
4551





CCR5-699
+
CAGAAUUGAUACUGACUGUA
20
4552





CCR5-693
+
AGGAGAAGGACAAUGUUGUA
20
4553





CCR5-169

AUAAUUGCAGUAGCUCUAAC
20
4554





CCR5-178

UCAGUUUACACCCGAUCCAC
20
4555





CCR5-162

GAAAUGAGAAGAAGAGGCAC
20
4556





CCR5-688
+
UAUUCAGGCCAAAGAAUUCC
20
4557





CCR5-1874
+
GAUCUGGUAAAGAUGAUUCC
20
4558





CCR5-167

CCUUCUCCUGAACACCUUCC
20
4559





CCR5-181

CACCCGAUCCACUGGGGAGC
20
4560





CCR5-697
+
UGACCAUGACAAGCAGCGGC
20
4561





CCR5-156

AAAGAUAGUCAUCUUGGGGC
20
4562





CCR5-187

UGACACGGACUCAAGUGGGC
20
4563





CCR5-171

CAGGUUGGACCAAGCUAUGC
20
4564





CCR5-700
+
GUAUGGAAAAUGAGAGCUGC
20
4565





CCR5-678
+
CUCGCUCGGGAGCCUCUUGC
20
4566





CCR5-1875
+
AAGACCUUCUUUUUGAGAUC
20
4567





CCR5-675
+
UUCCUGCUCCCCAGUGGAUC
20
4568





CCR5-159

GUCAUGGUCAUCUGCUACUC
20
4569





CCR5-677
+
UAAACUGAGCUUGCUCGCUC
20
4570





CCR5-698
+
AGAUGACUAUCUUUAAUGUC
20
4571





CCR5-175

CCAUCAUCUAUGCCUUUGUC
20
4572





CCR5-152

CAUACAGUCAGUAUCAAUUC
20
4573





CCR5-687
+
UAGAGCUACUGCAAUUAUUC
20
4574





CCR5-165

UGAUUGUUUAUUUUCUCUUC
20
4575





CCR5-690
+
AGAAUUCCUGGAAGGUGUUC
20
4576





CCR5-177

CUGUUCUAUUUUCCAGCAAG
20
4577





CCR5-185

GCUUGUGACACGGACUCAAG
20
4578





CCR5-161

GGUGUCGAAAUGAGAAGAAG
20
4579





CCR5-681
+
GCUUUUGGAAGAAGACUAAG
20
4580





CCR5-673
+
AGAUAUUUCCUGCUCCCCAG
20
4581





CCR5-696
+
CAGAUGACCAUGACAAGCAG
20
4582





CCR5-176

CAUCAUCUAUGCCUUUGUCG
20
4583





CCR5-685
+
CGACAAAGGCAUAGAUGAUG
20
4584





CCR5-180

AGUUUACACCCGAUCCACUG
20
4585





CCR5-182

UGGGGAGCAGGAAAUAUCUG
20
4586





CCR5-164

AGAAGAGGCACAGGGCUGUG
20
4587





CCR5-155

CAUUAAAGAUAGUCAUCUUG
20
4588





CCR5-674
+
UUUCCUGCUCCCCAGUGGAU
20
4589





CCR5-684
+
CCGACAAAGGCAUAGAUGAU
20
4590





CCR5-179

CAGUUUACACCCGAUCCACU
20
4591





CCR5-158

UGUCAUGGUCAUCUGCUACU
20
4592





CCR5-1877
+
AUCUGGUAAAGAUGAUUCCU
20
4593





CCR5-686
+
UCUCUGUCACCUGCAUAGCU
20
4594





CCR5-676
+
GUAAACUGAGCUUGCUCGCU
20
4595





CCR5-153

GACAUUAAAGAUAGUCAUCU
20
4596





CCR5-172

AUGCAGGUGACAGAGACUCU
20
4597





CCR5-166

GAUUGUUUAUUUUCUCUUCU
20
4598





CCR5-186

CUUGUGACACGGACUCAAGU
20
4599





CCR5-170

UUGCAGUAGCUCUAACAGGU
20
4600





CCR5-183

GGGGAGCAGGAAAUAUCUGU
20
4601





CCR5-692
+
CAGGAGAAGGACAAUGUUGU
20
4602





CCR5-174

CCCAUCAUCUAUGCCUUUGU
20
4603





CCR5-160

GAAUCCUAAAAACUCUGCUU
20
4604





CCR5-154

ACAUUAAAGAUAGUCAUCUU
20
4605





CCR5-173

UGCAGGUGACAGAGACUCUU
20
4606





CCR5-168

AACACCUUCCAGGAAUUCUU
20
4607





CCR5-679
+
ACAGCAUUUGCAGAAGCGUU
20
4608





CCR5-680
+
AGCGUUUGGCAAUGUGCUUU
20
4609





CCR5-695
+
GACACCGAAGCAGAGUUUUU
20
4610









Table 3A provides exemplary targeting domains for knocking out the CCR5 gene selected according to the first tier parameters. The targeting domains bind within the first 500 bp of the coding sequence (e.g., within 500 bp downstream from the start codon), have a high level of orthogonality and PAM is NNGRRT. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 3A







1st Tier











gRNA
DNA

Target Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO














CCR5-1878
+
AUAAAAUAGAGCCCUGUC
18
4611





CCR5-1879
+
UAUAAAAUAGAGCCCUGUC
19
4612





CCR5-862
+
CUAUAAAAUAGAGCCCUGUC
20
4613





CCR5-1880
+
CCUAUAAAAUAGAGCCCUGUC
21
4614





CCR5-1881
+
GCCUAUAAAAUAGAGCCCUGUC
22
4615





CCR5-1882
+
AGCCUAUAAAAUAGAGCCCUGUC
23
4616





CCR5-1883
+
AAGCCUAUAAAAUAGAGCCCUGUC
24
4617





CCR5-1884
+
UUUGCAGUUUAUCAGGAU
18
4618





CCR5-1885
+
UUUUGCAGUUUAUCAGGAU
19
4619





CCR5-876
+
CUUUUGCAGUUUAUCAGGAU
20
4620





CCR5-1886

GGUGACAAGUGUGAUCAC
18
4621





CCR5-1887

UGGUGACAAGUGUGAUCAC
19
4622





CCR5-829

GUGGUGACAAGUGUGAUCAC
20
4623





CCR5-1888

GGUGGUGACAAGUGUGAUCAC
21
4624





CCR5-1889

GGGUGGUGACAAGUGUGAUCAC
22
4625





CCR5-1890

GGGGUGGUGACAAGUGUGAUCAC
23
4626





CCR5-1891

UGGGGUGGUGACAAGUGUGAUCAC
24
4627





CCR5-1892

UUAUGCACAGGGUGGAACAAG
21
4628





CCR5-1893

UUUAUGCACAGGGUGGAACAAG
22
4629





CCR5-1894

AUUUAUGCACAGGGUGGAACAAG
23
4630





CCR5-1895

UAUUUAUGCACAGGGUGGAACAAG
24
4631









Table 3B provides exemplary targeting domains for knocking out the CCR5 gene selected according to the second tier parameters. The targeting domains bind within the first 500 bp of the coding sequence (e.g., with 500 bp downstream from the start codon) and PAM is NNGRRT. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 3B







2nd Tier











gRNA
DNA

Target Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO














CCR5-1896
+
AACCAAAGAUGAACACCA
18
4632





CCR5-1897
+
AAACCAAAGAUGAACACCA
19
4633





CCR5-878
+
AAAACCAAAGAUGAACACCA
20
4634





CCR5-1898
+
CAAAACCAAAGAUGAACACCA
21
4635





CCR5-1899
+
ACAAAACCAAAGAUGAACACCA
22
4636





CCR5-1900
+
CACAAAACCAAAGAUGAACACCA
23
4637





CCR5-1901
+
CCACAAAACCAAAGAUGAACACCA
24
4638





CCR5-1902
+
GUACCUAUCGAUUGUCAG
18
4639





CCR5-1903
+
GGUACCUAUCGAUUGUCAG
19
4640





CCR5-855
+
AGGUACCUAUCGAUUGUCAG
20
4641





CCR5-1904
+
CAGGUACCUAUCGAUUGUCAG
21
4642





CCR5-1905
+
CCAGGUACCUAUCGAUUGUCAG
22
4643





CCR5-1906
+
GCCAGGUACCUAUCGAUUGUCAG
23
4644





CCR5-1907
+
AGCCAGGUACCUAUCGAUUGUCAG
24
4645





CCR5-1908
+
CCUUUUGCAGUUUAUCAGGAU
21
4646





CCR5-1909
+
GCCUUUUGCAGUUUAUCAGGAU
22
4647





CCR5-1910
+
AGCCUUUUGCAGUUUAUCAGGAU
23
4648





CCR5-1911
+
CAGCCUUUUGCAGUUUAUCAGGAU
24
4649





CCR5-1912
+
CAGCCUUUUGCAGUUUAU
18
4650





CCR5-1913
+
UCAGCCUUUUGCAGUUUAU
19
4651





CCR5-874
+
UUCAGCCUUUUGCAGUUUAU
20
4652





CCR5-1914
+
CUUCAGCCUUUUGCAGUUUAU
21
4653





CCR5-1915
+
UCUUCAGCCUUUUGCAGUUUAU
22
4654





CCR5-1916
+
CUCUUCAGCCUUUUGCAGUUUAU
23
4655





CCR5-1917
+
GCUCUUCAGCCUUUUGCAGUUUAU
24
4656





CCR5-1918

UGUGUUUGCGUCUCUCCC
18
4657





CCR5-1919

CUGUGUUUGCGUCUCUCCC
19
4658





CCR5-59

GCUGUGUUUGCGUCUCUCCC
20
4659





CCR5-1920

GGCUGUGUUUGCGUCUCUCCC
21
4660





CCR5-1921

UGGCUGUGUUUGCGUCUCUCCC
22
4661





CCR5-1922

GUGGCUGUGUUUGCGUCUCUCCC
23
4662





CCR5-1923

GGUGGCUGUGUUUGCGUCUCUCCC
24
4663





CCR5-1924

UUUUAUAGGCUUCUUCUC
18
4664





CCR5-1925

AUUUUAUAGGCUUCUUCUC
19
4665





CCR5-77

UAUUUUAUAGGCUUCUUCUC
20
4666





CCR5-1926

CUAUUUUAUAGGCUUCUUCUC
21
4667





CCR5-1927

UCUAUUUUAUAGGCUUCUUCUC
22
4668





CCR5-1928

CUCUAUUUUAUAGGCUUCUUCUC
23
4669





CCR5-1929

GCUCUAUUUUAUAGGCUUCUUCUC
24
4670





CCR5-1930

UGCACAGGGUGGAACAAG
18
4671





CCR5-1931

AUGCACAGGGUGGAACAAG
19
4672





CCR5-1932

UAUGCACAGGGUGGAACAAG
20
4673





CCR5-1933

AGCCAGGACGGUCACCUU
18
4674





CCR5-1934

AAGCCAGGACGGUCACCUU
19
4675





CCR5-80

AAAGCCAGGACGGUCACCUU
20
4676





CCR5-1935

AAAAGCCAGGACGGUCACCUU
21
4677





CCR5-1936

UAAAAGCCAGGACGGUCACCUU
22
4678





CCR5-1937

UUAAAAGCCAGGACGGUCACCUU
23
4679





CCR5-1938

UUUAAAAGCCAGGACGGUCACCUU
24
4680









Table 3C provides exemplary targeting domains for knocking out the CCR5 gene selected according to the third tier parameters. The targeting domains bind within the first 500 bp of the coding sequence (e.g., with 500 bp downstream from the start codon) and PAM is NNGRRV. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 3C







3rd Tier











gRNA
DNA

Target Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO














CCR5-2255
+
GAUAUUUCCUGCUCCCCA
18
4681





CCR5-2256
+
AGAUAUUUCCUGCUCCCCA
19
4682





CCR5-1611
+
CAGAUAUUUCCUGCUCCCCA
20
4683





CCR5-2257
+
ACAGAUAUUUCCUGCUCCCCA
21
4684





CCR5-2258
+
CACAGAUAUUUCCUGCUCCCCA
22
4685





CCR5-2259
+
CCACAGAUAUUUCCUGCUCCCCA
23
4686





CCR5-2260
+
CCCACAGAUAUUUCCUGCUCCCCA
24
4687





CCR5-2261
+
CUGCAAUUAUUCAGGCCA
18
4688





CCR5-2262
+
ACUGCAAUUAUUCAGGCCA
19
4689





CCR5-1630
+
UACUGCAAUUAUUCAGGCCA
20
4690





CCR5-2263
+
CUACUGCAAUUAUUCAGGCCA
21
4691





CCR5-2264
+
GCUACUGCAAUUAUUCAGGCCA
22
4692





CCR5-2265
+
AGCUACUGCAAUUAUUCAGGCCA
23
4693





CCR5-2266
+
GAGCUACUGCAAUUAUUCAGGCCA
24
4694





CCR5-2267
+
UUCCUGCUCCCCAGUGGA
18
4695





CCR5-2268
+
UUUCCUGCUCCCCAGUGGA
19
4696





CCR5-1612
+
AUUUCCUGCUCCCCAGUGGA
20
4697





CCR5-2269
+
UAUUUCCUGCUCCCCAGUGGA
21
4698





CCR5-2270
+
AUAUUUCCUGCUCCCCAGUGGA
22
4699





CCR5-2271
+
GAUAUUUCCUGCUCCCCAGUGGA
23
4700





CCR5-2272
+
AGAUAUUUCCUGCUCCCCAGUGGA
24
4701





CCR5-2273
+
CGACAAAGGCAUAGAUGA
18
4702





CCR5-2274
+
CCGACAAAGGCAUAGAUGA
19
4703





CCR5-683
+
CCCGACAAAGGCAUAGAUGA
20
4704





CCR5-2275
+
CCCCGACAAAGGCAUAGAUGA
21
4705





CCR5-2276
+
UCCCCGACAAAGGCAUAGAUGA
22
4706





CCR5-2277
+
CUCCCCGACAAAGGCAUAGAUGA
23
4707





CCR5-2278
+
UCUCCCCGACAAAGGCAUAGAUGA
24
4708





CCR5-2279
+
GCAGCAGUGCGUCAUCCC
18
4709





CCR5-2280
+
UGCAGCAGUGCGUCAUCCC
19
4710





CCR5-1628
+
AUGCAGCAGUGCGUCAUCCC
20
4711





CCR5-2281
+
GAUGCAGCAGUGCGUCAUCCC
21
4712





CCR5-2282
+
UGAUGCAGCAGUGCGUCAUCCC
22
4713





CCR5-2283
+
UUGAUGCAGCAGUGCGUCAUCCC
23
4714





CCR5-2284
+
GUUGAUGCAGCAGUGCGUCAUCCC
24
4715





CCR5-2285
+
GCAGAGUUUUUAGGAUUC
18
4716





CCR5-2286
+
AGCAGAGUUUUUAGGAUUC
19
4717





CCR5-1647
+
AAGCAGAGUUUUUAGGAUUC
20
4718





CCR5-2287
+
GAAGCAGAGUUUUUAGGAUUC
21
4719





CCR5-2288
+
CGAAGCAGAGUUUUUAGGAUUC
22
4720





CCR5-2289
+
CCGAAGCAGAGUUUUUAGGAUUC
23
4721





CCR5-2290
+
ACCGAAGCAGAGUUUUUAGGAUUC
24
4722





CCR5-2291
+
AAUGUCUGGAAAUUCUUC
18
4723





CCR5-2292
+
UAAUGUCUGGAAAUUCUUC
19
4724





CCR5-1651
+
UUAAUGUCUGGAAAUUCUUC
20
4725





CCR5-2293
+
UUUAAUGUCUGGAAAUUCUUC
21
4726





CCR5-2294
+
CUUUAAUGUCUGGAAAUUCUUC
22
4727





CCR5-2295
+
UCUUUAAUGUCUGGAAAUUCUUC
23
4728





CCR5-2296
+
AUCUUUAAUGUCUGGAAAUUCUUC
24
4729





CCR5-2297
+
CUCAUUUCGACACCGAAG
18
4730





CCR5-2298
+
UCUCAUUUCGACACCGAAG
19
4731





CCR5-1645
+
UUCUCAUUUCGACACCGAAG
20
4732





CCR5-2299
+
CUUCUCAUUUCGACACCGAAG
21
4733





CCR5-2300
+
UCUUCUCAUUUCGACACCGAAG
22
4734





CCR5-2301
+
UUCUUCUCAUUUCGACACCGAAG
23
4735





CCR5-2302
+
CUUCUUCUCAUUUCGACACCGAAG
24
4736





CCR5-2303
+
ACACCGAAGCAGAGUUUU
18
4737





CCR5-2304
+
GACACCGAAGCAGAGUUUU
19
4738





CCR5-1646
+
CGACACCGAAGCAGAGUUUU
20
4739





CCR5-2305
+
UCGACACCGAAGCAGAGUUUU
21
4740





CCR5-2306
+
UUCGACACCGAAGCAGAGUUUU
22
4741





CCR5-2307
+
UUUCGACACCGAAGCAGAGUUUU
23
4742





CCR5-2308
+
AUUUCGACACCGAAGCAGAGUUUU
24
4743





CCR5-2309

UUCUCCUGAACACCUUCC
18
4744





CCR5-2310

CUUCUCCUGAACACCUUCC
19
4745





CCR5-167

CCUUCUCCUGAACACCUUCC
20
4746





CCR5-2311

UCCUUCUCCUGAACACCUUCC
21
4747





CCR5-2312

GUCCUUCUCCUGAACACCUUCC
22
4748





CCR5-2313

UGUCCUUCUCCUGAACACCUUCC
23
4749





CCR5-2314

UUGUCCUUCUCCUGAACACCUUCC
24
4750





CCR5-2315

UUCCAGGAAUUCUUUGGC
18
4751





CCR5-2316

CUUCCAGGAAUUCUUUGGC
19
4752





CCR5-941

CCUUCCAGGAAUUCUUUGGC
20
4753





CCR5-2317

ACCUUCCAGGAAUUCUUUGGC
21
4754





CCR5-2318

CACCUUCCAGGAAUUCUUUGGC
22
4755





CCR5-2319

ACACCUUCCAGGAAUUCUUUGGC
23
4756





CCR5-2320

AACACCUUCCAGGAAUUCUUUGGC
24
4757





CCR5-2321

CAUGGUCAUCUGCUACUC
18
4758





CCR5-2322

UCAUGGUCAUCUGCUACUC
19
4759





CCR5-159

GUCAUGGUCAUCUGCUACUC
20
4760





CCR5-2323

UGUCAUGGUCAUCUGCUACUC
21
4761





CCR5-2324

UUGUCAUGGUCAUCUGCUACUC
22
4762





CCR5-2325

CUUGUCAUGGUCAUCUGCUACUC
23
4763





CCR5-2326

GCUUGUCAUGGUCAUCUGCUACUC
24
4764





CCR5-2327

AGUCAGUAUCAAUUCUGG
18
4765





CCR5-2328

CAGUCAGUAUCAAUUCUGG
19
4766





CCR5-924

ACAGUCAGUAUCAAUUCUGG
20
4767





CCR5-2329

UACAGUCAGUAUCAAUUCUGG
21
4768





CCR5-2330

AUACAGUCAGUAUCAAUUCUGG
22
4769





CCR5-2331

CAUACAGUCAGUAUCAAUUCUGG
23
4770





CCR5-2332

CCAUACAGUCAGUAUCAAUUCUGG
24
4771





CCR5-2333

GCAGGUGACAGAGACUCU
18
4772





CCR5-2334

UGCAGGUGACAGAGACUCU
19
4773





CCR5-172

AUGCAGGUGACAGAGACUCU
20
4774





CCR5-2335

UAUGCAGGUGACAGAGACUCU
21
4775





CCR5-2336

CUAUGCAGGUGACAGAGACUCU
22
4776





CCR5-2337

GCUAUGCAGGUGACAGAGACUCU
23
4777





CCR5-2338

AGCUAUGCAGGUGACAGAGACUCU
24
4778









Table 3D provides exemplary targeting domains for knocking out the CCR5 gene selected according to the fourth tier parameters. The targeting domains fall in the coding sequence of the gene, downstream of the first 500 bp of coding sequence (e.g., anywhere from +500 (relative to the start codon) to the stop codon of the gene.) and PAM is NNGRRT. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 3D







3rd Tier











gRNA
DNA

Target Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO














CCR5-1939
+
GAGAAGAAGCCUAUAAAA
18
4779





CCR5-1940
+
AGAGAAGAAGCCUAUAAAA
19
4780





CCR5-861
+
CAGAGAAGAAGCCUAUAAAA
20
4781





CCR5-1941
+
CCAGAGAAGAAGCCUAUAAAA
21
4782





CCR5-1942
+
UCCAGAGAAGAAGCCUAUAAAA
22
4783





CCR5-1943
+
UUCCAGAGAAGAAGCCUAUAAAA
23
4784





CCR5-1944
+
AUUCCAGAGAAGAAGCCUAUAAAA
24
4785





CCR5-1945
+
AGCAUAGUGAGCCCAGAA
18
4786





CCR5-1946
+
CAGCAUAGUGAGCCCAGAA
19
4787





CCR5-47
+
GCAGCAUAGUGAGCCCAGAA
20
4788





CCR5-1947
+
GGCAGCAUAGUGAGCCCAGAA
21
4789





CCR5-1948
+
CGGCAGCAUAGUGAGCCCAGAA
22
4790





CCR5-1949
+
GCGGCAGCAUAGUGAGCCCAGAA
23
4791





CCR5-1950
+
GGCGGCAGCAUAGUGAGCCCAGAA
24
4792





CCR5-1951
+
UGUAUUUCCAAAGUCCCA
18
4793





CCR5-1952
+
UUGUAUUUCCAAAGUCCCA
19
4794





CCR5-863
+
AUUGUAUUUCCAAAGUCCCA
20
4795





CCR5-1953
+
CAUUGUAUUUCCAAAGUCCCA
21
4796





CCR5-1954
+
ACAUUGUAUUUCCAAAGUCCCA
22
4797





CCR5-1955
+
CACAUUGUAUUUCCAAAGUCCCA
23
4798





CCR5-1956
+
ACACAUUGUAUUUCCAAAGUCCCA
24
4799





CCR5-1957
+
AUGAUGAAGAAGAUUCCA
18
4800





CCR5-1958
+
GAUGAUGAAGAAGAUUCCA
19
4801





CCR5-859
+
GGAUGAUGAAGAAGAUUCCA
20
4802





CCR5-1959
+
AGGAUGAUGAAGAAGAUUCCA
21
4803





CCR5-1960
+
GAGGAUGAUGAAGAAGAUUCCA
22
4804





CCR5-1961
+
GGAGGAUGAUGAAGAAGAUUCCA
23
4805





CCR5-1962
+
AGGAGGAUGAUGAAGAAGAUUCCA
24
4806





CCR5-1963
+
CAGAAGGGGACAGUAAGA
18
4807





CCR5-1964
+
CCAGAAGGGGACAGUAAGA
19
4808





CCR5-99
+
CCCAGAAGGGGACAGUAAGA
20
4809





CCR5-1965
+
GCCCAGAAGGGGACAGUAAGA
21
4810





CCR5-1966
+
AGCCCAGAAGGGGACAGUAAGA
22
4811





CCR5-1967
+
GAGCCCAGAAGGGGACAGUAAGA
23
4812





CCR5-1968
+
UGAGCCCAGAAGGGGACAGUAAGA
24
4813





CCR5-1969
+
CAGCAUAGUGAGCCCAGA
18
4814





CCR5-1970
+
GCAGCAUAGUGAGCCCAGA
19
4815





CCR5-46
+
GGCAGCAUAGUGAGCCCAGA
20
4816





CCR5-1971
+
CGGCAGCAUAGUGAGCCCAGA
21
4817





CCR5-1972
+
GCGGCAGCAUAGUGAGCCCAGA
22
4818





CCR5-1973
+
GGCGGCAGCAUAGUGAGCCCAGA
23
4819





CCR5-1974
+
GGGCGGCAGCAUAGUGAGCCCAGA
24
4820





CCR5-1975
+
AAUAAUUGAUGUCAUAGA
18
4821





CCR5-1976
+
UAAUAAUUGAUGUCAUAGA
19
4822





CCR5-886
+
AUAAUAAUUGAUGUCAUAGA
20
4823





CCR5-1977
+
UAUAAUAAUUGAUGUCAUAGA
21
4824





CCR5-1978
+
GUAUAAUAAUUGAUGUCAUAGA
22
4825





CCR5-1979
+
UGUAUAAUAAUUGAUGUCAUAGA
23
4826





CCR5-1980
+
AUGUAUAAUAAUUGAUGUCAUAGA
24
4827





CCR5-1981
+
UGAACACCAGUGAGUAGA
18
4828





CCR5-1982
+
AUGAACACCAGUGAGUAGA
19
4829





CCR5-880
+
GAUGAACACCAGUGAGUAGA
20
4830





CCR5-1983
+
AGAUGAACACCAGUGAGUAGA
21
4831





CCR5-1984
+
AAGAUGAACACCAGUGAGUAGA
22
4832





CCR5-1985
+
AAAGAUGAACACCAGUGAGUAGA
23
4833





CCR5-1986
+
CAAAGAUGAACACCAGUGAGUAGA
24
4834





CCR5-1987
+
CCACUGGGCGGCAGCAUA
18
4835





CCR5-1988
+
CCCACUGGGCGGCAGCAUA
19
4836





CCR5-864
+
UCCCACUGGGCGGCAGCAUA
20
4837





CCR5-1989
+
GUCCCACUGGGCGGCAGCAUA
21
4838





CCR5-1990
+
AGUCCCACUGGGCGGCAGCAUA
22
4839





CCR5-1991
+
AAGUCCCACUGGGCGGCAGCAUA
23
4840





CCR5-1992
+
AAAGUCCCACUGGGCGGCAGCAUA
24
4841





CCR5-1993
+
GCGGCAGCAUAGUGAGCC
18
4842





CCR5-1994
+
GGCGGCAGCAUAGUGAGCC
19
4843





CCR5-865
+
GGGCGGCAGCAUAGUGAGCC
20
4844





CCR5-1995
+
UGGGCGGCAGCAUAGUGAGCC
21
4845





CCR5-1996
+
CUGGGCGGCAGCAUAGUGAGCC
22
4846





CCR5-1997
+
ACUGGGCGGCAGCAUAGUGAGCC
23
4847





CCR5-1998
+
CACUGGGCGGCAGCAUAGUGAGCC
24
4848





CCR5-1999
+
UCUGGUAAAGAUGAUUCC
18
4849





CCR5-2000
+
AUCUGGUAAAGAUGAUUCC
19
4850





CCR5-1874
+
GAUCUGGUAAAGAUGAUUCC
20
4851





CCR5-2001
+
AGAUCUGGUAAAGAUGAUUCC
21
4852





CCR5-2002
+
GAGAUCUGGUAAAGAUGAUUCC
22
4853





CCR5-2003
+
UGAGAUCUGGUAAAGAUGAUUCC
23
4854





CCR5-2004
+
UUGAGAUCUGGUAAAGAUGAUUCC
24
4855





CCR5-2005
+
UUUUAAAGCAAACACAGC
18
4856





CCR5-2006
+
CUUUUAAAGCAAACACAGC
19
4857





CCR5-852
+
GCUUUUAAAGCAAACACAGC
20
4858





CCR5-2007
+
GGCUUUUAAAGCAAACACAGC
21
4859





CCR5-2008
+
UGGCUUUUAAAGCAAACACAGC
22
4860





CCR5-2009
+
CUGGCUUUUAAAGCAAACACAGC
23
4861





CCR5-2010
+
CCUGGCUUUUAAAGCAAACACAGC
24
4862





CCR5-2011
+
AGUGAGUAGAGCGGAGGC
18
4863





CCR5-2012
+
CAGUGAGUAGAGCGGAGGC
19
4864





CCR5-98
+
CCAGUGAGUAGAGCGGAGGC
20
4865





CCR5-2013
+
ACCAGUGAGUAGAGCGGAGGC
21
4866





CCR5-2014
+
CACCAGUGAGUAGAGCGGAGGC
22
4867





CCR5-2015
+
ACACCAGUGAGUAGAGCGGAGGC
23
4868





CCR5-2016
+
AACACCAGUGAGUAGAGCGGAGGC
24
4869





CCR5-2017
+
AGGUACCUAUCGAUUGUC
18
4870





CCR5-2018
+
CAGGUACCUAUCGAUUGUC
19
4871





CCR5-60
+
CCAGGUACCUAUCGAUUGUC
20
4872





CCR5-2019
+
GCCAGGUACCUAUCGAUUGUC
21
4873





CCR5-2020
+
AGCCAGGUACCUAUCGAUUGUC
22
4874





CCR5-2021
+
CAGCCAGGUACCUAUCGAUUGUC
23
4875





CCR5-2022
+
ACAGCCAGGUACCUAUCGAUUGUC
24
4876





CCR5-2023
+
GGAUGAUGAAGAAGAUUC
18
4877





CCR5-2024
+
AGGAUGAUGAAGAAGAUUC
19
4878





CCR5-858
+
GAGGAUGAUGAAGAAGAUUC
20
4879





CCR5-2025
+
GGAGGAUGAUGAAGAAGAUUC
21
4880





CCR5-2026
+
AGGAGGAUGAUGAAGAAGAUUC
22
4881





CCR5-2027
+
CAGGAGGAUGAUGAAGAAGAUUC
23
4882





CCR5-2028
+
UCAGGAGGAUGAUGAAGAAGAUUC
24
4883





CCR5-2029
+
AUCUGGUAAAGAUGAUUC
18
4884





CCR5-2030
+
GAUCUGGUAAAGAUGAUUC
19
4885





CCR5-2031
+
AGAUCUGGUAAAGAUGAUUC
20
4886





CCR5-2032
+
GAGAUCUGGUAAAGAUGAUUC
21
4887





CCR5-2033
+
UGAGAUCUGGUAAAGAUGAUUC
22
4888





CCR5-2034
+
UUGAGAUCUGGUAAAGAUGAUUC
23
4889





CCR5-2035
+
UUUGAGAUCUGGUAAAGAUGAUUC
24
4890





CCR5-2036
+
UUGCCCACAAAACCAAAG
18
4891





CCR5-2037
+
GUUGCCCACAAAACCAAAG
19
4892





CCR5-877
+
UGUUGCCCACAAAACCAAAG
20
4893





CCR5-2038
+
AUGUUGCCCACAAAACCAAAG
21
4894





CCR5-2039
+
CAUGUUGCCCACAAAACCAAAG
22
4895





CCR5-2040
+
GCAUGUUGCCCACAAAACCAAAG
23
4896





CCR5-2041
+
AGCAUGUUGCCCACAAAACCAAAG
24
4897





CCR5-2042
+
CCAGAAGGGGACAGUAAG
18
4898





CCR5-2043
+
CCCAGAAGGGGACAGUAAG
19
4899





CCR5-870
+
GCCCAGAAGGGGACAGUAAG
20
4900





CCR5-2044
+
AGCCCAGAAGGGGACAGUAAG
21
4901





CCR5-2045
+
GAGCCCAGAAGGGGACAGUAAG
22
4902





CCR5-2046
+
UGAGCCCAGAAGGGGACAGUAAG
23
4903





CCR5-2047
+
GUGAGCCCAGAAGGGGACAGUAAG
24
4904





CCR5-2048
+
GCAGCAUAGUGAGCCCAG
18
4905





CCR5-2049
+
GGCAGCAUAGUGAGCCCAG
19
4906





CCR5-866
+
CGGCAGCAUAGUGAGCCCAG
20
4907





CCR5-2050
+
GCGGCAGCAUAGUGAGCCCAG
21
4908





CCR5-2051
+
GGCGGCAGCAUAGUGAGCCCAG
22
4909





CCR5-2052
+
GGGCGGCAGCAUAGUGAGCCCAG
23
4910





CCR5-2053
+
UGGGCGGCAGCAUAGUGAGCCCAG
24
4911





CCR5-2054
+
AUGAAGAAGAUUCCAGAG
18
4912





CCR5-2055
+
GAUGAAGAAGAUUCCAGAG
19
4913





CCR5-860
+
UGAUGAAGAAGAUUCCAGAG
20
4914





CCR5-2056
+
AUGAUGAAGAAGAUUCCAGAG
21
4915





CCR5-2057
+
GAUGAUGAAGAAGAUUCCAGAG
22
4916





CCR5-2058
+
GGAUGAUGAAGAAGAUUCCAGAG
23
4917





CCR5-2059
+
AGGAUGAUGAAGAAGAUUCCAGAG
24
4918





CCR5-2060
+
GAACACCAGUGAGUAGAG
18
4919





CCR5-2061
+
UGAACACCAGUGAGUAGAG
19
4920





CCR5-92
+
AUGAACACCAGUGAGUAGAG
20
4921





CCR5-2062
+
GAUGAACACCAGUGAGUAGAG
21
4922





CCR5-2063
+
AGAUGAACACCAGUGAGUAGAG
22
4923





CCR5-2064
+
AAGAUGAACACCAGUGAGUAGAG
23
4924





CCR5-2065
+
AAAGAUGAACACCAGUGAGUAGAG
24
4925





CCR5-2066
+
GUAGAGCGGAGGCAGGAG
18
4926





CCR5-2067
+
AGUAGAGCGGAGGCAGGAG
19
4927





CCR5-884
+
GAGUAGAGCGGAGGCAGGAG
20
4928





CCR5-2068
+
UGAGUAGAGCGGAGGCAGGAG
21
4929





CCR5-2069
+
GUGAGUAGAGCGGAGGCAGGAG
22
4930





CCR5-2070
+
AGUGAGUAGAGCGGAGGCAGGAG
23
4931





CCR5-2071
+
CAGUGAGUAGAGCGGAGGCAGGAG
24
4932





CCR5-2072
+
AAGAUGAACACCAGUGAG
18
4933





CCR5-2073
+
AAAGAUGAACACCAGUGAG
19
4934





CCR5-879
+
CAAAGAUGAACACCAGUGAG
20
4935





CCR5-2074
+
CCAAAGAUGAACACCAGUGAG
21
4936





CCR5-2075
+
ACCAAAGAUGAACACCAGUGAG
22
4937





CCR5-2076
+
AACCAAAGAUGAACACCAGUGAG
23
4938





CCR5-2077
+
AAACCAAAGAUGAACACCAGUGAG
24
4939





CCR5-2078
+
AGGUCAGAGAUGGCCAGG
18
4940





CCR5-2079
+
CAGGUCAGAGAUGGCCAGG
19
4941





CCR5-873
+
ACAGGUCAGAGAUGGCCAGG
20
4942





CCR5-2080
+
AACAGGUCAGAGAUGGCCAGG
21
4943





CCR5-2081
+
AAACAGGUCAGAGAUGGCCAGG
22
4944





CCR5-2082
+
AAAACAGGUCAGAGAUGGCCAGG
23
4945





CCR5-2083
+
AAAAACAGGUCAGAGAUGGCCAGG
24
4946





CCR5-2084
+
CUUUUGCAGUUUAUCAGG
18
4947





CCR5-2085
+
CCUUUUGCAGUUUAUCAGG
19
4948





CCR5-875
+
GCCUUUUGCAGUUUAUCAGG
20
4949





CCR5-2086
+
AGCCUUUUGCAGUUUAUCAGG
21
4950





CCR5-2087
+
CAGCCUUUUGCAGUUUAUCAGG
22
4951





CCR5-2088
+
UCAGCCUUUUGCAGUUUAUCAGG
23
4952





CCR5-2089
+
UUCAGCCUUUUGCAGUUUAUCAGG
24
4953





CCR5-2090
+
CAGUGAGUAGAGCGGAGG
18
4954





CCR5-2091
+
CCAGUGAGUAGAGCGGAGG
19
4955





CCR5-882
+
ACCAGUGAGUAGAGCGGAGG
20
4956





CCR5-2092
+
CACCAGUGAGUAGAGCGGAGG
21
4957





CCR5-2093
+
ACACCAGUGAGUAGAGCGGAGG
22
4958





CCR5-2094
+
AACACCAGUGAGUAGAGCGGAGG
23
4959





CCR5-2095
+
GAACACCAGUGAGUAGAGCGGAGG
24
4960





CCR5-2096
+
GGUAAAGAUGAUUCCUGG
18
4961





CCR5-2097
+
UGGUAAAGAUGAUUCCUGG
19
4962





CCR5-2098
+
CUGGUAAAGAUGAUUCCUGG
20
4963





CCR5-2099
+
UCUGGUAAAGAUGAUUCCUGG
21
4964





CCR5-2100
+
AUCUGGUAAAGAUGAUUCCUGG
22
4965





CCR5-2101
+
GAUCUGGUAAAGAUGAUUCCUGG
23
4966





CCR5-2102
+
AGAUCUGGUAAAGAUGAUUCCUGG
24
4967





CCR5-2103
+
UUCACAUUGAUUUUUUGG
18
4968





CCR5-2104
+
CUUCACAUUGAUUUUUUGG
19
4969





CCR5-885
+
GCUUCACAUUGAUUUUUUGG
20
4970





CCR5-2105
+
UGCUUCACAUUGAUUUUUUGG
21
4971





CCR5-2106
+
UUGCUUCACAUUGAUUUUUUGG
22
4972





CCR5-2107
+
UUUGCUUCACAUUGAUUUUUUGG
23
4973





CCR5-2108
+
AUUUGCUUCACAUUGAUUUUUUGG
24
4974





CCR5-2109
+
UCGAUUGUCAGGAGGAUG
18
4975





CCR5-2110
+
AUCGAUUGUCAGGAGGAUG
19
4976





CCR5-856
+
UAUCGAUUGUCAGGAGGAUG
20
4977





CCR5-2111
+
CUAUCGAUUGUCAGGAGGAUG
21
4978





CCR5-2112
+
CCUAUCGAUUGUCAGGAGGAUG
22
4979





CCR5-2113
+
ACCUAUCGAUUGUCAGGAGGAUG
23
4980





CCR5-2114
+
UACCUAUCGAUUGUCAGGAGGAUG
24
4981





CCR5-2115
+
AUUGUCAGGAGGAUGAUG
18
4982





CCR5-2116
+
GAUUGUCAGGAGGAUGAUG
19
4983





CCR5-857
+
CGAUUGUCAGGAGGAUGAUG
20
4984





CCR5-2117
+
UCGAUUGUCAGGAGGAUGAUG
21
4985





CCR5-2118
+
AUCGAUUGUCAGGAGGAUGAUG
22
4986





CCR5-2119
+
UAUCGAUUGUCAGGAGGAUGAUG
23
4987





CCR5-2120
+
CUAUCGAUUGUCAGGAGGAUGAUG
24
4988





CCR5-2121
+
CUGGUAAAGAUGAUUCCU
18
4989





CCR5-2122
+
UCUGGUAAAGAUGAUUCCU
19
4990





CCR5-1877
+
AUCUGGUAAAGAUGAUUCCU
20
4991





CCR5-2123
+
GAUCUGGUAAAGAUGAUUCCU
21
4992





CCR5-2124
+
AGAUCUGGUAAAGAUGAUUCCU
22
4993





CCR5-2125
+
GAGAUCUGGUAAAGAUGAUUCCU
23
4994





CCR5-2126
+
UGAGAUCUGGUAAAGAUGAUUCCU
24
4995





CCR5-2127
+
AGCCCAGAAGGGGACAGU
18
4996





CCR5-2128
+
GAGCCCAGAAGGGGACAGU
19
4997





CCR5-869
+
UGAGCCCAGAAGGGGACAGU
20
4998





CCR5-2129
+
GUGAGCCCAGAAGGGGACAGU
21
4999





CCR5-2130
+
AGUGAGCCCAGAAGGGGACAGU
22
5000





CCR5-2131
+
UAGUGAGCCCAGAAGGGGACAGU
23
5001





CCR5-2132
+
AUAGUGAGCCCAGAAGGGGACAGU
24
5002





CCR5-2133
+
UAAGAAGGAAAAACAGGU
18
5003





CCR5-2134
+
GUAAGAAGGAAAAACAGGU
19
5004





CCR5-872
+
AGUAAGAAGGAAAAACAGGU
20
5005





CCR5-2135
+
CAGUAAGAAGGAAAAACAGGU
21
5006





CCR5-2136
+
ACAGUAAGAAGGAAAAACAGGU
22
5007





CCR5-2137
+
GACAGUAAGAAGGAAAAACAGGU
23
5008





CCR5-2138
+
GGACAGUAAGAAGGAAAAACAGGU
24
5009





CCR5-2139
+
CAGGUACCUAUCGAUUGU
18
5010





CCR5-2140
+
CCAGGUACCUAUCGAUUGU
19
5011





CCR5-853
+
GCCAGGUACCUAUCGAUUGU
20
5012





CCR5-2141
+
AGCCAGGUACCUAUCGAUUGU
21
5013





CCR5-2142
+
CAGCCAGGUACCUAUCGAUUGU
22
5014





CCR5-2143
+
ACAGCCAGGUACCUAUCGAUUGU
23
5015





CCR5-2144
+
GACAGCCAGGUACCUAUCGAUUGU
24
5016





CCR5-2145
+
GUAAUGAAGACCUUCUUU
18
5017





CCR5-2146
+
UGUAAUGAAGACCUUCUUU
19
5018





CCR5-1657
+
GUGUAAUGAAGACCUUCUUU
20
5019





CCR5-2147

UCUUUACCAGAUCUCAAA
18
5020





CCR5-2148

AUCUUUACCAGAUCUCAAA
19
5021





CCR5-2149

CAUCUUUACCAGAUCUCAAA
20
5022





CCR5-2150

UCAUCUUUACCAGAUCUCAAA
21
5023





CCR5-2151

AUCAUCUUUACCAGAUCUCAAA
22
5024





CCR5-2152

AAUCAUCUUUACCAGAUCUCAAA
23
5025





CCR5-2153

GAAUCAUCUUUACCAGAUCUCAAA
24
5026





CCR5-2154

GACAUCAAUUAUUAUACA
18
5027





CCR5-2155

UGACAUCAAUUAUUAUACA
19
5028





CCR5-812

AUGACAUCAAUUAUUAUACA
20
5029





CCR5-2156

UAUGACAUCAAUUAUUAUACA
21
5030





CCR5-2157

CUAUGACAUCAAUUAUUAUACA
22
5031





CCR5-2158

UCUAUGACAUCAAUUAUUAUACA
23
5032





CCR5-2159

AUCUAUGACAUCAAUUAUUAUACA
24
5033





CCR5-2160

UCACUAUGCUGCCGCCCA
18
5034





CCR5-2161

CUCACUAUGCUGCCGCCCA
19
5035





CCR5-819

GCUCACUAUGCUGCCGCCCA
20
5036





CCR5-2162

GGCUCACUAUGCUGCCGCCCA
21
5037





CCR5-2163

GGGCUCACUAUGCUGCCGCCCA
22
5038





CCR5-2164

UGGGCUCACUAUGCUGCCGCCCA
23
5039





CCR5-2165

CUGGGCUCACUAUGCUGCCGCCCA
24
5040





CCR5-2166

CAAUGUGUCAACUCUUGA
18
5041





CCR5-2167

ACAAUGUGUCAACUCUUGA
19
5042





CCR5-823

UACAAUGUGUCAACUCUUGA
20
5043





CCR5-2168

AUACAAUGUGUCAACUCUUGA
21
5044





CCR5-2169

AAUACAAUGUGUCAACUCUUGA
22
5045





CCR5-2170

AAAUACAAUGUGUCAACUCUUGA
23
5046





CCR5-2171

GAAAUACAAUGUGUCAACUCUUGA
24
5047





CCR5-2172

CUGUGUUUGCGUCUCUCC
18
5048





CCR5-2173

GCUGUGUUUGCGUCUCUCC
19
5049





CCR5-830

GGCUGUGUUUGCGUCUCUCC
20
5050





CCR5-2174

UGGCUGUGUUUGCGUCUCUCC
21
5051





CCR5-2175

GUGGCUGUGUUUGCGUCUCUCC
22
5052





CCR5-2176

GGUGGCUGUGUUUGCGUCUCUCC
23
5053





CCR5-2177

UGGUGGCUGUGUUUGCGUCUCUCC
24
5054





CCR5-2178

UGUGUUUGCUUUAAAAGC
18
5055





CCR5-2179

CUGUGUUUGCUUUAAAAGC
19
5056





CCR5-826

GCUGUGUUUGCUUUAAAAGC
20
5057





CCR5-2180

UGCUGUGUUUGCUUUAAAAGC
21
5058





CCR5-2181

AUGCUGUGUUUGCUUUAAAAGC
22
5059





CCR5-2182

CAUGCUGUGUUUGCUUUAAAAGC
23
5060





CCR5-2183

CCAUGCUGUGUUUGCUUUAAAAGC
24
5061





CCR5-2184

CACUAUGCUGCCGCCCAG
18
5062





CCR5-2185

UCACUAUGCUGCCGCCCAG
19
5063





CCR5-74

CUCACUAUGCUGCCGCCCAG
20
5064





CCR5-2186

GCUCACUAUGCUGCCGCCCAG
21
5065





CCR5-2187

GGCUCACUAUGCUGCCGCCCAG
22
5066





CCR5-2188

GGGCUCACUAUGCUGCCGCCCAG
23
5067





CCR5-2189

UGGGCUCACUAUGCUGCCGCCCAG
24
5068





CCR5-2190

CUGAUAAACUGCAAAAGG
18
5069





CCR5-2191

CCUGAUAAACUGCAAAAGG
19
5070





CCR5-816

UCCUGAUAAACUGCAAAAGG
20
5071





CCR5-2192

AUCCUGAUAAACUGCAAAAGG
21
5072





CCR5-2193

CAUCCUGAUAAACUGCAAAAGG
22
5073





CCR5-2194

UCAUCCUGAUAAACUGCAAAAGG
23
5074





CCR5-2195

CUCAUCCUGAUAAACUGCAAAAGG
24
5075





CCR5-2196

UUUUUAUUUAUGCACAGG
18
5076





CCR5-2197

CUUUUUAUUUAUGCACAGG
19
5077





CCR5-2198

ACUUUUUAUUUAUGCACAGG
20
5078





CCR5-2199

UUUUAUUUAUGCACAGGG
18
5079





CCR5-2200

UUUUUAUUUAUGCACAGGG
19
5080





CCR5-1876

CUUUUUAUUUAUGCACAGGG
20
5081





CCR5-2201

AUAAACUGCAAAAGGCUG
18
5082





CCR5-2202

GAUAAACUGCAAAAGGCUG
19
5083





CCR5-817

UGAUAAACUGCAAAAGGCUG
20
5084





CCR5-2203

CUGAUAAACUGCAAAAGGCUG
21
5085





CCR5-2204

CCUGAUAAACUGCAAAAGGCUG
22
5086





CCR5-2205

UCCUGAUAAACUGCAAAAGGCUG
23
5087





CCR5-2206

AUCCUGAUAAACUGCAAAAGGCUG
24
5088





CCR5-2207

CCCUGCCAAAAAAUCAAU
18
5089





CCR5-2208

GCCCUGCCAAAAAAUCAAU
19
5090





CCR5-814

AGCCCUGCCAAAAAAUCAAU
20
5091





CCR5-2209

GAGCCCUGCCAAAAAAUCAAU
21
5092





CCR5-2210

GGAGCCCUGCCAAAAAAUCAAU
22
5093





CCR5-2211

CGGAGCCCUGCCAAAAAAUCAAU
23
5094





CCR5-2212

UCGGAGCCCUGCCAAAAAAUCAAU
24
5095





CCR5-2213

ACAUCAAUUAUUAUACAU
18
5096





CCR5-2214

GACAUCAAUUAUUAUACAU
19
5097





CCR5-67

UGACAUCAAUUAUUAUACAU
20
5098





CCR5-2215

AUGACAUCAAUUAUUAUACAU
21
5099





CCR5-2216

UAUGACAUCAAUUAUUAUACAU
22
5100





CCR5-2217

CUAUGACAUCAAUUAUUAUACAU
23
5101





CCR5-2218

UCUAUGACAUCAAUUAUUAUACAU
24
5102





CCR5-2219

CUGCCGCCCAGUGGGACU
18
5103





CCR5-2220

GCUGCCGCCCAGUGGGACU
19
5104





CCR5-821

UGCUGCCGCCCAGUGGGACU
20
5105





CCR5-2221

AUGCUGCCGCCCAGUGGGACU
21
5106





CCR5-2222

UAUGCUGCCGCCCAGUGGGACU
22
5107





CCR5-2223

CUAUGCUGCCGCCCAGUGGGACU
23
5108





CCR5-2224

ACUAUGCUGCCGCCCAGUGGGACU
24
5109





CCR5-2225

AAGCCAGGACGGUCACCU
18
5110





CCR5-2226

AAAGCCAGGACGGUCACCU
19
5111





CCR5-827

AAAAGCCAGGACGGUCACCU
20
5112





CCR5-2227

UAAAAGCCAGGACGGUCACCU
21
5113





CCR5-2228

UUAAAAGCCAGGACGGUCACCU
22
5114





CCR5-2229

UUUAAAAGCCAGGACGGUCACCU
23
5115





CCR5-2230

CUUUAAAAGCCAGGACGGUCACCU
24
5116





CCR5-2231

AUUUUAUAGGCUUCUUCU
18
5117





CCR5-2232

UAUUUUAUAGGCUUCUUCU
19
5118





CCR5-824

CUAUUUUAUAGGCUUCUUCU
20
5119





CCR5-2233

UCUAUUUUAUAGGCUUCUUCU
21
5120





CCR5-2234

CUCUAUUUUAUAGGCUUCUUCU
22
5121





CCR5-2235

GCUCUAUUUUAUAGGCUUCUUCU
23
5122





CCR5-2236

GGCUCUAUUUUAUAGGCUUCUUCU
24
5123





CCR5-2237

UGCCGCCCAGUGGGACUU
18
5124





CCR5-2238

CUGCCGCCCAGUGGGACUU
19
5125





CCR5-43

GCUGCCGCCCAGUGGGACUU
20
5126





CCR5-2239

UGCUGCCGCCCAGUGGGACUU
21
5127





CCR5-2240

AUGCUGCCGCCCAGUGGGACUU
22
5128





CCR5-2241

UAUGCUGCCGCCCAGUGGGACUU
23
5129





CCR5-2242

CUAUGCUGCCGCCCAGUGGGACUU
24
5130





CCR5-2243

CCUUCUUACUGUCCCCUU
18
5131





CCR5-2244

UCCUUCUUACUGUCCCCUU
19
5132





CCR5-818

UUCCUUCUUACUGUCCCCUU
20
5133





CCR5-2245

UUUCCUUCUUACUGUCCCCUU
21
5134





CCR5-2246

UUUUCCUUCUUACUGUCCCCUU
22
5135





CCR5-2247

UUUUUCCUUCUUACUGUCCCCUU
23
5136





CCR5-2248

GUUUUUCCUUCUUACUGUCCCCUU
24
5137





CCR5-2249

GUGUUCAUCUUUGGUUUU
18
5138





CCR5-2250

GGUGUUCAUCUUUGGUUUU
19
5139





CCR5-815

UGGUGUUCAUCUUUGGUUUU
20
5140





CCR5-2251

CUGGUGUUCAUCUUUGGUUUU
21
5141





CCR5-2252

ACUGGUGUUCAUCUUUGGUUUU
22
5142





CCR5-2253

CACUGGUGUUCAUCUUUGGUUUU
23
5143





CCR5-2254

UCACUGGUGUUCAUCUUUGGUUUU
24
5144









Table 3E provides exemplary targeting domains for knocking out the CCR5 gene selected according to the fifth tier parameters. The targeting domains fall in the coding sequence of the gene, downstream of the first 500 bp of coding sequence (e.g., anywhere from +500 (relative to the start codon) to the stop codon of the gene and PAM is NNGRRV. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 3E







5th Tier











gRNA
DNA

Target Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO














CCR5-2339
+
GAGCCUCUUGCUGGAAAA
18
5145





CCR5-2340
+
GGAGCCUCUUGCUGGAAAA
19
5146





CCR5-1619
+
GGGAGCCUCUUGCUGGAAAA
20
5147





CCR5-2341
+
CGGGAGCCUCUUGCUGGAAAA
21
5148





CCR5-2342
+
UCGGGAGCCUCUUGCUGGAAAA
22
5149





CCR5-2343
+
CUCGGGAGCCUCUUGCUGGAAAA
23
5150





CCR5-2344
+
GCUCGGGAGCCUCUUGCUGGAAAA
24
5151





CCR5-2345
+
AUACUGACUGUAUGGAAA
18
5152





CCR5-2346
+
GAUACUGACUGUAUGGAAA
19
5153





CCR5-1654
+
UGAUACUGACUGUAUGGAAA
20
5154





CCR5-2347
+
UUGAUACUGACUGUAUGGAAA
21
5155





CCR5-2348
+
AUUGAUACUGACUGUAUGGAAA
22
5156





CCR5-2349
+
AAUUGAUACUGACUGUAUGGAAA
23
5157





CCR5-2350
+
GAAUUGAUACUGACUGUAUGGAAA
24
5158





CCR5-2351
+
CAGUGGAUCGGGUGUAAA
18
5159





CCR5-2352
+
CCAGUGGAUCGGGUGUAAA
19
5160





CCR5-1613
+
CCCAGUGGAUCGGGUGUAAA
20
5161





CCR5-2353
+
CCCCAGUGGAUCGGGUGUAAA
21
5162





CCR5-2354
+
UCCCCAGUGGAUCGGGUGUAAA
22
5163





CCR5-2355
+
CUCCCCAGUGGAUCGGGUGUAAA
23
5164





CCR5-2356
+
GCUCCCCAGUGGAUCGGGUGUAAA
24
5165





CCR5-2357
+
GUUGUAGGGAGCCCAGAA
18
5166





CCR5-2358
+
UGUUGUAGGGAGCCCAGAA
19
5167





CCR5-1642
+
AUGUUGUAGGGAGCCCAGAA
20
5168





CCR5-2359
+
AAUGUUGUAGGGAGCCCAGAA
21
5169





CCR5-2360
+
CAAUGUUGUAGGGAGCCCAGAA
22
5170





CCR5-2361
+
ACAAUGUUGUAGGGAGCCCAGAA
23
5171





CCR5-2362
+
GACAAUGUUGUAGGGAGCCCAGAA
24
5172





CCR5-2363
+
CUUCUUCUCAUUUCGACA
18
5173





CCR5-2364
+
UCUUCUUCUCAUUUCGACA
19
5174





CCR5-1644
+
CUCUUCUUCUCAUUUCGACA
20
5175





CCR5-2365
+
CCUCUUCUUCUCAUUUCGACA
21
5176





CCR5-2366
+
GCCUCUUCUUCUCAUUUCGACA
22
5177





CCR5-2367
+
UGCCUCUUCUUCUCAUUUCGACA
23
5178





CCR5-2368
+
GUGCCUCUUCUUCUCAUUUCGACA
24
5179





CCR5-2369
+
GAAUUGAUACUGACUGUA
18
5180





CCR5-2370
+
AGAAUUGAUACUGACUGUA
19
5181





CCR5-699
+
CAGAAUUGAUACUGACUGUA
20
5182





CCR5-2371
+
CCAGAAUUGAUACUGACUGUA
21
5183





CCR5-2372
+
UCCAGAAUUGAUACUGACUGUA
22
5184





CCR5-2373
+
UUCCAGAAUUGAUACUGACUGUA
23
5185





CCR5-2374
+
CUUCCAGAAUUGAUACUGACUGUA
24
5186





CCR5-2375
+
AUGAGAGCUGCAGGUGUA
18
5187





CCR5-2376
+
AAUGAGAGCUGCAGGUGUA
19
5188





CCR5-1656
+
AAAUGAGAGCUGCAGGUGUA
20
5189





CCR5-2377
+
AAAAUGAGAGCUGCAGGUGUA
21
5190





CCR5-2378
+
GAAAAUGAGAGCUGCAGGUGUA
22
5191





CCR5-2379
+
GGAAAAUGAGAGCUGCAGGUGUA
23
5192





CCR5-2380
+
UGGAAAAUGAGAGCUGCAGGUGUA
24
5193





CCR5-2381
+
GAGAAGGACAAUGUUGUA
18
5194





CCR5-2382
+
GGAGAAGGACAAUGUUGUA
19
5195





CCR5-693
+
AGGAGAAGGACAAUGUUGUA
20
5196





CCR5-2383
+
CAGGAGAAGGACAAUGUUGUA
21
5197





CCR5-2384
+
UCAGGAGAAGGACAAUGUUGUA
22
5198





CCR5-2385
+
UUCAGGAGAAGGACAAUGUUGUA
23
5199





CCR5-2386
+
GUUCAGGAGAAGGACAAUGUUGUA
24
5200





CCR5-2387
+
ACAAUGUUGUAGGGAGCC
18
5201





CCR5-2388
+
GACAAUGUUGUAGGGAGCC
19
5202





CCR5-1640
+
GGACAAUGUUGUAGGGAGCC
20
5203





CCR5-2389
+
AGGACAAUGUUGUAGGGAGCC
21
5204





CCR5-2390
+
AAGGACAAUGUUGUAGGGAGCC
22
5205





CCR5-2391
+
GAAGGACAAUGUUGUAGGGAGCC
23
5206





CCR5-2392
+
AGAAGGACAAUGUUGUAGGGAGCC
24
5207





CCR5-2393
+
UUCAGGCCAAAGAAUUCC
18
5208





CCR5-2394
+
AUUCAGGCCAAAGAAUUCC
19
5209





CCR5-688
+
UAUUCAGGCCAAAGAAUUCC
20
5210





CCR5-2395
+
UUAUUCAGGCCAAAGAAUUCC
21
5211





CCR5-2396
+
AUUAUUCAGGCCAAAGAAUUCC
22
5212





CCR5-2397
+
AAUUAUUCAGGCCAAAGAAUUCC
23
5213





CCR5-2398
+
CAAUUAUUCAGGCCAAAGAAUUCC
24
5214





CCR5-1999
+
UCUGGUAAAGAUGAUUCC
18
5215





CCR5-2000
+
AUCUGGUAAAGAUGAUUCC
19
5216





CCR5-1874
+
GAUCUGGUAAAGAUGAUUCC
20
5217





CCR5-2001
+
AGAUCUGGUAAAGAUGAUUCC
21
5218





CCR5-2002
+
GAGAUCUGGUAAAGAUGAUUCC
22
5219





CCR5-2003
+
UGAGAUCUGGUAAAGAUGAUUCC
23
5220





CCR5-2004
+
UUGAGAUCUGGUAAAGAUGAUUCC
24
5221





CCR5-2399
+
UAAACUGAGCUUGCUCGC
18
5222





CCR5-2400
+
GUAAACUGAGCUUGCUCGC
19
5223





CCR5-1614
+
UGUAAACUGAGCUUGCUCGC
20
5224





CCR5-2401
+
GUGUAAACUGAGCUUGCUCGC
21
5225





CCR5-2402
+
GGUGUAAACUGAGCUUGCUCGC
22
5226





CCR5-2403
+
GGGUGUAAACUGAGCUUGCUCGC
23
5227





CCR5-2404
+
CGGGUGUAAACUGAGCUUGCUCGC
24
5228





CCR5-2405
+
CGCUCGGGAGCCUCUUGC
18
5229





CCR5-2406
+
UCGCUCGGGAGCCUCUUGC
19
5230





CCR5-678
+
CUCGCUCGGGAGCCUCUUGC
20
5231





CCR5-2407
+
GCUCGCUCGGGAGCCUCUUGC
21
5232





CCR5-2408
+
UGCUCGCUCGGGAGCCUCUUGC
22
5233





CCR5-2409
+
UUGCUCGCUCGGGAGCCUCUUGC
23
5234





CCR5-2410
+
CUUGCUCGCUCGGGAGCCUCUUGC
24
5235





CCR5-2411
+
AACUGAGCUUGCUCGCUC
18
5236





CCR5-2412
+
AAACUGAGCUUGCUCGCUC
19
5237





CCR5-677
+
UAAACUGAGCUUGCUCGCUC
20
5238





CCR5-2413
+
GUAAACUGAGCUUGCUCGCUC
21
5239





CCR5-2414
+
UGUAAACUGAGCUUGCUCGCUC
22
5240





CCR5-2415
+
GUGUAAACUGAGCUUGCUCGCUC
23
5241





CCR5-2416
+
GGUGUAAACUGAGCUUGCUCGCUC
24
5242





CCR5-2417
+
AUGACUAUCUUUAAUGUC
18
5243





CCR5-2418
+
GAUGACUAUCUUUAAUGUC
19
5244





CCR5-698
+
AGAUGACUAUCUUUAAUGUC
20
5245





CCR5-2419
+
AAGAUGACUAUCUUUAAUGUC
21
5246





CCR5-2420
+
CAAGAUGACUAUCUUUAAUGUC
22
5247





CCR5-2421
+
CCAAGAUGACUAUCUUUAAUGUC
23
5248





CCR5-2422
+
CCCAAGAUGACUAUCUUUAAUGUC
24
5249





CCR5-2423
+
AUUCAGGCCAAAGAAUUC
18
5250





CCR5-2424
+
UAUUCAGGCCAAAGAAUUC
19
5251





CCR5-1631
+
UUAUUCAGGCCAAAGAAUUC
20
5252





CCR5-2425
+
AUUAUUCAGGCCAAAGAAUUC
21
5253





CCR5-2426
+
AAUUAUUCAGGCCAAAGAAUUC
22
5254





CCR5-2427
+
CAAUUAUUCAGGCCAAAGAAUUC
23
5255





CCR5-2428
+
GCAAUUAUUCAGGCCAAAGAAUUC
24
5256





CCR5-2029
+
AUCUGGUAAAGAUGAUUC
18
5257





CCR5-2030
+
GAUCUGGUAAAGAUGAUUC
19
5258





CCR5-2031
+
AGAUCUGGUAAAGAUGAUUC
20
5259





CCR5-2032
+
GAGAUCUGGUAAAGAUGAUUC
21
5260





CCR5-2033
+
UGAGAUCUGGUAAAGAUGAUUC
22
5261





CCR5-2034
+
UUGAGAUCUGGUAAAGAUGAUUC
23
5262





CCR5-2035
+
UUUGAGAUCUGGUAAAGAUGAUUC
24
5263





CCR5-2429
+
AAUUCCUGGAAGGUGUUC
18
5264





CCR5-2430
+
GAAUUCCUGGAAGGUGUUC
19
5265





CCR5-690
+
AGAAUUCCUGGAAGGUGUUC
20
5266





CCR5-2431
+
AAGAAUUCCUGGAAGGUGUUC
21
5267





CCR5-2432
+
AAAGAAUUCCUGGAAGGUGUUC
22
5268





CCR5-2433
+
CAAAGAAUUCCUGGAAGGUGUUC
23
5269





CCR5-2434
+
CCAAAGAAUUCCUGGAAGGUGUUC
24
5270





CCR5-2435
+
AUGUUGUAGGGAGCCCAG
18
5271





CCR5-2436
+
AAUGUUGUAGGGAGCCCAG
19
5272





CCR5-1641
+
CAAUGUUGUAGGGAGCCCAG
20
5273





CCR5-2437
+
ACAAUGUUGUAGGGAGCCCAG
21
5274





CCR5-2438
+
GACAAUGUUGUAGGGAGCCCAG
22
5275





CCR5-2439
+
GGACAAUGUUGUAGGGAGCCCAG
23
5276





CCR5-2440
+
AGGACAAUGUUGUAGGGAGCCCAG
24
5277





CCR5-2441
+
UUCCUGGAAGGUGUUCAG
18
5278





CCR5-2442
+
AUUCCUGGAAGGUGUUCAG
19
5279





CCR5-1635
+
AAUUCCUGGAAGGUGUUCAG
20
5280





CCR5-2443
+
GAAUUCCUGGAAGGUGUUCAG
21
5281





CCR5-2444
+
AGAAUUCCUGGAAGGUGUUCAG
22
5282





CCR5-2445
+
AAGAAUUCCUGGAAGGUGUUCAG
23
5283





CCR5-2446
+
AAAGAAUUCCUGGAAGGUGUUCAG
24
5284





CCR5-2447
+
CUGGAAGGUGUUCAGGAG
18
5285





CCR5-2448
+
CCUGGAAGGUGUUCAGGAG
19
5286





CCR5-1636
+
UCCUGGAAGGUGUUCAGGAG
20
5287





CCR5-2449
+
UUCCUGGAAGGUGUUCAGGAG
21
5288





CCR5-2450
+
AUUCCUGGAAGGUGUUCAGGAG
22
5289





CCR5-2451
+
AAUUCCUGGAAGGUGUUCAGGAG
23
5290





CCR5-2452
+
GAAUUCCUGGAAGGUGUUCAGGAG
24
5291





CCR5-2453
+
GACCAUGACAAGCAGCGG
18
5292





CCR5-2454
+
UGACCAUGACAAGCAGCGG
19
5293





CCR5-1648
+
AUGACCAUGACAAGCAGCGG
20
5294





CCR5-2455
+
GAUGACCAUGACAAGCAGCGG
21
5295





CCR5-2456
+
AGAUGACCAUGACAAGCAGCGG
22
5296





CCR5-2457
+
CAGAUGACCAUGACAAGCAGCGG
23
5297





CCR5-2458
+
GCAGAUGACCAUGACAAGCAGCGG
24
5298





CCR5-2096
+
GGUAAAGAUGAUUCCUGG
18
5299





CCR5-2097
+
UGGUAAAGAUGAUUCCUGG
19
5300





CCR5-2098
+
CUGGUAAAGAUGAUUCCUGG
20
5301





CCR5-2099
+
UCUGGUAAAGAUGAUUCCUGG
21
5302





CCR5-2100
+
AUCUGGUAAAGAUGAUUCCUGG
22
5303





CCR5-2101
+
GAUCUGGUAAAGAUGAUUCCUGG
23
5304





CCR5-2102
+
AGAUCUGGUAAAGAUGAUUCCUGG
24
5305





CCR5-2459
+
UUGGCAAUGUGCUUUUGG
18
5306





CCR5-2460
+
UUUGGCAAUGUGCUUUUGG
19
5307





CCR5-1623
+
GUUUGGCAAUGUGCUUUUGG
20
5308





CCR5-2461
+
CGUUUGGCAAUGUGCUUUUGG
21
5309





CCR5-2462
+
GCGUUUGGCAAUGUGCUUUUGG
22
5310





CCR5-2463
+
AGCGUUUGGCAAUGUGCUUUUGG
23
5311





CCR5-2464
+
AAGCGUUUGGCAAUGUGCUUUUGG
24
5312





CCR5-2465
+
CCGACAAAGGCAUAGAUG
18
5313





CCR5-2466
+
CCCGACAAAGGCAUAGAUG
19
5314





CCR5-1626
+
CCCCGACAAAGGCAUAGAUG
20
5315





CCR5-2467
+
UCCCCGACAAAGGCAUAGAUG
21
5316





CCR5-2468
+
CUCCCCGACAAAGGCAUAGAUG
22
5317





CCR5-2469
+
UCUCCCCGACAAAGGCAUAGAUG
23
5318





CCR5-2470
+
UUCUCCCCGACAAAGGCAUAGAUG
24
5319





CCR5-2471
+
AAAUAAACAAUCAUGAUG
18
5320





CCR5-2472
+
AAAAUAAACAAUCAUGAUG
19
5321





CCR5-1643
+
GAAAAUAAACAAUCAUGAUG
20
5322





CCR5-2473
+
AGAAAAUAAACAAUCAUGAUG
21
5323





CCR5-2474
+
GAGAAAAUAAACAAUCAUGAUG
22
5324





CCR5-2475
+
AGAGAAAAUAAACAAUCAUGAUG
23
5325





CCR5-2476
+
AAGAGAAAAUAAACAAUCAUGAUG
24
5326





CCR5-2477
+
UCGCUCGGGAGCCUCUUG
18
5327





CCR5-2478
+
CUCGCUCGGGAGCCUCUUG
19
5328





CCR5-1617
+
GCUCGCUCGGGAGCCUCUUG
20
5329





CCR5-2479
+
UGCUCGCUCGGGAGCCUCUUG
21
5330





CCR5-2480
+
UUGCUCGCUCGGGAGCCUCUUG
22
5331





CCR5-2481
+
CUUGCUCGCUCGGGAGCCUCUUG
23
5332





CCR5-2482
+
GCUUGCUCGCUCGGGAGCCUCUUG
24
5333





CCR5-2483
+
AGGAGAAGGACAAUGUUG
18
5334





CCR5-2484
+
CAGGAGAAGGACAAUGUUG
19
5335





CCR5-1637
+
UCAGGAGAAGGACAAUGUUG
20
5336





CCR5-2485
+
UUCAGGAGAAGGACAAUGUUG
21
5337





CCR5-2486
+
GUUCAGGAGAAGGACAAUGUUG
22
5338





CCR5-2487
+
UGUUCAGGAGAAGGACAAUGUUG
23
5339





CCR5-2488
+
GUGUUCAGGAGAAGGACAAUGUUG
24
5340





CCR5-2489
+
AAAAUAGAACAGCAUUUG
18
5341





CCR5-2490
+
GAAAAUAGAACAGCAUUUG
19
5342





CCR5-1620
+
GGAAAAUAGAACAGCAUUUG
20
5343





CCR5-2491
+
UGGAAAAUAGAACAGCAUUUG
21
5344





CCR5-2492
+
CUGGAAAAUAGAACAGCAUUUG
22
5345





CCR5-2493
+
GCUGGAAAAUAGAACAGCAUUUG
23
5346





CCR5-2494
+
UGCUGGAAAAUAGAACAGCAUUUG
24
5347





CCR5-2495
+
ACUGACUGUAUGGAAAAU
18
5348





CCR5-2496
+
UACUGACUGUAUGGAAAAU
19
5349





CCR5-1655
+
AUACUGACUGUAUGGAAAAU
20
5350





CCR5-2497
+
GAUACUGACUGUAUGGAAAAU
21
5351





CCR5-2498
+
UGAUACUGACUGUAUGGAAAAU
22
5352





CCR5-2499
+
UUGAUACUGACUGUAUGGAAAAU
23
5353





CCR5-2500
+
AUUGAUACUGACUGUAUGGAAAAU
24
5354





CCR5-2501
+
UGCUUUUGGAAGAAGACU
18
5355





CCR5-2502
+
GUGCUUUUGGAAGAAGACU
19
5356





CCR5-1624
+
UGUGCUUUUGGAAGAAGACU
20
5357





CCR5-2503
+
AUGUGCUUUUGGAAGAAGACU
21
5358





CCR5-2504
+
AAUGUGCUUUUGGAAGAAGACU
22
5359





CCR5-2505
+
CAAUGUGCUUUUGGAAGAAGACU
23
5360





CCR5-2506
+
GCAAUGUGCUUUUGGAAGAAGACU
24
5361





CCR5-2121
+
CUGGUAAAGAUGAUUCCU
18
5362





CCR5-2122
+
UCUGGUAAAGAUGAUUCCU
19
5363





CCR5-1877
+
AUCUGGUAAAGAUGAUUCCU
20
5364





CCR5-2123
+
GAUCUGGUAAAGAUGAUUCCU
21
5365





CCR5-2124
+
AGAUCUGGUAAAGAUGAUUCCU
22
5366





CCR5-2125
+
GAGAUCUGGUAAAGAUGAUUCCU
23
5367





CCR5-2126
+
UGAGAUCUGGUAAAGAUGAUUCCU
24
5368





CCR5-2507
+
AAACUGAGCUUGCUCGCU
18
5369





CCR5-2508
+
UAAACUGAGCUUGCUCGCU
19
5370





CCR5-676
+
GUAAACUGAGCUUGCUCGCU
20
5371





CCR5-2509
+
UGUAAACUGAGCUUGCUCGCU
21
5372





CCR5-2510
+
GUGUAAACUGAGCUUGCUCGCU
22
5373





CCR5-2511
+
GGUGUAAACUGAGCUUGCUCGCU
23
5374





CCR5-2512
+
GGGUGUAAACUGAGCUUGCUCGCU
24
5375





CCR5-2513
+
GAUGACUAUCUUUAAUGU
18
5376





CCR5-2514
+
AGAUGACUAUCUUUAAUGU
19
5377





CCR5-1649
+
AAGAUGACUAUCUUUAAUGU
20
5378





CCR5-2515
+
CAAGAUGACUAUCUUUAAUGU
21
5379





CCR5-2516
+
CCAAGAUGACUAUCUUUAAUGU
22
5380





CCR5-2517
+
CCCAAGAUGACUAUCUUUAAUGU
23
5381





CCR5-2518
+
CCCCAAGAUGACUAUCUUUAAUGU
24
5382





CCR5-2519
+
AGAAUUGAUACUGACUGU
18
5383





CCR5-2520
+
CAGAAUUGAUACUGACUGU
19
5384





CCR5-1652
+
CCAGAAUUGAUACUGACUGU
20
5385





CCR5-2521
+
UCCAGAAUUGAUACUGACUGU
21
5386





CCR5-2522
+
UUCCAGAAUUGAUACUGACUGU
22
5387





CCR5-2523
+
CUUCCAGAAUUGAUACUGACUGU
23
5388





CCR5-2524
+
UCUUCCAGAAUUGAUACUGACUGU
24
5389





CCR5-2525
+
UAGCUUGGUCCAACCUGU
18
5390





CCR5-2526
+
AUAGCUUGGUCCAACCUGU
19
5391





CCR5-1629
+
CAUAGCUUGGUCCAACCUGU
20
5392





CCR5-2527
+
GCAUAGCUUGGUCCAACCUGU
21
5393





CCR5-2528
+
UGCAUAGCUUGGUCCAACCUGU
22
5394





CCR5-2529
+
CUGCAUAGCUUGGUCCAACCUGU
23
5395





CCR5-2530
+
CCUGCAUAGCUUGGUCCAACCUGU
24
5396





CCR5-2531
+
GGAGAAGGACAAUGUUGU
18
5397





CCR5-2532
+
AGGAGAAGGACAAUGUUGU
19
5398





CCR5-692
+
CAGGAGAAGGACAAUGUUGU
20
5399





CCR5-2533
+
UCAGGAGAAGGACAAUGUUGU
21
5400





CCR5-2534
+
UUCAGGAGAAGGACAAUGUUGU
22
5401





CCR5-2535
+
GUUCAGGAGAAGGACAAUGUUGU
23
5402





CCR5-2536
+
UGUUCAGGAGAAGGACAAUGUUGU
24
5403





CCR5-2537
+
GCGUUUGGCAAUGUGCUU
18
5404





CCR5-2538
+
AGCGUUUGGCAAUGUGCUU
19
5405





CCR5-1621
+
AAGCGUUUGGCAAUGUGCUU
20
5406





CCR5-2539
+
GAAGCGUUUGGCAAUGUGCUU
21
5407





CCR5-2540
+
AGAAGCGUUUGGCAAUGUGCUU
22
5408





CCR5-2541
+
CAGAAGCGUUUGGCAAUGUGCUU
23
5409





CCR5-2542
+
GCAGAAGCGUUUGGCAAUGUGCUU
24
5410





CCR5-2543
+
GAAUUCCUGGAAGGUGUU
18
5411





CCR5-2544
+
AGAAUUCCUGGAAGGUGUU
19
5412





CCR5-1633
+
AAGAAUUCCUGGAAGGUGUU
20
5413





CCR5-2545
+
AAAGAAUUCCUGGAAGGUGUU
21
5414





CCR5-2546
+
CAAAGAAUUCCUGGAAGGUGUU
22
5415





CCR5-2547
+
CCAAAGAAUUCCUGGAAGGUGUU
23
5416





CCR5-2548
+
GCCAAAGAAUUCCUGGAAGGUGUU
24
5417





CCR5-2549
+
CGUUUGGCAAUGUGCUUU
18
5418





CCR5-2550
+
GCGUUUGGCAAUGUGCUUU
19
5419





CCR5-680
+
AGCGUUUGGCAAUGUGCUUU
20
5420





CCR5-2551
+
AAGCGUUUGGCAAUGUGCUUU
21
5421





CCR5-2552
+
GAAGCGUUUGGCAAUGUGCUUU
22
5422





CCR5-2553
+
AGAAGCGUUUGGCAAUGUGCUUU
23
5423





CCR5-2554
+
CAGAAGCGUUUGGCAAUGUGCUUU
24
5424





CCR5-2145
+
GUAAUGAAGACCUUCUUU
18
5425





CCR5-2146
+
UGUAAUGAAGACCUUCUUU
19
5426





CCR5-1657
+
GUGUAAUGAAGACCUUCUUU
20
5427





CCR5-2555
+
GGUGUAAUGAAGACCUUCUUU
21
5428





CCR5-2556
+
AGGUGUAAUGAAGACCUUCUUU
22
5429





CCR5-2557
+
CAGGUGUAAUGAAGACCUUCUUU
23
5430





CCR5-2558
+
GCAGGUGUAAUGAAGACCUUCUUU
24
5431





CCR5-2559
+
AAGACUAAGAGGUAGUUU
18
5432





CCR5-2560
+
GAAGACUAAGAGGUAGUUU
19
5433





CCR5-1625
+
AGAAGACUAAGAGGUAGUUU
20
5434





CCR5-2561
+
AAGAAGACUAAGAGGUAGUUU
21
5435





CCR5-2562
+
GAAGAAGACUAAGAGGUAGUUU
22
5436





CCR5-2563
+
GGAAGAAGACUAAGAGGUAGUUU
23
5437





CCR5-2564
+
UGGAAGAAGACUAAGAGGUAGUUU
24
5438





CCR5-2147

UCUUUACCAGAUCUCAAA
18
5439





CCR5-2148

AUCUUUACCAGAUCUCAAA
19
5440





CCR5-2149

CAUCUUUACCAGAUCUCAAA
20
5441





CCR5-2150

UCAUCUUUACCAGAUCUCAAA
21
5442





CCR5-2151

AUCAUCUUUACCAGAUCUCAAA
22
5443





CCR5-2152

AAUCAUCUUUACCAGAUCUCAAA
23
5444





CCR5-2153

GAAUCAUCUUUACCAGAUCUCAAA
24
5445





CCR5-2565

CUUGUGACACGGACUCAA
18
5446





CCR5-2566

GCUUGUGACACGGACUCAA
19
5447





CCR5-963

GGCUUGUGACACGGACUCAA
20
5448





CCR5-2567

GGGCUUGUGACACGGACUCAA
21
5449





CCR5-2568

UGGGCUUGUGACACGGACUCAA
22
5450





CCR5-2569

GUGGGCUUGUGACACGGACUCAA
23
5451





CCR5-2570

UGUGGGCUUGUGACACGGACUCAA
24
5452





CCR5-2571

CUCUGCUUCGGUGUCGAA
18
5453





CCR5-2572

ACUCUGCUUCGGUGUCGAA
19
5454





CCR5-931

AACUCUGCUUCGGUGUCGAA
20
5455





CCR5-2573

AAACUCUGCUUCGGUGUCGAA
21
5456





CCR5-2574

AAAACUCUGCUUCGGUGUCGAA
22
5457





CCR5-2575

AAAAACUCUGCUUCGGUGUCGAA
23
5458





CCR5-2576

UAAAAACUCUGCUUCGGUGUCGAA
24
5459





CCR5-2577

CAGUUUACACCCGAUCCA
18
5460





CCR5-2578

UCAGUUUACACCCGAUCCA
19
5461





CCR5-955

CUCAGUUUACACCCGAUCCA
20
5462





CCR5-2579

GCUCAGUUUACACCCGAUCCA
21
5463





CCR5-2580

AGCUCAGUUUACACCCGAUCCA
22
5464





CCR5-2581

AAGCUCAGUUUACACCCGAUCCA
23
5465





CCR5-2582

CAAGCUCAGUUUACACCCGAUCCA
24
5466





CCR5-2583

AAAUGAGAAGAAGAGGCA
18
5467





CCR5-2584

GAAAUGAGAAGAAGAGGCA
19
5468





CCR5-935

CGAAAUGAGAAGAAGAGGCA
20
5469





CCR5-2585

UCGAAAUGAGAAGAAGAGGCA
21
5470





CCR5-2586

GUCGAAAUGAGAAGAAGAGGCA
22
5471





CCR5-2587

UGUCGAAAUGAGAAGAAGAGGCA
23
5472





CCR5-2588

GUGUCGAAAUGAGAAGAAGAGGCA
24
5473





CCR5-2589

CCAGCAAGAGGCUCCCGA
18
5474





CCR5-2590

UCCAGCAAGAGGCUCCCGA
19
5475





CCR5-954

UUCCAGCAAGAGGCUCCCGA
20
5476





CCR5-2591

UUUCCAGCAAGAGGCUCCCGA
21
5477





CCR5-2592

UUUUCCAGCAAGAGGCUCCCGA
22
5478





CCR5-2593

AUUUUCCAGCAAGAGGCUCCCGA
23
5479





CCR5-2594

UAUUUUCCAGCAAGAGGCUCCCGA
24
5480





CCR5-2595

ACCAAGCUAUGCAGGUGA
18
5481





CCR5-2596

GACCAAGCUAUGCAGGUGA
19
5482





CCR5-943

GGACCAAGCUAUGCAGGUGA
20
5483





CCR5-2597

UGGACCAAGCUAUGCAGGUGA
21
5484





CCR5-2598

UUGGACCAAGCUAUGCAGGUGA
22
5485





CCR5-2599

GUUGGACCAAGCUAUGCAGGUGA
23
5486





CCR5-2600

GGUUGGACCAAGCUAUGCAGGUGA
24
5487





CCR5-2601

AGUUUACACCCGAUCCAC
18
5488





CCR5-2602

CAGUUUACACCCGAUCCAC
19
5489





CCR5-178

UCAGUUUACACCCGAUCCAC
20
5490





CCR5-2603

CUCAGUUUACACCCGAUCCAC
21
5491





CCR5-2604

GCUCAGUUUACACCCGAUCCAC
22
5492





CCR5-2605

AGCUCAGUUUACACCCGAUCCAC
23
5493





CCR5-2606

AAGCUCAGUUUACACCCGAUCCAC
24
5494





CCR5-2607

UAUCUGUGGGCUUGUGAC
18
5495





CCR5-2608

AUAUCUGUGGGCUUGUGAC
19
5496





CCR5-962

AAUAUCUGUGGGCUUGUGAC
20
5497





CCR5-2609

AAAUAUCUGUGGGCUUGUGAC
21
5498





CCR5-2610

GAAAUAUCUGUGGGCUUGUGAC
22
5499





CCR5-2611

GGAAAUAUCUGUGGGCUUGUGAC
23
5500





CCR5-2612

AGGAAAUAUCUGUGGGCUUGUGAC
24
5501





CCR5-2613

GUCAUGGUCAUCUGCUAC
18
5502





CCR5-2614

UGUCAUGGUCAUCUGCUAC
19
5503





CCR5-927

UUGUCAUGGUCAUCUGCUAC
20
5504





CCR5-2615

CUUGUCAUGGUCAUCUGCUAC
21
5505





CCR5-2616

GCUUGUCAUGGUCAUCUGCUAC
22
5506





CCR5-2617

UGCUUGUCAUGGUCAUCUGCUAC
23
5507





CCR5-2618

CUGCUUGUCAUGGUCAUCUGCUAC
24
5508





CCR5-2619

GCUGUUCUAUUUUCCAGC
18
5509





CCR5-2620

UGCUGUUCUAUUUUCCAGC
19
5510





CCR5-952

AUGCUGUUCUAUUUUCCAGC
20
5511





CCR5-2621

AAUGCUGUUCUAUUUUCCAGC
21
5512





CCR5-2622

AAAUGCUGUUCUAUUUUCCAGC
22
5513





CCR5-2623

CAAAUGCUGUUCUAUUUUCCAGC
23
5514





CCR5-2624

GCAAAUGCUGUUCUAUUUUCCAGC
24
5515





CCR5-2625

CCCGAUCCACUGGGGAGC
18
5516





CCR5-2626

ACCCGAUCCACUGGGGAGC
19
5517





CCR5-181

CACCCGAUCCACUGGGGAGC
20
5518





CCR5-2627

ACACCCGAUCCACUGGGGAGC
21
5519





CCR5-2628

UACACCCGAUCCACUGGGGAGC
22
5520





CCR5-2629

UUACACCCGAUCCACUGGGGAGC
23
5521





CCR5-2630

UUUACACCCGAUCCACUGGGGAGC
24
5522





CCR5-2631

ACAUUAAAGAUAGUCAUC
18
5523





CCR5-2632

GACAUUAAAGAUAGUCAUC
19
5524





CCR5-925

AGACAUUAAAGAUAGUCAUC
20
5525





CCR5-2633

CAGACAUUAAAGAUAGUCAUC
21
5526





CCR5-2634

CCAGACAUUAAAGAUAGUCAUC
22
5527





CCR5-2635

UCCAGACAUUAAAGAUAGUCAUC
23
5528





CCR5-2636

UUCCAGACAUUAAAGAUAGUCAUC
24
5529





CCR5-2637

UGCAGGUGACAGAGACUC
18
5530





CCR5-2638

AUGCAGGUGACAGAGACUC
19
5531





CCR5-944

UAUGCAGGUGACAGAGACUC
20
5532





CCR5-2639

CUAUGCAGGUGACAGAGACUC
21
5533





CCR5-2640

GCUAUGCAGGUGACAGAGACUC
22
5534





CCR5-2641

AGCUAUGCAGGUGACAGAGACUC
23
5535





CCR5-2642

AAGCUAUGCAGGUGACAGAGACUC
24
5536





CCR5-2643

UUUUCCAGCAAGAGGCUC
18
5537





CCR5-2644

AUUUUCCAGCAAGAGGCUC
19
5538





CCR5-953

UAUUUUCCAGCAAGAGGCUC
20
5539





CCR5-2645

CUAUUUUCCAGCAAGAGGCUC
21
5540





CCR5-2646

UCUAUUUUCCAGCAAGAGGCUC
22
5541





CCR5-2647

UUCUAUUUUCCAGCAAGAGGCUC
23
5542





CCR5-2648

GUUCUAUUUUCCAGCAAGAGGCUC
24
5543





CCR5-2649

UACAACAUUGUCCUUCUC
18
5544





CCR5-2650

CUACAACAUUGUCCUUCUC
19
5545





CCR5-938

CCUACAACAUUGUCCUUCUC
20
5546





CCR5-2651

CCCUACAACAUUGUCCUUCUC
21
5547





CCR5-2652

UCCCUACAACAUUGUCCUUCUC
22
5548





CCR5-2653

CUCCCUACAACAUUGUCCUUCUC
23
5549





CCR5-2654

GCUCCCUACAACAUUGUCCUUCUC
24
5550





CCR5-2655

AUCAUCUAUGCCUUUGUC
18
5551





CCR5-2656

CAUCAUCUAUGCCUUUGUC
19
5552





CCR5-175

CCAUCAUCUAUGCCUUUGUC
20
5553





CCR5-2657

CCCAUCAUCUAUGCCUUUGUC
21
5554





CCR5-2658

CCCCAUCAUCUAUGCCUUUGUC
22
5555





CCR5-2659

ACCCCAUCAUCUAUGCCUUUGUC
23
5556





CCR5-2660

AACCCCAUCAUCUAUGCCUUUGUC
24
5557





CCR5-2661

UACAGUCAGUAUCAAUUC
18
5558





CCR5-2662

AUACAGUCAGUAUCAAUUC
19
5559





CCR5-152

CAUACAGUCAGUAUCAAUUC
20
5560





CCR5-2663

CCAUACAGUCAGUAUCAAUUC
21
5561





CCR5-2664

UCCAUACAGUCAGUAUCAAUUC
22
5562





CCR5-2665

UUCCAUACAGUCAGUAUCAAUUC
23
5563





CCR5-2666

UUUCCAUACAGUCAGUAUCAAUUC
24
5564





CCR5-2667

CUUCUCCUGAACACCUUC
18
5565





CCR5-2668

CCUUCUCCUGAACACCUUC
19
5566





CCR5-939

UCCUUCUCCUGAACACCUUC
20
5567





CCR5-2669

GUCCUUCUCCUGAACACCUUC
21
5568





CCR5-2670

UGUCCUUCUCCUGAACACCUUC
22
5569





CCR5-2671

UUGUCCUUCUCCUGAACACCUUC
23
5570





CCR5-2672

AUUGUCCUUCUCCUGAACACCUUC
24
5571





CCR5-2673

CGGUGUCGAAAUGAGAAG
18
5572





CCR5-2674

UCGGUGUCGAAAUGAGAAG
19
5573





CCR5-934

UUCGGUGUCGAAAUGAGAAG
20
5574





CCR5-2675

CUUCGGUGUCGAAAUGAGAAG
21
5575





CCR5-2676

GCUUCGGUGUCGAAAUGAGAAG
22
5576





CCR5-2677

UGCUUCGGUGUCGAAAUGAGAAG
23
5577





CCR5-2678

CUGCUUCGGUGUCGAAAUGAGAAG
24
5578





CCR5-2679

ACCCGAUCCACUGGGGAG
18
5579





CCR5-2680

CACCCGAUCCACUGGGGAG
19
5580





CCR5-959

ACACCCGAUCCACUGGGGAG
20
5581





CCR5-2681

UACACCCGAUCCACUGGGGAG
21
5582





CCR5-2682

UUACACCCGAUCCACUGGGGAG
22
5583





CCR5-2683

UUUACACCCGAUCCACUGGGGAG
23
5584





CCR5-2684

GUUUACACCCGAUCCACUGGGGAG
24
5585





CCR5-2685

CUUCGGUGUCGAAAUGAG
18
5586





CCR5-2686

GCUUCGGUGUCGAAAUGAG
19
5587





CCR5-933

UGCUUCGGUGUCGAAAUGAG
20
5588





CCR5-2687

CUGCUUCGGUGUCGAAAUGAG
21
5589





CCR5-2688

UCUGCUUCGGUGUCGAAAUGAG
22
5590





CCR5-2689

CUCUGCUUCGGUGUCGAAAUGAG
23
5591





CCR5-2690

ACUCUGCUUCGGUGUCGAAAUGAG
24
5592





CCR5-2691

UCAUCUAUGCCUUUGUCG
18
5593





CCR5-2692

AUCAUCUAUGCCUUUGUCG
19
5594





CCR5-176

CAUCAUCUAUGCCUUUGUCG
20
5595





CCR5-2693

CCAUCAUCUAUGCCUUUGUCG
21
5596





CCR5-2694

CCCAUCAUCUAUGCCUUUGUCG
22
5597





CCR5-2695

CCCCAUCAUCUAUGCCUUUGUCG
23
5598





CCR5-2696

ACCCCAUCAUCUAUGCCUUUGUCG
24
5599





CCR5-2697

UGCAGUAGCUCUAACAGG
18
5600





CCR5-2698

UUGCAGUAGCUCUAACAGG
19
5601





CCR5-942

AUUGCAGUAGCUCUAACAGG
20
5602





CCR5-2699

AAUUGCAGUAGCUCUAACAGG
21
5603





CCR5-2700

UAAUUGCAGUAGCUCUAACAGG
22
5604





CCR5-2701

AUAAUUGCAGUAGCUCUAACAGG
23
5605





CCR5-2702

AAUAAUUGCAGUAGCUCUAACAGG
24
5606





CCR5-2703

AUCUAUGCCUUUGUCGGG
18
5607





CCR5-2704

CAUCUAUGCCUUUGUCGGG
19
5608





CCR5-950

UCAUCUAUGCCUUUGUCGGG
20
5609





CCR5-2705

AUCAUCUAUGCCUUUGUCGGG
21
5610





CCR5-2706

CAUCAUCUAUGCCUUUGUCGGG
22
5611





CCR5-2707

CCAUCAUCUAUGCCUUUGUCGGG
23
5612





CCR5-2708

CCCAUCAUCUAUGCCUUUGUCGGG
24
5613





CCR5-2709

UUUACACCCGAUCCACUG
18
5614





CCR5-2710

GUUUACACCCGAUCCACUG
19
5615





CCR5-180

AGUUUACACCCGAUCCACUG
20
5616





CCR5-2711

CAGUUUACACCCGAUCCACUG
21
5617





CCR5-2712

UCAGUUUACACCCGAUCCACUG
22
5618





CCR5-2713

CUCAGUUUACACCCGAUCCACUG
23
5619





CCR5-2714

GCUCAGUUUACACCCGAUCCACUG
24
5620





CCR5-2715

AAAAACUCUGCUUCGGUG
18
5621





CCR5-2716

UAAAAACUCUGCUUCGGUG
19
5622





CCR5-930

CUAAAAACUCUGCUUCGGUG
20
5623





CCR5-2717

CCUAAAAACUCUGCUUCGGUG
21
5624





CCR5-2718

UCCUAAAAACUCUGCUUCGGUG
22
5625





CCR5-2719

AUCCUAAAAACUCUGCUUCGGUG
23
5626





CCR5-2720

AAUCCUAAAAACUCUGCUUCGGUG
24
5627





CCR5-2721

CCAUCAUCUAUGCCUUUG
18
5628





CCR5-2722

CCCAUCAUCUAUGCCUUUG
19
5629





CCR5-946

CCCCAUCAUCUAUGCCUUUG
20
5630





CCR5-2723

ACCCCAUCAUCUAUGCCUUUG
21
5631





CCR5-2724

AACCCCAUCAUCUAUGCCUUUG
22
5632





CCR5-2725

CAACCCCAUCAUCUAUGCCUUUG
23
5633





CCR5-2726

UCAACCCCAUCAUCUAUGCCUUUG
24
5634





CCR5-2727

CUGCUUCGGUGUCGAAAU
18
5635





CCR5-2728

UCUGCUUCGGUGUCGAAAU
19
5636





CCR5-932

CUCUGCUUCGGUGUCGAAAU
20
5637





CCR5-2729

ACUCUGCUUCGGUGUCGAAAU
21
5638





CCR5-2730

AACUCUGCUUCGGUGUCGAAAU
22
5639





CCR5-2731

AAACUCUGCUUCGGUGUCGAAAU
23
5640





CCR5-2732

AAAACUCUGCUUCGGUGUCGAAAU
24
5641





CCR5-2733

GUUUACACCCGAUCCACU
18
5642





CCR5-2734

AGUUUACACCCGAUCCACU
19
5643





CCR5-179

CAGUUUACACCCGAUCCACU
20
5644





CCR5-2735

UCAGUUUACACCCGAUCCACU
21
5645





CCR5-2736

CUCAGUUUACACCCGAUCCACU
22
5646





CCR5-2737

GCUCAGUUUACACCCGAUCCACU
23
5647





CCR5-2738

AGCUCAGUUUACACCCGAUCCACU
24
5648





CCR5-2739

UCAUGGUCAUCUGCUACU
18
5649





CCR5-2740

GUCAUGGUCAUCUGCUACU
19
5650





CCR5-158

UGUCAUGGUCAUCUGCUACU
20
5651





CCR5-2741

UUGUCAUGGUCAUCUGCUACU
21
5652





CCR5-2742

CUUGUCAUGGUCAUCUGCUACU
22
5653





CCR5-2743

GCUUGUCAUGGUCAUCUGCUACU
23
5654





CCR5-2744

UGCUUGUCAUGGUCAUCUGCUACU
24
5655





CCR5-2745

AAGAAGAGGCACAGGGCU
18
5656





CCR5-2746

GAAGAAGAGGCACAGGGCU
19
5657





CCR5-936

AGAAGAAGAGGCACAGGGCU
20
5658





CCR5-2747

GAGAAGAAGAGGCACAGGGCU
21
5659





CCR5-2748

UGAGAAGAAGAGGCACAGGGCU
22
5660





CCR5-2749

AUGAGAAGAAGAGGCACAGGGCU
23
5661





CCR5-2750

AAUGAGAAGAAGAGGCACAGGGCU
24
5662





CCR5-2751

CAUUAAAGAUAGUCAUCU
18
5663





CCR5-2752

ACAUUAAAGAUAGUCAUCU
19
5664





CCR5-153

GACAUUAAAGAUAGUCAUCU
20
5665





CCR5-2753

AGACAUUAAAGAUAGUCAUCU
21
5666





CCR5-2754

CAGACAUUAAAGAUAGUCAUCU
22
5667





CCR5-2755

CCAGACAUUAAAGAUAGUCAUCU
23
5668





CCR5-2756

UCCAGACAUUAAAGAUAGUCAUCU
24
5669





CCR5-2757

GGGGAGCAGGAAAUAUCU
18
5670





CCR5-2758

UGGGGAGCAGGAAAUAUCU
19
5671





CCR5-961

CUGGGGAGCAGGAAAUAUCU
20
5672





CCR5-2759

ACUGGGGAGCAGGAAAUAUCU
21
5673





CCR5-2760

CACUGGGGAGCAGGAAAUAUCU
22
5674





CCR5-2761

CCACUGGGGAGCAGGAAAUAUCU
23
5675





CCR5-2762

UCCACUGGGGAGCAGGAAAUAUCU
24
5676





CCR5-2763

CAUCAUCUAUGCCUUUGU
18
5677





CCR5-2764

CCAUCAUCUAUGCCUUUGU
19
5678





CCR5-174

CCCAUCAUCUAUGCCUUUGU
20
5679





CCR5-2765

CCCCAUCAUCUAUGCCUUUGU
21
5680





CCR5-2766

ACCCCAUCAUCUAUGCCUUUGU
22
5681





CCR5-2767

AACCCCAUCAUCUAUGCCUUUGU
23
5682





CCR5-2768

CAACCCCAUCAUCUAUGCCUUUGU
24
5683





CCR5-2769

AUACAGUCAGUAUCAAUU
18
5684





CCR5-2770

CAUACAGUCAGUAUCAAUU
19
5685





CCR5-922

CCAUACAGUCAGUAUCAAUU
20
5686





CCR5-2771

UCCAUACAGUCAGUAUCAAUU
21
5687





CCR5-2772

UUCCAUACAGUCAGUAUCAAUU
22
5688





CCR5-2773

UUUCCAUACAGUCAGUAUCAAUU
23
5689





CCR5-2774

UUUUCCAUACAGUCAGUAUCAAUU
24
5690





CCR5-2775

GAUUGUUUAUUUUCUCUU
18
5691





CCR5-2776

UGAUUGUUUAUUUUCUCUU
19
5692





CCR5-937

AUGAUUGUUUAUUUUCUCUU
20
5693





CCR5-2777

CAUGAUUGUUUAUUUUCUCUU
21
5694





CCR5-2778

UCAUGAUUGUUUAUUUUCUCUU
22
5695





CCR5-2779

AUCAUGAUUGUUUAUUUUCUCUU
23
5696





CCR5-2780

CAUCAUGAUUGUUUAUUUUCUCUU
24
5697





CCR5-2781

CUUUGUCGGGGAGAAGUU
18
5698





CCR5-2782

CCUUUGUCGGGGAGAAGUU
19
5699





CCR5-951

GCCUUUGUCGGGGAGAAGUU
20
5700





CCR5-2783

UGCCUUUGUCGGGGAGAAGUU
21
5701





CCR5-2784

AUGCCUUUGUCGGGGAGAAGUU
22
5702





CCR5-2785

UAUGCCUUUGUCGGGGAGAAGUU
23
5703





CCR5-2786

CUAUGCCUUUGUCGGGGAGAAGUU
24
5704









Table 4A provides exemplary targeting domains for knocking out the CCR5 gene selected according to the first tier parameters. The targeting domains bind within the first 500 bp of the coding sequence (e.g., with 500 bp downstream from the start codon) and have a high level of orthogonality. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a N. meningitidis Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 4A







1st Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-2787

UGCACAGGGUGGAACAA
17
5705





CCR5-1824
+
GGCUGCGAUUUGCUUCA
17
5706





CCR5-1821
+
GACGACAGCCAGGUACC
17
5707





CCR5-1823
+
CGGAGGCAGGAGGCGGG
17
5708





CCR5-1825
+
UGUAUAAUAAUUGAUGU
17
5709





CCR5-2788

GCUGUCGUCCAUGCUGU
17
5710





CCR5-2789

UGACAGGGCUCUAUUUU
17
5711





CCR5-2790

UUAUGCACAGGGUGGAACAA
20
5712





CCR5-1819
+
GCGGGCUGCGAUUUGCUUCA
20
5713





CCR5-1816
+
AUGGACGACAGCCAGGUACC
20
5714





CCR5-1818
+
GAGCGGAGGCAGGAGGCGGG
20
5715





CCR5-1820
+
CGAUGUAUAAUAAUUGAUGU
20
5716





CCR5-2791

UCUUGACAGGGCUCUAUUUU
20
5717









Table 4B provides exemplary targeting domains for knocking out the CCR5 gene selected according to the second tier parameters. The targeting domains bind within the first 500 bp of the coding sequence (e.g., with 500 bp downstream from the start codon). It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a N. meningitidis Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 4B







2nd Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-2792
+
UUUUUGAGAUCUGGUAA
17
5718





CCR5-1822
+
UGUCAGGAGGAUGAUGA
17
5719





CCR5-2793
+
GCAGGAGGCGGGCUGCG
17
5720





CCR5-2794
+
ACCCCAAAGGUGACCGU
17
5721





CCR5-2795
+
UUCUUUUUGAGAUCUGGUAA
20
5722





CCR5-1817
+
GAUUGUCAGGAGGAUGAUGA
20
5723





CCR5-2796
+
GAGGCAGGAGGCGGGCUGCG
20
5724





CCR5-2797
+
ACCACCCCAAAGGUGACCGU
20
5725





CCR5-2798

CUGGCUGUCGUCCAUGCUGU
20
5726









Table 4C provides exemplary targeting domains for knocking out the CCR5 gene selected according to the third tier parameters. The targeting domains fall in the coding sequence of the gene, downstream of the first 500 bp of coding sequence (e.g., anywhere from +500 (relative to the start codon) to the stop codon of the gene. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a N. meningitidis Cas9 molecule that generates a double stranded break (Cas9 nuclease) or a single-stranded break (Cas9 nickase).









TABLE 4C







3rd Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-2799

CUCGGGAAUCCUAAAAA
17
5727





CCR5-1771
+
AGUGGAUCGGGUGUAAA
17
5728





CCR5-2792
+
UUUUUGAGAUCUGGUAA
17
5729





CCR5-1841

GAGGCUUAUCUUCACCA
17
5730





CCR5-2800
+
UGCAGAAGCGUUUGGCA
17
5731





CCR5-2801

UCCAAAAGCACAUUGCC
17
5732





CCR5-2802

CUUGGGGCUGGUCCUGC
17
5733





CCR5-2803
+
AGAGUCUCUGUCACCUG
17
5734





CCR5-2804

GAAGAGGCACAGGGCUG
17
5735





CCR5-1250

GGGAGCAGGAAAUAUCU
17
5736





CCR5-1863
+
ACACCGAAGCAGAGUUU
17
5737





CCR5-2805

CUACUCGGGAAUCCUAAAAA
20
5738





CCR5-1613
+
CCCAGUGGAUCGGGUGUAAA
20
5739





CCR5-2795
+
UUCUUUUUGAGAUCUGGUAA
20
5740





CCR5-1826

UGUGAGGCUUAUCUUCACCA
20
5741





CCR5-2806
+
AUUUGCAGAAGCGUUUGGCA
20
5742





CCR5-2807

UCUUCCAAAAGCACAUUGCC
20
5743





CCR5-2808

CAUCUUGGGGCUGGUCCUGC
20
5744





CCR5-2809
+
CCAAGAGUCUCUGUCACCUG
20
5745





CCR5-2810

GAAGAAGAGGCACAGGGCUG
20
5746





CCR5-961

CUGGGGAGCAGGAAAUAUCU
20
5747





CCR5-1859
+
UCGACACCGAAGCAGAGUUU
20
5748









Table 5A provides exemplary targeting domains for knocking down the CCR5 gene selected according to the first tier parameters. The targeting domains bind within 500 bp (e.g., upstream or downstream) of a transcription start site (TSS) and have a high level of orthogonality. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes eiCas9 molecule or eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain) to alter the CCR5 gene (e.g., reduce or eliminate CCR5 gene expression, CCR5 protein function, or the level of CCR5 protein). One or more gRNAs may be used to target an eiCas9 to the promoter region of the CCR5 gene.









TABLE 5A







1st Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-2811
+
CUCAGAAGCUAACUAAC
17
2217





CCR5-2812
+
UUACGGGCUUUUCUCAC
17
2218





CCR5-2813
+
UGAGAGGUUACUUACCG
17
2219





CCR5-2814
+
AGAAUAGAUCUCUGGUCUGA
20
2220





CCR5-2815
+
CUGGUCUGAAGGUUUAUUUA
20
2221





CCR5-2816
+
CAUCUCAGAAGCUAACUAAC
20
2222





CCR5-2817
+
UGGUCUGAAGGUUUAUUUAC
20
2223





CCR5-2818

CCCCUACAAGAAACUCUCCC
20
2224





CCR5-2819

GAUAGGGGAUACGGGGAGAG
20
2225





CCR5-2820
+
CCGGGGAGAGUUUCUUGUAG
20
2226





CCR5-2821
+
AGCUGAGAGGUUACUUACCG
20
2227





CCR5-2822
+
AAGAUAAUUGUAUGAGCACU
20
2228





CCR5-2823

UCCCCCUCUACAUUUAAAGU
20
2229









Table 5B provides exemplary targeting domains for knocking down the CCR5 gene selected according to the second tier parameters. The targeting domains bind within 500 bp (e.g., upstream or downstream) of a transcription start site (TSS). It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes eiCas9 molecule or eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain) to alter the CCR5 gene (e.g., reduce or eliminate CCR5 gene expression, CCR5 protein function, or the level of CCR5 protein). One or more gRNA may be used to target an eiCas9 to the promoter region of the CCR5 gene.









TABLE 5B







2nd Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-2824

GGGAGAGUGGAGAAAAA
17
2230





CCR5-2825

GGGGAGAGUGGAGAAAA
17
2231





CCR5-2826

UCUUUAAGAUAAGGAAA
17
2232





CCR5-2827
+
UCAACAGUAAGGCUAAA
17
2233





CCR5-2828

GAGUGAAAGACUUUAAA
17
2234





CCR5-2829

AUCUUUAAGAUAAGGAA
17
2235





CCR5-2830
+
AGUUUCUUGUAGGGGAA
17
2236





CCR5-2831
+
GAAAAUAUAAAGAAUAA
17
2237





CCR5-2832

UGAGUGAAAGACUUUAA
17
2238





CCR5-2833

GAGAAAAAGGGGACACA
17
2239





CCR5-2834
+
AUUUGUACAAGAUCACA
17
2240





CCR5-2835

UUGGAAUGAGUUUCAGA
17
2241





CCR5-2836
+
AGGCAUCUCACUGGAGA
17
2242





CCR5-2837
+
CCAACUUUAAAUGUAGA
17
2243





CCR5-2838
+
CUGUUUCUUUUGAAGGA
17
2244





CCR5-2839
+
AUAGAUCUCUGGUCUGA
17
2245





CCR5-2840
+
AUCAUUAAGUGUAUUGA
17
2246





CCR5-2841
+
AAUGCUGUUUCUUUUGA
17
2247





CCR5-2842

AUAUAAUCUUUAAGAUA
17
2248





CCR5-2843

GGGUGGGAUAGGGGAUA
17
2249





CCR5-2844

GGGGUUGGGGUGGGAUA
17
2250





CCR5-2845

AAUCUUAUCUUCUGCUA
17
2251





CCR5-2846
+
UUGCCAAAUGUCUUCUA
17
2252





CCR5-2847
+
AGGGCUUUUCAACAGUA
17
2253





CCR5-2848
+
CUUUCUUUUGAGAGGUA
17
2254





CCR5-2849
+
GGGGAGAGUUUCUUGUA
17
2255





CCR5-2850
+
GUCUGAAGGUUUAUUUA
17
2256





CCR5-2851

GGAGAAAAAGGGGACAC
17
2257





CCR5-2852
+
GAUUUGUACAAGAUCAC
17
2258





CCR5-2853
+
UUCAGAAGGCAUCUCAC
17
2259





CCR5-2854

GGUGGGAUAGGGGAUAC
17
2260





CCR5-2855
+
GCUGAGAGGUUACUUAC
17
2261





CCR5-2856
+
UCUGAAGGUUUAUUUAC
17
2262





CCR5-2857

UGAGUAAAAGACUUUAC
17
2263





CCR5-2858
+
CUGAGAGGUUACUUACC
17
2264





CCR5-2859

CUACAAGAAACUCUCCC
17
2265





CCR5-2860
+
AAUGUAGAGGGGGAUCC
17
2266





CCR5-2861

GGGUUAAUGUGAAGUCC
17
2267





CCR5-2862

GAUUUGCACAGCUCAUC
17
2268





CCR5-2863
+
GCUAGAGAAUAGAUCUC
17
2269





CCR5-2864
+
GGAUGUCUCAGCUCUUC
17
2270





CCR5-2865

GGAGAGUGGAGAAAAAG
17
2271





CCR5-2866

AGGGGAUACGGGGAGAG
17
2272





CCR5-2867
+
CAACUUUAAAUGUAGAG
17
2273





CCR5-2868
+
AAGGCAUCUCACUGGAG
17
2274





CCR5-2869
+
CAGGCCAAGCAGCUGAG
17
2275





CCR5-2870
+
CAAAUCUUUCUUUUGAG
17
2276





CCR5-2871

GGGUUGGGGUGGGAUAG
17
2277





CCR5-2872
+
ACCAACUUUAAAUGUAG
17
2278





CCR5-2873

UAACAGAUUCUGUGUAG
17
2279





CCR5-2874
+
GGGAGAGUUUCUUGUAG
17
2280





CCR5-2875

GUGGGAUAGGGGAUACG
17
2281





CCR5-2876
+
GCUGUUUCUUUUGAAGG
17
2282





CCR5-2877
+
AACUUUAAAUGUAGAGG
17
2283





CCR5-2878
+
UUUCUUUUGAAGGAGGG
17
2284





CCR5-2879

CUGUGUGGGGGUUGGGG
17
2285





CCR5-2880

AGAACAAUAAUAUUGGG
17
2286





CCR5-2881

GGUGAGCAUCUGUGUGG
17
2287





CCR5-2882

UUUCUUUUACUAAAAUG
17
2288





CCR5-2883

GGUGGUGAGCAUCUGUG
17
2289





CCR5-2884

UGGUGAGCAUCUGUGUG
17
2290





CCR5-2885

CAUCUGUGUGGGGGUUG
17
2291





CCR5-2886

GGGGGUUGGGGUGGGAU
17
2292





CCR5-2887

ACAGAGAACAAUAAUAU
17
2293





CCR5-2888
+
UGCCAAAUGUCUUCUAU
17
2294





CCR5-2889
+
AUAAUUGUAUGAGCACU
17
2295





CCR5-2890

GUAACCUCUCAGCUGCU
17
2296





CCR5-2891

ACAAAUCAUUUGCUUCU
17
2297





CCR5-2892
+
AUAGACAGUAUAAAAGU
17
2298





CCR5-2893

CCCUCUACAUUUAAAGU
17
2299





CCR5-2894

UUAAAGUUGGUUUAAGU
17
2300





CCR5-2895

AACAGAUUCUGUGUAGU
17
2301





CCR5-2896

AGCAUCUGUGUGGGGGU
17
2302





CCR5-2897

UGUGUGGGGGUUGGGGU
17
2303





CCR5-2898

UUCUUUUACUAAAAUGU
17
2304





CCR5-2899

GUGGUGAGCAUCUGUGU
17
2305





CCR5-2900
+
CGGGGAGAGUUUCUUGU
17
2306





CCR5-2901

AACCCAUAGAAGACAUU
17
2307





CCR5-2902

CAGAGAACAAUAAUAUU
17
2308





CCR5-2903

AGGAAAGGGUCACAGUU
17
2309





CCR5-2904

GCAUCUGUGUGGGGGUU
17
2310





CCR5-2905

ACGGGGAGAGUGGAGAAAAA
20
2311





CCR5-2906

UACGGGGAGAGUGGAGAAAA
20
2312





CCR5-2907

UAAUCUUUAAGAUAAGGAAA
20
2313





CCR5-2908
+
UUUUCAACAGUAAGGCUAAA
20
2314





CCR5-2909

UGUGAGUGAAAGACUUUAAA
20
2315





CCR5-2910

AUAAUCUUUAAGAUAAGGAA
20
2316





CCR5-2911
+
GAGAGUUUCUUGUAGGGGAA
20
2317





CCR5-2912
+
UUAGAAAAUAUAAAGAAUAA
20
2318





CCR5-2913

UUGUGAGUGAAAGACUUUAA
20
2319





CCR5-2914

GUGGAGAAAAAGGGGACACA
20
2320





CCR5-2915
+
AUGAUUUGUACAAGAUCACA
20
2321





CCR5-2916

AGUUUGGAAUGAGUUUCAGA
20
2322





CCR5-2917
+
AGAAGGCAUCUCACUGGAGA
20
2323





CCR5-2918
+
AAACCAACUUUAAAUGUAGA
20
2324





CCR5-2919
+
AUGCUGUUUCUUUUGAAGGA
20
2325





CCR5-2920
+
UAAAUCAUUAAGUGUAUUGA
20
2326





CCR5-2921
+
GGAAAUGCUGUUUCUUUUGA
20
2327





CCR5-2922

AAAAUAUAAUCUUUAAGAUA
20
2328





CCR5-2923

UUGGGGUGGGAUAGGGGAUA
20
2329





CCR5-2924

GUGGGGGUUGGGGUGGGAUA
20
2330





CCR5-2925

UGAAAUCUUAUCUUCUGCUA
20
2331





CCR5-2926
+
UGUUUGCCAAAUGUCUUCUA
20
2332





CCR5-2927
+
CACAGGGCUUUUCAACAGUA
20
2333





CCR5-2928
+
AAUCUUUCUUUUGAGAGGUA
20
2334





CCR5-2929
+
ACCGGGGAGAGUUUCUUGUA
20
2335





CCR5-2930

AGUGGAGAAAAAGGGGACAC
20
2336





CCR5-2931
+
AAUGAUUUGUACAAGAUCAC
20
2337





CCR5-2932
+
AUAUUCAGAAGGCAUCUCAC
20
2338





CCR5-2933
+
UAUUUACGGGCUUUUCUCAC
20
2339





CCR5-2934

UGGGGUGGGAUAGGGGAUAC
20
2340





CCR5-2935
+
GCAGCUGAGAGGUUACUUAC
20
2341





CCR5-2936

AGAUGAGUAAAAGACUUUAC
20
2342





CCR5-2937
+
CAGCUGAGAGGUUACUUACC
20
2343





CCR5-2938
+
UUAAAUGUAGAGGGGGAUCC
20
2344





CCR5-2939

ACAGGGUUAAUGUGAAGUCC
20
2345





CCR5-2940

AUUGAUUUGCACAGCUCAUC
20
2346





CCR5-2941
+
UAAGCUAGAGAAUAGAUCUC
20
2347





CCR5-2942
+
AACGGAUGUCUCAGCUCUUC
20
2348





CCR5-2943

CGGGGAGAGUGGAGAAAAAG
20
2349





CCR5-2944
+
AACCAACUUUAAAUGUAGAG
20
2350





CCR5-2945
+
CAGAAGGCAUCUCACUGGAG
20
2351





CCR5-2946
+
UAACAGGCCAAGCAGCUGAG
20
2352





CCR5-2947
+
CUGCAAAUCUUUCUUUUGAG
20
2353





CCR5-2948

UGGGGGUUGGGGUGGGAUAG
20
2354





CCR5-2949
+
UAAACCAACUUUAAAUGUAG
20
2355





CCR5-2950

UUCUAACAGAUUCUGUGUAG
20
2356





CCR5-2951

GGGGUGGGAUAGGGGAUACG
20
2357





CCR5-2952
+
AAUGCUGUUUCUUUUGAAGG
20
2358





CCR5-2953
+
ACCAACUUUAAAUGUAGAGG
20
2359





CCR5-2954
+
CUGUUUCUUUUGAAGGAGGG
20
2360





CCR5-2955

CAUCUGUGUGGGGGUUGGGG
20
2361





CCR5-2956

CAGAGAACAAUAAUAUUGGG
20
2362





CCR5-2957

GGUGGUGAGCAUCUGUGUGG
20
2363





CCR5-2958

UAAUUUCUUUUACUAAAAUG
20
2364





CCR5-2959

UUGGGUGGUGAGCAUCUGUG
20
2365





CCR5-2960

GGGUGGUGAGCAUCUGUGUG
20
2366





CCR5-2961

GAGCAUCUGUGUGGGGGUUG
20
2367





CCR5-2962

UGUGGGGGUUGGGGUGGGAU
20
2368





CCR5-2963

UUUACAGAGAACAAUAAUAU
20
2369





CCR5-2964
+
GUUUGCCAAAUGUCUUCUAU
20
2370





CCR5-2965

UAAGUAACCUCUCAGCUGCU
20
2371





CCR5-2966

UGUACAAAUCAUUUGCUUCU
20
2372





CCR5-2967
+
CAUAUAGACAGUAUAAAAGU
20
2373





CCR5-2968

CAUUUAAAGUUGGUUUAAGU
20
2374





CCR5-2969

UCUAACAGAUUCUGUGUAGU
20
2375





CCR5-2970

GUGAGCAUCUGUGUGGGGGU
20
2376





CCR5-2971

AUCUGUGUGGGGGUUGGGGU
20
2377





CCR5-2972

AAUUUCUUUUACUAAAAUGU
20
2378





CCR5-2973

UGGGUGGUGAGCAUCUGUGU
20
2379





CCR5-2974
+
UACCGGGGAGAGUUUCUUGU
20
2380





CCR5-2975

GGAAACCCAUAGAAGACAUU
20
2381





CCR5-2976

UUACAGAGAACAAUAAUAUU
20
2382





CCR5-2977

AUAAGGAAAGGGUCACAGUU
20
2383





CCR5-2978

UGAGCAUCUGUGUGGGGGUU
20
2384









Table 5C provides exemplary targeting domains for knocking down the CCR5 gene selected according to the third tier parameters. Within the additional 500 bp (e.g., upstream or downstream) of a transcription start site (TSS), e.g., extending to 1kb upstream and downstream of a TSS. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. pyogenes eiCas9 molecule or eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain) to alter the CCR5 gene (e.g., reduce or eliminate CCR5 gene expression, CCR5 protein function, or the level of CCR5 protein). One or more gRNAs may be used to target an eiCas9 to the promoter region of the CCR5 gene.









TABLE 5C







3rd Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-2979

AGAGGGAAGCCUAAAAA
17
2385





CCR5-2980
+
AUGCUUACUGGUUUGAA
17
2386





CCR5-2981

GGAGUUUGAGACUCACA
17
2387





CCR5-2982
+
UUUUUAUUCUAGAGCCA
17
2388





CCR5-2983

GCCUAGUCUAAGGUGCA
17
2389





CCR5-2984

UUUUAACUAUGGGCUCA
17
2390





CCR5-2985
+
UUCUAGAGCCAAGGUCA
17
2391





CCR5-2986

CUAAUAUAUCAGUUUCA
17
2392





CCR5-2987
+
CUGGGUCCAGAAAAAGA
17
2393





CCR5-2988

UUUUCCUCCAGACAAGA
17
2394





CCR5-2989

GCUUGUGAUCUCUAAGA
17
2395





CCR5-2990
+
GGUCACGGAAGCCCAGA
17
2396





CCR5-2991
+
AAUGCUUACUGGUUUGA
17
2397





CCR5-2992

CACAUGACAUAAGUAUA
17
2398





CCR5-2993

CUAAAGAGUUUUAACUA
17
2399





CCR5-2994

CUCAGCUGCCUAGUCUA
17
2400





CCR5-2995

AAAAAUGAGCUUUUCUA
17
2401





CCR5-2996

UAGUAUAUAAUUCUUUA
17
2402





CCR5-2997

UCACGGGUGAGCUAAAC
17
2403





CCR5-2998
+
AAAACUCUUUAGACAAC
17
2404





CCR5-2999

GGGAGUUUGAGACUCAC
17
2405





CCR5-3000

UUUAACUAUGGGCUCAC
17
2406





CCR5-3001
+
UCCUCAUAAAUGCUUAC
17
2407





CCR5-3002

CAUCUUUUUCUGGACCC
17
2408





CCR5-3003

UCAUCUAUGACCUUCCC
17
2409





CCR5-3004
+
AAUCCCCACUAAGAUCC
17
2410





CCR5-3005

AGACUAGGCAAGACAGC
17
2411





CCR5-3006

CCAGAUACAUAGGUGGC
17
2412





CCR5-3007

UGCCUAGUCUAAGGUGC
17
2413





CCR5-3008
+
UUCAGAUAGAUUAUAUC
17
2414





CCR5-3009
+
CCUGCCACCUAUGUAUC
17
2415





CCR5-3010

AGCCACAAGAUGCCCUC
17
2416





CCR5-3011
+
AGGGCAUCUUGUGGCUC
17
2417





CCR5-3012

GAAGUUGUGUCUAAGUC
17
2418





CCR5-3013
+
UAGGCUUCCCUCUUGUC
17
2419





CCR5-3014
+
AUGAAUGUCAUGCAUUC
17
2420





CCR5-3015

AGUAUAUGGUCAAGUUC
17
2421





CCR5-3016

GGUUUCCCAUCUUUUUC
17
2422





CCR5-3017

UUUUUCCUCCAGACAAG
17
2423





CCR5-3018

UGCCCCCAAUCCUACAG
17
2424





CCR5-3019
+
AGGUCACGGAAGCCCAG
17
2425





CCR5-3020

AAAAUGAGCUUUUCUAG
17
2426





CCR5-3021
+
UGAAACUGAUAUAUUAG
17
2427





CCR5-3022

UGGACCCAGGAUCUUAG
17
2428





CCR5-3023

UAUGCCAGAUACAUAGG
17
2429





CCR5-3024
+
GCUUCCCUCUUGUCUGG
17
2430





CCR5-3025

AUGACAUUCAUCUGUGG
17
2431





CCR5-3026
+
UGCCUCUGUAGGAUUGG
17
2432





CCR5-3027

AUAUCAAGCUCUCUUGG
17
2433





CCR5-3028
+
CAUAUACUUAUGUCAUG
17
2434





CCR5-3029

ACCAGUAAGCAUUUAUG
17
2435





CCR5-3030

UGCAUGACAUUCAUCUG
17
2436





CCR5-3031

GACCCAGGAUCUUAGUG
17
2437





CCR5-3032

ACUUCACAGAAAAUGUG
17
2438





CCR5-3033

AUGACAACUCUUAAUUG
17
2439





CCR5-3034
+
CUGCCUCUGUAGGAUUG
17
2440





CCR5-3035
+
GCCCAGAGGGCAUCUUG
17
2441





CCR5-3036
+
UUAGACACAACUUCUUG
17
2442





CCR5-3037
+
CGUAAUUUUGCUGUUUG
17
2443





CCR5-3038

UGUGAGGAUUUUACAAU
17
2444





CCR5-3039

CACUAUGCCAGAUACAU
17
2445





CCR5-3040
+
UGGGUCCAGAAAAAGAU
17
2446





CCR5-3041

UAAAGAGUUUUAACUAU
17
2447





CCR5-3042

CUGAACUUAAAUAGACU
17
2448





CCR5-3043
+
UCCCUGCACCUUAGACU
17
2449





CCR5-3044

CUGGGCUUCCGUGACCU
17
2450





CCR5-3045

CAUCUAUGACCUUCCCU
17
2451





CCR5-3046
+
AUCCCCACUAAGAUCCU
17
2452





CCR5-3047
+
GAGGGCAUCUUGUGGCU
17
2453





CCR5-3048

GCCACAAGAUGCCCUCU
17
2454





CCR5-3049

GUCAUAUCAAGCUCUCU
17
2455





CCR5-3050
+
UGAAUGUCAUGCAUUCU
17
2456





CCR5-3051

UUUAUUAUAUUAUUUCU
17
2457





CCR5-3052

UAAAAAUGAGCUUUUCU
17
2458





CCR5-3053

GGACCCAGGAUCUUAGU
17
2459





CCR5-3054

CAAGCUCUCUUGGCGGU
17
2460





CCR5-3055
+
UAGACACAACUUCUUGU
17
2461





CCR5-3056
+
UCUGCCUCUGUAGGAUU
17
2462





CCR5-3057
+
UAGAGGAAAAUUUUAUU
17
2463





CCR5-3058

UCUAGAAUAAAAAGCUU
17
2464





CCR5-3059

UUAUUAUAUUAUUUCUU
17
2465





CCR5-3060
+
CACGUAAUUUUGCUGUU
17
2466





CCR5-3061
+
ACGUAAUUUUGCUGUUU
17
2467





CCR5-3062
+
UAAUUUUGACCAUUUUU
17
2468





CCR5-3063

ACAAGAGGGAAGCCUAAAAA
20
2469





CCR5-3064
+
UAAAUGCUUACUGGUUUGAA
20
2470





CCR5-3065

CAGGGAGUUUGAGACUCACA
20
2471





CCR5-3066
+
AGCUUUUUAUUCUAGAGCCA
20
2472





CCR5-3067

GCUGCCUAGUCUAAGGUGCA
20
2473





CCR5-3068

GAGUUUUAACUAUGGGCUCA
20
2474





CCR5-3069
+
UUAUUCUAGAGCCAAGGUCA
20
2475





CCR5-3070

CCUCUAAUAUAUCAGUUUCA
20
2476





CCR5-3071
+
AUCCUGGGUCCAGAAAAAGA
20
2477





CCR5-3072

UCUUUUUCCUCCAGACAAGA
20
2478





CCR5-3073

UUGGCUUGUGAUCUCUAAGA
20
2479





CCR5-3074
+
CAAGGUCACGGAAGCCCAGA
20
2480





CCR5-3075
+
AUAAAUGCUUACUGGUUUGA
20
2481





CCR5-3076

UUCCACAUGACAUAAGUAUA
20
2482





CCR5-3077

UGUCUAAAGAGUUUUAACUA
20
2483





CCR5-3078

UCUCUCAGCUGCCUAGUCUA
20
2484





CCR5-3079

AUUAAAAAUGAGCUUUUCUA
20
2485





CCR5-3080

AGUUAGUAUAUAAUUCUUUA
20
2486





CCR5-3081

GGCUCACGGGUGAGCUAAAC
20
2487





CCR5-3082
+
GUUAAAACUCUUUAGACAAC
20
2488





CCR5-3083

GCAGGGAGUUUGAGACUCAC
20
2489





CCR5-3084

AGUUUUAACUAUGGGCUCAC
20
2490





CCR5-3085
+
GAGUCCUCAUAAAUGCUUAC
20
2491





CCR5-3086

UCCCAUCUUUUUCUGGACCC
20
2492





CCR5-3087

UUGUCAUCUAUGACCUUCCC
20
2493





CCR5-3088
+
GAAAAUCCCCACUAAGAUCC
20
2494





CCR5-3089

AAUAGACUAGGCAAGACAGC
20
2495





CCR5-3090

AUGCCAGAUACAUAGGUGGC
20
2496





CCR5-3091

AGCUGCCUAGUCUAAGGUGC
20
2497





CCR5-3092
+
AGCUUCAGAUAGAUUAUAUC
20
2498





CCR5-3093
+
AAUCCUGCCACCUAUGUAUC
20
2499





CCR5-3094

CCGAGCCACAAGAUGCCCUC
20
2500





CCR5-3095
+
CAGAGGGCAUCUUGUGGCUC
20
2501





CCR5-3096

CAAGAAGUUGUGUCUAAGUC
20
2502





CCR5-3097
+
UUUUAGGCUUCCCUCUUGUC
20
2503





CCR5-3098
+
CAGAUGAAUGUCAUGCAUUC
20
2504





CCR5-3099

AUAAGUAUAUGGUCAAGUUC
20
2505





CCR5-3100

ACAGGUUUCCCAUCUUUUUC
20
2506





CCR5-3101

UUCUUUUUCCUCCAGACAAG
20
2507





CCR5-3102

ACGUGCCCCCAAUCCUACAG
20
2508





CCR5-3103
+
CCAAGGUCACGGAAGCCCAG
20
2509





CCR5-3104

UUAAAAAUGAGCUUUUCUAG
20
2510





CCR5-3105
+
CCAUGAAACUGAUAUAUUAG
20
2511





CCR5-3106

UUCUGGACCCAGGAUCUUAG
20
2512





CCR5-3107

CACUAUGCCAGAUACAUAGG
20
2513





CCR5-3108
+
UAGGCUUCCCUCUUGUCUGG
20
2514





CCR5-3109

UGCAUGACAUUCAUCUGUGG
20
2515





CCR5-3110

GUCAUAUCAAGCUCUCUUGG
20
2516





CCR5-3111
+
GACCAUAUACUUAUGUCAUG
20
2517





CCR5-3112

CAAACCAGUAAGCAUUUAUG
20
2518





CCR5-3113

GAAUGCAUGACAUUCAUCUG
20
2519





CCR5-3114

CUGGACCCAGGAUCUUAGUG
20
2520





CCR5-3115

CAAACUUCACAGAAAAUGUG
20
2521





CCR5-3116

UGUAUGACAACUCUUAAUUG
20
2522





CCR5-3117
+
GAAGCCCAGAGGGCAUCUUG
20
2523





CCR5-3118
+
GACUUAGACACAACUUCUUG
20
2524





CCR5-3119
+
GCACGUAAUUUUGCUGUUUG
20
2525





CCR5-3120

AAAUGUGAGGAUUUUACAAU
20
2526





CCR5-3121

UCACACUAUGCCAGAUACAU
20
2527





CCR5-3122
+
UCCUGGGUCCAGAAAAAGAU
20
2528





CCR5-3123

GUCUAAAGAGUUUUAACUAU
20
2529





CCR5-3124

CAGCUGAACUUAAAUAGACU
20
2530





CCR5-3125
+
AACUCCCUGCACCUUAGACU
20
2531





CCR5-3126

CCUCUGGGCUUCCGUGACCU
20
2532





CCR5-3127

UGUCAUCUAUGACCUUCCCU
20
2533





CCR5-3128
+
AAAAUCCCCACUAAGAUCCU
20
2534





CCR5-3129
+
CCAGAGGGCAUCUUGUGGCU
20
2535





CCR5-3130

CGAGCCACAAGAUGCCCUCU
20
2536





CCR5-3131

ACAGUCAUAUCAAGCUCUCU
20
2537





CCR5-3132
+
AGAUGAAUGUCAUGCAUUCU
20
2538





CCR5-3133

UUUUUUAUUAUAUUAUUUCU
20
2539





CCR5-3134

AAUUAAAAAUGAGCUUUUCU
20
2540





CCR5-3135

UCUGGACCCAGGAUCUUAGU
20
2541





CCR5-3136

UAUCAAGCUCUCUUGGCGGU
20
2542





CCR5-3137
+
ACUUAGACACAACUUCUUGU
20
2543





CCR5-3138
+
UAUUAGAGGAAAAUUUUAUU
20
2544





CCR5-3139

GGCUCUAGAAUAAAAAGCUU
20
2545





CCR5-3140

UUUUUAUUAUAUUAUUUCUU
20
2546





CCR5-3141
+
GGGCACGUAAUUUUGCUGUU
20
2547





CCR5-3142
+
GGCACGUAAUUUUGCUGUUU
20
2548





CCR5-3143
+
UAUUAAUUUUGACCAUUUUU
20
2549









Table 6A provides exemplary targeting domains for knocking down the CCR5 gene selected according to the first tier parameters. The targeting domains bind within 500 bp (e.g., upstream or downstream) of a transcription start site (TSS), have a high level of orthogonality and PAM is NNGRRT. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus eiCas9 molecule or eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain) to alter the CCR5 gene (e.g., reduce or eliminate CCR5 gene expression, CCR5 protein function, or the level of CCR5 protein). One or more gRNAs may be used to target an eiCas9 to the promoter region of the CCR5 gene.









TABLE 6A







1st Tier











gRNA
DNA

Target Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-3144
+
AAGUGUAUUGAAGGCGAA
18
2550





CCR5-3145
+
UAAGUGUAUUGAAGGCGAA
19
2551





CCR5-3146
+
UUAAGUGUAUUGAAGGCGAA
20
2552





CCR5-3147
+
AUUAAGUGUAUUGAAGGCGAA
21
2553





CCR5-3148
+
CAUUAAGUGUAUUGAAGGCGAA
22
2554





CCR5-3149
+
UCAUUAAGUGUAUUGAAGGCGAA
23
2555





CCR5-3150
+
AUCAUUAAGUGUAUUGAAGGCGAA
24
2556





CCR5-3151
+
UUCUCUGCUCAUCCCACUACA
21
2557





CCR5-3152
+
GUUCUCUGCUCAUCCCACUACA
22
2558





CCR5-3153
+
UGUUCUCUGCUCAUCCCACUACA
23
2559





CCR5-3154
+
UUGUUCUCUGCUCAUCCCACUACA
24
2560





CCR5-3155
+
AUUUACGGGCUUUUCUCA
18
2561





CCR5-3156
+
UAUUUACGGGCUUUUCUCA
19
2562





CCR5-3157
+
UUAUUUACGGGCUUUUCUCA
20
2563





CCR5-3158
+
UUUAUUUACGGGCUUUUCUCA
21
2564





CCR5-3159
+
GUUUAUUUACGGGCUUUUCUCA
22
2565





CCR5-3160
+
GGUUUAUUUACGGGCUUUUCUCA
23
2566





CCR5-3161
+
AGGUUUAUUUACGGGCUUUUCUCA
24
2567





CCR5-3162
+
GGGAGAGUUUCUUGUAGGGGA
21
2568





CCR5-3163
+
GGGGAGAGUUUCUUGUAGGGGA
22
2569





CCR5-3164
+
CGGGGAGAGUUUCUUGUAGGGGA
23
2570





CCR5-3165
+
CCGGGGAGAGUUUCUUGUAGGGGA
24
2571





CCR5-3166
+
UUCAGAAGGCAUCUCACUGGA
21
2572





CCR5-3167
+
AUUCAGAAGGCAUCUCACUGGA
22
2573





CCR5-3168
+
UAUUCAGAAGGCAUCUCACUGGA
23
2574





CCR5-3169
+
AUAUUCAGAAGGCAUCUCACUGGA
24
2575





CCR5-3170
+
UGAGCUUAAAAUAAGCUA
18
2576





CCR5-3171
+
UUGAGCUUAAAAUAAGCUA
19
2577





CCR5-3172
+
GUUGAGCUUAAAAUAAGCUA
20
2578





CCR5-3173
+
GAAAUGCUGUUUCUUUUGAAG
21
2579





CCR5-3174
+
GGAAAUGCUGUUUCUUUUGAAG
22
2580





CCR5-3175
+
AGGAAAUGCUGUUUCUUUUGAAG
23
2581





CCR5-3176
+
UAGGAAAUGCUGUUUCUUUUGAAG
24
2582





CCR5-3177
+
AAACCAACUUUAAAUGUAGAG
21
2583





CCR5-3178
+
UAAACCAACUUUAAAUGUAGAG
22
2584





CCR5-3179
+
UUAAACCAACUUUAAAUGUAGAG
23
2585





CCR5-3180
+
CUUAAACCAACUUUAAAUGUAGAG
24
2586





CCR5-3181
+
GCUGUUUCUUUUGAAGGAGGG
21
2587





CCR5-3182
+
UGCUGUUUCUUUUGAAGGAGGG
22
2588





CCR5-3183
+
AUGCUGUUUCUUUUGAAGGAGGG
23
2589





CCR5-3184
+
AAUGCUGUUUCUUUUGAAGGAGGG
24
2590





CCR5-3185
+
GCUGAGAGGUUACUUACCGGG
21
2591





CCR5-3186
+
AGCUGAGAGGUUACUUACCGGG
22
2592





CCR5-3187
+
CAGCUGAGAGGUUACUUACCGGG
23
2593





CCR5-3188
+
GCAGCUGAGAGGUUACUUACCGGG
24
2594





CCR5-3189
+
CAAAUCUUUCUUUUGAGAGGU
21
2595





CCR5-3190
+
GCAAAUCUUUCUUUUGAGAGGU
22
2596





CCR5-3191
+
UGCAAAUCUUUCUUUUGAGAGGU
23
2597





CCR5-3192
+
CUGCAAAUCUUUCUUUUGAGAGGU
24
2598





CCR5-3193

AGGAAAGGGUCACAGUUUGGA
21
2599





CCR5-3194

AAGGAAAGGGUCACAGUUUGGA
22
2600





CCR5-3195

UAAGGAAAGGGUCACAGUUUGGA
23
2601





CCR5-3196

AUAAGGAAAGGGUCACAGUUUGGA
24
2602





CCR5-3197

ACACAGGGUUAAUGUGAAGUC
21
2603





CCR5-3198

GACACAGGGUUAAUGUGAAGUC
22
2604





CCR5-3199

GGACACAGGGUUAAUGUGAAGUC
23
2605





CCR5-3200

GGGACACAGGGUUAAUGUGAAGUC
24
2606





CCR5-3201

GCCUGUUAGUUAGCUUCUGAG
21
2607





CCR5-3202

GGCCUGUUAGUUAGCUUCUGAG
22
2608





CCR5-3203

UGGCCUGUUAGUUAGCUUCUGAG
23
2609





CCR5-3204

UUGGCCUGUUAGUUAGCUUCUGAG
24
2610





CCR5-3205

AUGUGGGCUUUUGACUAG
18
2611





CCR5-3206

AAUGUGGGCUUUUGACUAG
19
2612





CCR5-3207

AAAUGUGGGCUUUUGACUAG
20
2613





CCR5-3208

AAAAUGUGGGCUUUUGACUAG
21
2614





CCR5-3209

UAAAAUGUGGGCUUUUGACUAG
22
2615





CCR5-3210

CUAAAAUGUGGGCUUUUGACUAG
23
2616





CCR5-3211

ACUAAAAUGUGGGCUUUUGACUAG
24
2617





CCR5-3212

UUUCUAACAGAUUCUGUGUAG
21
2618





CCR5-3213

UUUUCUAACAGAUUCUGUGUAG
22
2619





CCR5-3214

AUUUUCUAACAGAUUCUGUGUAG
23
2620





CCR5-3215

UAUUUUCUAACAGAUUCUGUGUAG
24
2621





CCR5-3216

GGGUGGGAUAGGGGAUACGGG
21
2622





CCR5-3217

GGGGUGGGAUAGGGGAUACGGG
22
2623





CCR5-3218

UGGGGUGGGAUAGGGGAUACGGG
23
2624





CCR5-3219

UUGGGGUGGGAUAGGGGAUACGGG
24
2625





CCR5-3220

AGCAACUCUUAAGAUAAU
18
2626





CCR5-3221

UAGCAACUCUUAAGAUAAU
19
2627





CCR5-3222

AUAGCAACUCUUAAGAUAAU
20
2628





CCR5-3223

AAUAGCAACUCUUAAGAUAAU
21
2629





CCR5-3224

UAAUAGCAACUCUUAAGAUAAU
22
2630





CCR5-3225

UUAAUAGCAACUCUUAAGAUAAU
23
2631





CCR5-3226

AUUAAUAGCAACUCUUAAGAUAAU
24
2632





CCR5-3227

GGUGAGCAUCUGUGUGGGGGU
21
2633





CCR5-3228

UGGUGAGCAUCUGUGUGGGGGU
22
2634





CCR5-3229

GUGGUGAGCAUCUGUGUGGGGGU
23
2635





CCR5-3230

GGUGGUGAGCAUCUGUGUGGGGGU
24
2636





CCR5-3231

UUGGGUGGUGAGCAUCUGUGU
21
2637





CCR5-3232

AUUGGGUGGUGAGCAUCUGUGU
22
2638





CCR5-3233

UAUUGGGUGGUGAGCAUCUGUGU
23
2639





CCR5-3234

AUAUUGGGUGGUGAGCAUCUGUGU
24
2640





CCR5-3235

UCAAAGAUACAAAACAUGAUU
21
2641





CCR5-3236

AUCAAAGAUACAAAACAUGAUU
22
2642





CCR5-3237

CAUCAAAGAUACAAAACAUGAUU
23
2643





CCR5-3238

ACAUCAAAGAUACAAAACAUGAUU
24
2644





CCR5-3239

CCCUCUCCAGUGAGAUGCCUU
21
2645





CCR5-3240

ACCCUCUCCAGUGAGAUGCCUU
22
2646





CCR5-3241

AACCCUCUCCAGUGAGAUGCCUU
23
2647





CCR5-3242

AAACCCUCUCCAGUGAGAUGCCUU
24
2648









Table 6B provides exemplary targeting domains for knocking down the CCR5 gene selected according to the second tier parameters. The targeting domains bind within 500 bp (e.g., upstream or downstream) of a transcription start site (TSS) and PAM is NNGRRT. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus eiCas9 molecule or eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain) to alter the CCR5 gene (e.g., reduce or eliminate CCR5 gene expression, CCR5 protein function, or the level of CCR5 protein). One or more gRNAs may be used to target an eiCas9 to the promoter region of the CCR5 gene.









TABLE 6B







2nd Tier











gRNA
DNA

Target Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-3243
+
UCUGCUCAUCCCACUACA
18
2649





CCR5-3244
+
CUCUGCUCAUCCCACUACA
19
2650





CCR5-3245
+
UCUCUGCUCAUCCCACUACA
20
2651





CCR5-3246
+
AGAGUUUCUUGUAGGGGA
18
2652





CCR5-3247
+
GAGAGUUUCUUGUAGGGGA
19
2653





CCR5-3248
+
GGAGAGUUUCUUGUAGGGGA
20
2654





CCR5-3249
+
AGAAGGCAUCUCACUGGA
18
2655





CCR5-3250
+
CAGAAGGCAUCUCACUGGA
19
2656





CCR5-3251
+
UCAGAAGGCAUCUCACUGGA
20
2657





CCR5-3252
+
UAGAAAAUAUAAAGAAUA
18
2658





CCR5-3253
+
UUAGAAAAUAUAAAGAAUA
19
2659





CCR5-3254
+
GUUAGAAAAUAUAAAGAAUA
20
2660





CCR5-3255
+
UGUUAGAAAAUAUAAAGAAUA
21
2661





CCR5-3256
+
CUGUUAGAAAAUAUAAAGAAUA
22
2662





CCR5-3257
+
UCUGUUAGAAAAUAUAAAGAAUA
23
2663





CCR5-3258
+
AUCUGUUAGAAAAUAUAAAGAAUA
24
2664





CCR5-3259
+
AAUCUGUUAGAAAAUAUA
18
2665





CCR5-3260
+
GAAUCUGUUAGAAAAUAUA
19
2666





CCR5-3261
+
AGAAUCUGUUAGAAAAUAUA
20
2667





CCR5-3262
+
CAGAAUCUGUUAGAAAAUAUA
21
2668





CCR5-3263
+
ACAGAAUCUGUUAGAAAAUAUA
22
2669





CCR5-3264
+
CACAGAAUCUGUUAGAAAAUAUA
23
2670





CCR5-3265
+
ACACAGAAUCUGUUAGAAAAUAUA
24
2671





CCR5-3266
+
AGUUGAGCUUAAAAUAAGCUA
21
2672





CCR5-3267
+
AAGUUGAGCUUAAAAUAAGCUA
22
2673





CCR5-3268
+
UAAGUUGAGCUUAAAAUAAGCUA
23
2674





CCR5-3269
+
UUAAGUUGAGCUUAAAAUAAGCUA
24
2675





CCR5-3270
+
AUGCUGUUUCUUUUGAAG
18
2676





CCR5-3271
+
AAUGCUGUUUCUUUUGAAG
19
2677





CCR5-3272
+
AAAUGCUGUUUCUUUUGAAG
20
2678





CCR5-3273
+
CCAACUUUAAAUGUAGAG
18
2679





CCR5-3274
+
ACCAACUUUAAAUGUAGAG
19
2680





CCR5-2944
+
AACCAACUUUAAAUGUAGAG
20
2681





CCR5-3275
+
GUUUCUUUUGAAGGAGGG
18
2682





CCR5-3276
+
UGUUUCUUUUGAAGGAGGG
19
2683





CCR5-2954
+
CUGUUUCUUUUGAAGGAGGG
20
2684





CCR5-3277
+
GAGAGGUUACUUACCGGG
18
2685





CCR5-3278
+
UGAGAGGUUACUUACCGGG
19
2686





CCR5-3279
+
CUGAGAGGUUACUUACCGGG
20
2687





CCR5-3280
+
GUUUGCCAAAUGUCUUCU
18
2688





CCR5-3281
+
UGUUUGCCAAAUGUCUUCU
19
2689





CCR5-3282
+
GUGUUUGCCAAAUGUCUUCU
20
2690





CCR5-3283
+
GGUGUUUGCCAAAUGUCUUCU
21
2691





CCR5-3284
+
UGGUGUUUGCCAAAUGUCUUCU
22
2692





CCR5-3285
+
UUGGUGUUUGCCAAAUGUCUUCU
23
2693





CCR5-3286
+
CUUGGUGUUUGCCAAAUGUCUUCU
24
2694





CCR5-3287
+
AUCUUUCUUUUGAGAGGU
18
2695





CCR5-3288
+
AAUCUUUCUUUUGAGAGGU
19
2696





CCR5-3289
+
AAAUCUUUCUUUUGAGAGGU
20
2697





CCR5-3290
+
GAAAAUUCUGAUUAUCUU
18
2698





CCR5-3291
+
AGAAAAUUCUGAUUAUCUU
19
2699





CCR5-3292
+
AAGAAAAUUCUGAUUAUCUU
20
2700





CCR5-3293
+
UAAGAAAAUUCUGAUUAUCUU
21
2701





CCR5-3294
+
UUAAGAAAAUUCUGAUUAUCUU
22
2702





CCR5-3295
+
GUUAAGAAAAUUCUGAUUAUCUU
23
2703





CCR5-3296
+
GGUUAAGAAAAUUCUGAUUAUCUU
24
2704





CCR5-3297

GUGGAGAAAAAGGGGACA
18
2705





CCR5-3298

AGUGGAGAAAAAGGGGACA
19
2706





CCR5-3299

GAGUGGAGAAAAAGGGGACA
20
2707





CCR5-3300

AGAGUGGAGAAAAAGGGGACA
21
2708





CCR5-3301

GAGAGUGGAGAAAAAGGGGACA
22
2709





CCR5-3302

GGAGAGUGGAGAAAAAGGGGACA
23
2710





CCR5-3303

GGGAGAGUGGAGAAAAAGGGGACA
24
2711





CCR5-3304

UAAUCUUUAAGAUAAGGA
18
2712





CCR5-3305

AUAAUCUUUAAGAUAAGGA
19
2713





CCR5-3306

UAUAAUCUUUAAGAUAAGGA
20
2714





CCR5-3307

AUAUAAUCUUUAAGAUAAGGA
21
2715





CCR5-3308

AAUAUAAUCUUUAAGAUAAGGA
22
2716





CCR5-3309

AAAUAUAAUCUUUAAGAUAAGGA
23
2717





CCR5-3310

AAAAUAUAAUCUUUAAGAUAAGGA
24
2718





CCR5-3311

AAAGGGUCACAGUUUGGA
18
2719





CCR5-3312

GAAAGGGUCACAGUUUGGA
19
2720





CCR5-3313

GGAAAGGGUCACAGUUUGGA
20
2721





CCR5-3314

UUACAGAGAACAAUAAUA
18
2722





CCR5-3315

UUUACAGAGAACAAUAAUA
19
2723





CCR5-3316

GUUUACAGAGAACAAUAAUA
20
2724





CCR5-3317

GGGGGUUGGGGUGGGAUA
18
2725





CCR5-3318

UGGGGGUUGGGGUGGGAUA
19
2726





CCR5-2924

GUGGGGGUUGGGGUGGGAUA
20
2727





CCR5-3319

UGUGGGGGUUGGGGUGGGAUA
21
2728





CCR5-3320

GUGUGGGGGUUGGGGUGGGAUA
22
2729





CCR5-3321

UGUGUGGGGGUUGGGGUGGGAUA
23
2730





CCR5-3322

CUGUGUGGGGGUUGGGGUGGGAUA
24
2731





CCR5-3323

CAGGGUUAAUGUGAAGUC
18
2732





CCR5-3324

ACAGGGUUAAUGUGAAGUC
19
2733





CCR5-3325

CACAGGGUUAAUGUGAAGUC
20
2734





CCR5-3326

GUACAAAUCAUUUGCUUC
18
2735





CCR5-3327

UGUACAAAUCAUUUGCUUC
19
2736





CCR5-3328

UUGUACAAAUCAUUUGCUUC
20
2737





CCR5-3329

CUUGUACAAAUCAUUUGCUUC
21
2738





CCR5-3330

UCUUGUACAAAUCAUUUGCUUC
22
2739





CCR5-3331

AUCUUGUACAAAUCAUUUGCUUC
23
2740





CCR5-3332

GAUCUUGUACAAAUCAUUUGCUUC
24
2741





CCR5-3333

AGAAAGAUUUGCAGAGAG
18
2742





CCR5-3334

AAGAAAGAUUUGCAGAGAG
19
2743





CCR5-3335

AAAGAAAGAUUUGCAGAGAG
20
2744





CCR5-3336

AAAAGAAAGAUUUGCAGAGAG
21
2745





CCR5-3337

CAAAAGAAAGAUUUGCAGAGAG
22
2746





CCR5-3338

UCAAAAGAAAGAUUUGCAGAGAG
23
2747





CCR5-3339

CUCAAAAGAAAGAUUUGCAGAGAG
24
2748





CCR5-3340

UGUUAGUUAGCUUCUGAG
18
2749





CCR5-3341

CUGUUAGUUAGCUUCUGAG
19
2750





CCR5-3342

CCUGUUAGUUAGCUUCUGAG
20
2751





CCR5-3343

CUAACAGAUUCUGUGUAG
18
2752





CCR5-3344

UCUAACAGAUUCUGUGUAG
19
2753





CCR5-2950

UUCUAACAGAUUCUGUGUAG
20
2754





CCR5-3345

UGGGAUAGGGGAUACGGG
18
2755





CCR5-3346

GUGGGAUAGGGGAUACGGG
19
2756





CCR5-3347

GGUGGGAUAGGGGAUACGGG
20
2757





CCR5-3348

UCUGUGUGGGGGUUGGGG
18
2758





CCR5-3349

AUCUGUGUGGGGGUUGGGG
19
2759





CCR5-2955

CAUCUGUGUGGGGGUUGGGG
20
2760





CCR5-3350

GCAUCUGUGUGGGGGUUGGGG
21
2761





CCR5-3351

AGCAUCUGUGUGGGGGUUGGGG
22
2762





CCR5-3352

GAGCAUCUGUGUGGGGGUUGGGG
23
2763





CCR5-3353

UGAGCAUCUGUGUGGGGGUUGGGG
24
2764





CCR5-3354

GAGCAUCUGUGUGGGGGU
18
2765





CCR5-3355

UGAGCAUCUGUGUGGGGGU
19
2766





CCR5-2970

GUGAGCAUCUGUGUGGGGGU
20
2767





CCR5-3356

GGUGGUGAGCAUCUGUGU
18
2768





CCR5-3357

GGGUGGUGAGCAUCUGUGU
19
2769





CCR5-2973

UGGGUGGUGAGCAUCUGUGU
20
2770





CCR5-3358

AAGAUACAAAACAUGAUU
18
2771





CCR5-3359

AAAGAUACAAAACAUGAUU
19
2772





CCR5-3360

CAAAGAUACAAAACAUGAUU
20
2773





CCR5-3361

UCUCCAGUGAGAUGCCUU
18
2774





CCR5-3362

CUCUCCAGUGAGAUGCCUU
19
2775





CCR5-3363

CCUCUCCAGUGAGAUGCCUU
20
2776





CCR5-3364

AAGGAAAGGGUCACAGUU
18
2777





CCR5-3365

UAAGGAAAGGGUCACAGUU
19
2778





CCR5-2977

AUAAGGAAAGGGUCACAGUU
20
2779





CCR5-3366

GAUAAGGAAAGGGUCACAGUU
21
2780





CCR5-3367

AGAUAAGGAAAGGGUCACAGUU
22
2781





CCR5-3368

AAGAUAAGGAAAGGGUCACAGUU
23
2782





CCR5-3369

UAAGAUAAGGAAAGGGUCACAGUU
24
2783









Table 6C provides exemplary targeting domains for knocking down the CCR5 gene selected according to the third tier parameters. The targeting domains bind within 500 bp (e.g., upstream or downstream) of a transcription start site (TSS) and PAM is NNGRRV. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus eiCas9 molecule or eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain) to alter the CCR5 gene (e.g., reduce or eliminate CCR5 gene expression, CCR5 protein function, or the level of CCR5 protein). One or more gRNAs may be used to target an eiCas9 to the promoter region of the CCR5 gene.









TABLE 6C







3rd Tier











gRNA
DNA

Target Site



Name
Strand
Targeting Domain
Length
SEQ ID NO





CCR5-4045
+
GGGCAACAAAAUAGUGAA
18
3483





CCR5-4046
+
AGGGCAACAAAAUAGUGAA
19
3484





CCR5-4047
+
AAGGGCAACAAAAUAGUGAA
20
3485





CCR5-4048
+
GAAGGGCAACAAAAUAGUGAA
21
3486





CCR5-4049
+
UGAAGGGCAACAAAAUAGUGAA
22
3487





CCR5-4050
+
UUGAAGGGCAACAAAAUAGUGAA
23
3488





CCR5-4051
+
UUUGAAGGGCAACAAAAUAGUGAA
24
3489





CCR5-4052
+
UUUUAAUUUUGAACCAUA
18
3490





CCR5-4053
+
UUUUUAAUUUUGAACCAUA
19
3491





CCR5-4054
+
AUUUUUAAUUUUGAACCAUA
20
3492





CCR5-4055
+
CAUUUUUAAUUUUGAACCAUA
21
3493





CCR5-4056
+
UCAUUUUUAAUUUUGAACCAUA
22
3494





CCR5-4057
+
CUCAUUUUUAAUUUUGAACCAUA
23
3495





CCR5-4058
+
GCUCAUUUUUAAUUUUGAACCAUA
24
3496





CCR5-4059
+
AAAAUCCCCACUAAGAUC
18
3497





CCR5-4060
+
GAAAAUCCCCACUAAGAUC
19
3498





CCR5-4061
+
UGAAAAUCCCCACUAAGAUC
20
3499





CCR5-4062
+
GUGAAAAUCCCCACUAAGAUC
21
3500





CCR5-4063
+
AGUGAAAAUCCCCACUAAGAUC
22
3501





CCR5-4064
+
GAGUGAAAAUCCCCACUAAGAUC
23
3502





CCR5-4065
+
AGAGUGAAAAUCCCCACUAAGAUC
24
3503





CCR5-4066
+
CUUCAGAUAGAUUAUAUC
18
3504





CCR5-4067
+
GCUUCAGAUAGAUUAUAUC
19
3505





CCR5-3092
+
AGCUUCAGAUAGAUUAUAUC
20
3506





CCR5-4068
+
UAGCUUCAGAUAGAUUAUAUC
21
3507





CCR5-4069
+
AUAGCUUCAGAUAGAUUAUAUC
22
3508





CCR5-4070
+
CAUAGCUUCAGAUAGAUUAUAUC
23
3509





CCR5-4071
+
UCAUAGCUUCAGAUAGAUUAUAUC
24
3510





CCR5-4072
+
GAGGGCAUCUUGUGGCUC
18
3511





CCR5-4073
+
AGAGGGCAUCUUGUGGCUC
19
3512





CCR5-3095
+
CAGAGGGCAUCUUGUGGCUC
20
3513





CCR5-4074
+
CCAGAGGGCAUCUUGUGGCUC
21
3514





CCR5-4075
+
CCCAGAGGGCAUCUUGUGGCUC
22
3515





CCR5-4076
+
GCCCAGAGGGCAUCUUGUGGCUC
23
3516





CCR5-4077
+
AGCCCAGAGGGCAUCUUGUGGCUC
24
3517





CCR5-4078
+
UUUCGUCUGCCACCACAG
18
3518





CCR5-4079
+
GUUUCGUCUGCCACCACAG
19
3519





CCR5-4080
+
UGUUUCGUCUGCCACCACAG
20
3520





CCR5-4081
+
AUGUUUCGUCUGCCACCACAG
21
3521





CCR5-4082
+
AAUGUUUCGUCUGCCACCACAG
22
3522





CCR5-4083
+
AAAUGUUUCGUCUGCCACCACAG
23
3523





CCR5-4084
+
AAAAUGUUUCGUCUGCCACCACAG
24
3524





CCR5-4085
+
UAGAUUAUAUCUGGAGUG
18
3525





CCR5-4086
+
AUAGAUUAUAUCUGGAGUG
19
3526





CCR5-4087
+
GAUAGAUUAUAUCUGGAGUG
20
3527





CCR5-4088
+
AGAUAGAUUAUAUCUGGAGUG
21
3528





CCR5-4089
+
CAGAUAGAUUAUAUCUGGAGUG
22
3529





CCR5-4090
+
UCAGAUAGAUUAUAUCUGGAGUG
23
3530





CCR5-4091
+
UUCAGAUAGAUUAUAUCUGGAGUG
24
3531





CCR5-4092
+
UUUCUCUUAUUAAACCCU
18
3532





CCR5-4093
+
UUUUCUCUUAUUAAACCCU
19
3533





CCR5-4094
+
AUUUUCUCUUAUUAAACCCU
20
3534





CCR5-4095
+
AAUUUUCUCUUAUUAAACCCU
21
3535





CCR5-4096
+
GAAUUUUCUCUUAUUAAACCCU
22
3536





CCR5-4097
+
AGAAUUUUCUCUUAUUAAACCCU
23
3537





CCR5-4098
+
GAGAAUUUUCUCUUAUUAAACCCU
24
3538





CCR5-4099
+
AGUUCAGCUGCUCUAGCU
18
3539





CCR5-4100
+
AAGUUCAGCUGCUCUAGCU
19
3540





CCR5-4101
+
UAAGUUCAGCUGCUCUAGCU
20
3541





CCR5-4102
+
UUAAGUUCAGCUGCUCUAGCU
21
3542





CCR5-4103
+
UUUAAGUUCAGCUGCUCUAGCU
22
3543





CCR5-4104
+
AUUUAAGUUCAGCUGCUCUAGCU
23
3544





CCR5-4105
+
UAUUUAAGUUCAGCUGCUCUAGCU
24
3545





CCR5-4106
+
CUAUGUAUCUGGCAUAGU
18
3546





CCR5-4107
+
CCUAUGUAUCUGGCAUAGU
19
3547





CCR5-4108
+
ACCUAUGUAUCUGGCAUAGU
20
3548





CCR5-4109
+
CACCUAUGUAUCUGGCAUAGU
21
3549





CCR5-4110
+
CCACCUAUGUAUCUGGCAUAGU
22
3550





CCR5-4111
+
GCCACCUAUGUAUCUGGCAUAGU
23
3551





CCR5-4112
+
UGCCACCUAUGUAUCUGGCAUAGU
24
3552





CCR5-4113
+
UUCUGAGUUGCCACAAUU
18
3553





CCR5-4114
+
UUUCUGAGUUGCCACAAUU
19
3554





CCR5-4115
+
GUUUCUGAGUUGCCACAAUU
20
3555





CCR5-4116
+
AGUUUCUGAGUUGCCACAAUU
21
3556





CCR5-4117
+
UAGUUUCUGAGUUGCCACAAUU
22
3557





CCR5-4118
+
GUAGUUUCUGAGUUGCCACAAUU
23
3558





CCR5-4119
+
UGUAGUUUCUGAGUUGCCACAAUU
24
3559





CCR5-4120
+
AGAUGAAUGUCAUGCAUU
18
3560





CCR5-4121
+
CAGAUGAAUGUCAUGCAUU
19
3561





CCR5-4122
+
ACAGAUGAAUGUCAUGCAUU
20
3562





CCR5-4123
+
CACAGAUGAAUGUCAUGCAUU
21
3563





CCR5-4124
+
CCACAGAUGAAUGUCAUGCAUU
22
3564





CCR5-4125
+
ACCACAGAUGAAUGUCAUGCAUU
23
3565





CCR5-4126
+
CACCACAGAUGAAUGUCAUGCAUU
24
3566





CCR5-4127
+
GCACGUAAUUUUGCUGUU
18
3567





CCR5-4128
+
GGCACGUAAUUUUGCUGUU
19
3568





CCR5-3141
+
GGGCACGUAAUUUUGCUGUU
20
3569





CCR5-4129
+
GGGGCACGUAAUUUUGCUGUU
21
3570





CCR5-4130
+
GGGGGCACGUAAUUUUGCUGUU
22
3571





CCR5-4131
+
UGGGGGCACGUAAUUUUGCUGUU
23
3572





CCR5-4132
+
UUGGGGGCACGUAAUUUUGCUGUU
24
3573





CCR5-4133
+
AGUUUGUGUUUGUAGUUU
18
3574





CCR5-4134
+
AAGUUUGUGUUUGUAGUUU
19
3575





CCR5-4135
+
GAAGUUUGUGUUUGUAGUUU
20
3576





CCR5-4136
+
UGAAGUUUGUGUUUGUAGUUU
21
3577





CCR5-4137
+
GUGAAGUUUGUGUUUGUAGUUU
22
3578





CCR5-4138
+
UGUGAAGUUUGUGUUUGUAGUUU
23
3579





CCR5-4139
+
CUGUGAAGUUUGUGUUUGUAGUUU
24
3580





CCR5-4140

UGCCUAGUCUAAGGUGCA
18
3581





CCR5-4141

CUGCCUAGUCUAAGGUGCA
19
3582





CCR5-3067

GCUGCCUAGUCUAAGGUGCA
20
3583





CCR5-4142

AGCUGCCUAGUCUAAGGUGCA
21
3584





CCR5-4143

CAGCUGCCUAGUCUAAGGUGCA
22
3585





CCR5-4144

UCAGCUGCCUAGUCUAAGGUGCA
23
3586





CCR5-4145

CUCAGCUGCCUAGUCUAAGGUGCA
24
3587





CCR5-4146

CAGGGAGUUUGAGACUCA
18
3588





CCR5-4147

GCAGGGAGUUUGAGACUCA
19
3589





CCR5-4148

UGCAGGGAGUUUGAGACUCA
20
3590





CCR5-4149

GUGCAGGGAGUUUGAGACUCA
21
3591





CCR5-4150

GGUGCAGGGAGUUUGAGACUCA
22
3592





CCR5-4151

AGGUGCAGGGAGUUUGAGACUCA
23
3593





CCR5-4152

AAGGUGCAGGGAGUUUGAGACUCA
24
3594





CCR5-4153

CCCAUCUUUUUCUGGACC
18
3595





CCR5-4154

UCCCAUCUUUUUCUGGACC
19
3596





CCR5-4155

UUCCCAUCUUUUUCUGGACC
20
3597





CCR5-4156

UUUCCCAUCUUUUUCUGGACC
21
3598





CCR5-4157

GUUUCCCAUCUUUUUCUGGACC
22
3599





CCR5-4158

GGUUUCCCAUCUUUUUCUGGACC
23
3600





CCR5-4159

AGGUUUCCCAUCUUUUUCUGGACC
24
3601





CCR5-4160

UUAUAAGACUAAACUACC
18
3602





CCR5-4161

GUUAUAAGACUAAACUACC
19
3603





CCR5-4162

GGUUAUAAGACUAAACUACC
20
3604





CCR5-4163

UGGUUAUAAGACUAAACUACC
21
3605





CCR5-4164

CUGGUUAUAAGACUAAACUACC
22
3606





CCR5-4165

GCUGGUUAUAAGACUAAACUACC
23
3607





CCR5-4166

AGCUGGUUAUAAGACUAAACUACC
24
3608





CCR5-4167

AGUUUUAACUAUGGGCUC
18
3609





CCR5-4168

GAGUUUUAACUAUGGGCUC
19
3610





CCR5-4169

AGAGUUUUAACUAUGGGCUC
20
3611





CCR5-4170

AAGAGUUUUAACUAUGGGCUC
21
3612





CCR5-4171

AAAGAGUUUUAACUAUGGGCUC
22
3613





CCR5-4172

UAAAGAGUUUUAACUAUGGGCUC
23
3614





CCR5-4173

CUAAAGAGUUUUAACUAUGGGCUC
24
3615





CCR5-4174

CUUCCGUGACCUUGGCUC
18
3616





CCR5-4175

GCUUCCGUGACCUUGGCUC
19
3617





CCR5-4176

GGCUUCCGUGACCUUGGCUC
20
3618





CCR5-4177

GGGCUUCCGUGACCUUGGCUC
21
3619





CCR5-4178

UGGGCUUCCGUGACCUUGGCUC
22
3620





CCR5-4179

CUGGGCUUCCGUGACCUUGGCUC
23
3621





CCR5-4180

UCUGGGCUUCCGUGACCUUGGCUC
24
3622





CCR5-4181

UUUUUAUUAUAUUAUUUC
18
3623





CCR5-4182

UUUUUUAUUAUAUUAUUUC
19
3624





CCR5-4183

AUUUUUUAUUAUAUUAUUUC
20
3625





CCR5-4184

CAUUUUUUAUUAUAUUAUUUC
21
3626





CCR5-4185

ACAUUUUUUAUUAUAUUAUUUC
22
3627





CCR5-4186

AACAUUUUUUAUUAUAUUAUUUC
23
3628





CCR5-4187

AAACAUUUUUUAUUAUAUUAUUUC
24
3629





CCR5-4188

UGCCAGAUACAUAGGUGG
18
3630





CCR5-4189

AUGCCAGAUACAUAGGUGG
19
3631





CCR5-4190

UAUGCCAGAUACAUAGGUGG
20
3632





CCR5-4191

CUAUGCCAGAUACAUAGGUGG
21
3633





CCR5-4192

ACUAUGCCAGAUACAUAGGUGG
22
3634





CCR5-4193

CACUAUGCCAGAUACAUAGGUGG
23
3635





CCR5-4194

ACACUAUGCCAGAUACAUAGGUGG
24
3636





CCR5-4195

UGGACCCAGGAUCUUAGU
18
3637





CCR5-4196

CUGGACCCAGGAUCUUAGU
19
3638





CCR5-3135

UCUGGACCCAGGAUCUUAGU
20
3639





CCR5-4197

UUCUGGACCCAGGAUCUUAGU
21
3640





CCR5-4198

UUUCUGGACCCAGGAUCUUAGU
22
3641





CCR5-4199

UUUUCUGGACCCAGGAUCUUAGU
23
3642





CCR5-4200

UUUUUCUGGACCCAGGAUCUUAGU
24
3643





CCR5-4201

AAACUUCACAGAAAAUGU
18
3644





CCR5-4202

CAAACUUCACAGAAAAUGU
19
3645





CCR5-4203

ACAAACUUCACAGAAAAUGU
20
3646





CCR5-4204

CACAAACUUCACAGAAAAUGU
21
3647





CCR5-4205

ACACAAACUUCACAGAAAAUGU
22
3648





CCR5-4206

AACACAAACUUCACAGAAAAUGU
23
3649





CCR5-4207

AAACACAAACUUCACAGAAAAUGU
24
3650









Table 6D provides exemplary targeting domains for knocking down the CCR5 gene selected according to the fourth tier parameters. Within the additional 500 bp (e.g., upstream or downstream) of a transcription start site (TSS), e.g., extending to 1 kb upstream and downstream of a TSS and PAM is NNGRRT. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus eiCas9 molecule or eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain) to alter the CCR5 gene (e.g., reduce or eliminate CCR5 gene expression, CCR5 protein function, or the level of CCR5 protein). One or more gRNAs may be used to target an eiCas9 to the promoter region of the CCR5 gene.









TABLE 6D







4th Tier











gRNA
DNA

Target Site



Name
Strand
Targeting Domain
Length
SEQ ID NO





CCR5-3370
+
AAGCCCACAUUUUAGUAA
18
2784





CCR5-3371
+
AAAGCCCACAUUUUAGUAA
19
2785





CCR5-3372
+
AAAAGCCCACAUUUUAGUAA
20
2786





CCR5-3373
+
CAAAAGCCCACAUUUUAGUAA
21
2787





CCR5-3374
+
UCAAAAGCCCACAUUUUAGUAA
22
2788





CCR5-3375
+
GUCAAAAGCCCACAUUUUAGUAA
23
2789





CCR5-3376
+
AGUCAAAAGCCCACAUUUUAGUAA
24
2790





CCR5-3377
+
UGAAGGCGAAAAGAAUCA
18
2791





CCR5-3378
+
UUGAAGGCGAAAAGAAUCA
19
2792





CCR5-3379
+
AUUGAAGGCGAAAAGAAUCA
20
2793





CCR5-3380
+
UAUUGAAGGCGAAAAGAAUCA
21
2794





CCR5-3381
+
GUAUUGAAGGCGAAAAGAAUCA
22
2795





CCR5-3382
+
UGUAUUGAAGGCGAAAAGAAUCA
23
2796





CCR5-3383
+
GUGUAUUGAAGGCGAAAAGAAUCA
24
2797





CCR5-3384
+
AUGAUUUGUACAAGAUCA
18
2798





CCR5-3385
+
AAUGAUUUGUACAAGAUCA
19
2799





CCR5-3386
+
AAAUGAUUUGUACAAGAUCA
20
2800





CCR5-3387
+
CAAAUGAUUUGUACAAGAUCA
21
2801





CCR5-3388
+
GCAAAUGAUUUGUACAAGAUCA
22
2802





CCR5-3389
+
AGCAAAUGAUUUGUACAAGAUCA
23
2803





CCR5-3390
+
AAGCAAAUGAUUUGUACAAGAUCA
24
2804





CCR5-3391
+
UAUUCAGAAGGCAUCUCA
18
2805





CCR5-3392
+
AUAUUCAGAAGGCAUCUCA
19
2806





CCR5-3393
+
CAUAUUCAGAAGGCAUCUCA
20
2807





CCR5-3394
+
ACCAACUUUAAAUGUAGA
18
2808





CCR5-3395
+
AACCAACUUUAAAUGUAGA
19
2809





CCR5-2918
+
AAACCAACUUUAAAUGUAGA
20
2810





CCR5-3396
+
UAAACCAACUUUAAAUGUAGA
21
2811





CCR5-3397
+
UUAAACCAACUUUAAAUGUAGA
22
2812





CCR5-3398
+
CUUAAACCAACUUUAAAUGUAGA
23
2813





CCR5-3399
+
ACUUAAACCAACUUUAAAUGUAGA
24
2814





CCR5-3400
+
AAAUGCUGUUUCUUUUGA
18
2815





CCR5-3401
+
GAAAUGCUGUUUCUUUUGA
19
2816





CCR5-2921
+
GGAAAUGCUGUUUCUUUUGA
20
2817





CCR5-3402
+
AGGAAAUGCUGUUUCUUUUGA
21
2818





CCR5-3403
+
UAGGAAAUGCUGUUUCUUUUGA
22
2819





CCR5-3404
+
GUAGGAAAUGCUGUUUCUUUUGA
23
2820





CCR5-3405
+
AGUAGGAAAUGCUGUUUCUUUUGA
24
2821





CCR5-3406
+
AAACCAACUUUAAAUGUA
18
2822





CCR5-3407
+
UAAACCAACUUUAAAUGUA
19
2823





CCR5-3408
+
UUAAACCAACUUUAAAUGUA
20
2824





CCR5-3409
+
CUUAAACCAACUUUAAAUGUA
21
2825





CCR5-3410
+
ACUUAAACCAACUUUAAAUGUA
22
2826





CCR5-3411
+
AACUUAAACCAACUUUAAAUGUA
23
2827





CCR5-3412
+
CAACUUAAACCAACUUUAAAUGUA
24
2828





CCR5-3413
+
GUUAAAUCAUUAAGUGUA
18
2829





CCR5-3414
+
AGUUAAAUCAUUAAGUGUA
19
2830





CCR5-3415
+
GAGUUAAAUCAUUAAGUGUA
20
2831





CCR5-3416
+
GGAGUUAAAUCAUUAAGUGUA
21
2832





CCR5-3417
+
UGGAGUUAAAUCAUUAAGUGUA
22
2833





CCR5-3418
+
GUGGAGUUAAAUCAUUAAGUGUA
23
2834





CCR5-3419
+
GGUGGAGUUAAAUCAUUAAGUGUA
24
2835





CCR5-3420
+
CGGGGAGAGUUUCUUGUA
18
2836





CCR5-3421
+
CCGGGGAGAGUUUCUUGUA
19
2837





CCR5-2929
+
ACCGGGGAGAGUUUCUUGUA
20
2838





CCR5-3422
+
UACCGGGGAGAGUUUCUUGUA
21
2839





CCR5-3423
+
UUACCGGGGAGAGUUUCUUGUA
22
2840





CCR5-3424
+
CUUACCGGGGAGAGUUUCUUGUA
23
2841





CCR5-3425
+
ACUUACCGGGGAGAGUUUCUUGUA
24
2842





CCR5-3426
+
CAGCUGAGAGGUUACUUA
18
2843





CCR5-3427
+
GCAGCUGAGAGGUUACUUA
19
2844





CCR5-3428
+
AGCAGCUGAGAGGUUACUUA
20
2845





CCR5-3429
+
AAGCAGCUGAGAGGUUACUUA
21
2846





CCR5-3430
+
CAAGCAGCUGAGAGGUUACUUA
22
2847





CCR5-3431
+
CCAAGCAGCUGAGAGGUUACUUA
23
2848





CCR5-3432
+
GCCAAGCAGCUGAGAGGUUACUUA
24
2849





CCR5-3433
+
AUUCAGAAGGCAUCUCAC
18
2850





CCR5-3434
+
UAUUCAGAAGGCAUCUCAC
19
2851





CCR5-2932
+
AUAUUCAGAAGGCAUCUCAC
20
2852





CCR5-3435
+
AGCUGAGAGGUUACUUAC
18
2853





CCR5-3436
+
CAGCUGAGAGGUUACUUAC
19
2854





CCR5-2935
+
GCAGCUGAGAGGUUACUUAC
20
2855





CCR5-3437
+
AGCAGCUGAGAGGUUACUUAC
21
2856





CCR5-3438
+
AAGCAGCUGAGAGGUUACUUAC
22
2857





CCR5-3439
+
CAAGCAGCUGAGAGGUUACUUAC
23
2858





CCR5-3440
+
CCAAGCAGCUGAGAGGUUACUUAC
24
2859





CCR5-3441
+
GCUGAGAGGUUACUUACC
18
2860





CCR5-3442
+
AGCUGAGAGGUUACUUACC
19
2861





CCR5-2937
+
CAGCUGAGAGGUUACUUACC
20
2862





CCR5-3443
+
GCAGCUGAGAGGUUACUUACC
21
2863





CCR5-3444
+
AGCAGCUGAGAGGUUACUUACC
22
2864





CCR5-3445
+
AAGCAGCUGAGAGGUUACUUACC
23
2865





CCR5-3446
+
CAAGCAGCUGAGAGGUUACUUACC
24
2866





CCR5-3447
+
UAAAAGAAAUUACUAUCC
18
2867





CCR5-3448
+
GUAAAAGAAAUUACUAUCC
19
2868





CCR5-3449
+
AGUAAAAGAAAUUACUAUCC
20
2869





CCR5-3450
+
UAGUAAAAGAAAUUACUAUCC
21
2870





CCR5-3451
+
UUAGUAAAAGAAAUUACUAUCC
22
2871





CCR5-3452
+
UUUAGUAAAAGAAAUUACUAUCC
23
2872





CCR5-3453
+
UUUUAGUAAAAGAAAUUACUAUCC
24
2873





CCR5-3454
+
GUUGAGCUUAAAAUAAGC
18
2874





CCR5-3455
+
AGUUGAGCUUAAAAUAAGC
19
2875





CCR5-3456
+
AAGUUGAGCUUAAAAUAAGC
20
2876





CCR5-3457
+
UAAGUUGAGCUUAAAAUAAGC
21
2877





CCR5-3458
+
UUAAGUUGAGCUUAAAAUAAGC
22
2878





CCR5-3459
+
UUUAAGUUGAGCUUAAAAUAAGC
23
2879





CCR5-3460
+
UUUUAAGUUGAGCUUAAAAUAAGC
24
2880





CCR5-3461
+
AAUAAAGGAUAUCAGAGC
18
2881





CCR5-3462
+
GAAUAAAGGAUAUCAGAGC
19
2882





CCR5-3463
+
AGAAUAAAGGAUAUCAGAGC
20
2883





CCR5-3464
+
AAGAAUAAAGGAUAUCAGAGC
21
2884





CCR5-3465
+
AAAGAAUAAAGGAUAUCAGAGC
22
2885





CCR5-3466
+
UAAAGAAUAAAGGAUAUCAGAGC
23
2886





CCR5-3467
+
AUAAAGAAUAAAGGAUAUCAGAGC
24
2887





CCR5-3468
+
UAAAUGUAGAGGGGGAUC
18
2888





CCR5-3469
+
UUAAAUGUAGAGGGGGAUC
19
2889





CCR5-3470
+
UUUAAAUGUAGAGGGGGAUC
20
2890





CCR5-3471
+
CUUUAAAUGUAGAGGGGGAUC
21
2891





CCR5-3472
+
ACUUUAAAUGUAGAGGGGGAUC
22
2892





CCR5-3473
+
AACUUUAAAUGUAGAGGGGGAUC
23
2893





CCR5-3474
+
CAACUUUAAAUGUAGAGGGGGAUC
24
2894





CCR5-3475
+
AUAUAGACAGUAUAAAAG
18
2895





CCR5-3476
+
CAUAUAGACAGUAUAAAAG
19
2896





CCR5-3477
+
UCAUAUAGACAGUAUAAAAG
20
2897





CCR5-3478
+
AUCAUAUAGACAGUAUAAAAG
21
2898





CCR5-3479
+
AAUCAUAUAGACAGUAUAAAAG
22
2899





CCR5-3480
+
CAAUCAUAUAGACAGUAUAAAAG
23
2900





CCR5-3481
+
UCAAUCAUAUAGACAGUAUAAAAG
24
2901





CCR5-3482
+
UCAUUAAGUGUAUUGAAG
18
2902





CCR5-3483
+
AUCAUUAAGUGUAUUGAAG
19
2903





CCR5-3484
+
AAUCAUUAAGUGUAUUGAAG
20
2904





CCR5-3485
+
AAAUCAUUAAGUGUAUUGAAG
21
2905





CCR5-3486
+
UAAAUCAUUAAGUGUAUUGAAG
22
2906





CCR5-3487
+
UUAAAUCAUUAAGUGUAUUGAAG
23
2907





CCR5-3488
+
GUUAAAUCAUUAAGUGUAUUGAAG
24
2908





CCR5-3489
+
ACAGUUCUUCUUUUUAAG
18
2909





CCR5-3490
+
AACAGUUCUUCUUUUUAAG
19
2910





CCR5-3491
+
GAACAGUUCUUCUUUUUAAG
20
2911





CCR5-3492
+
AGAACAGUUCUUCUUUUUAAG
21
2912





CCR5-3493
+
GAGAACAGUUCUUCUUUUUAAG
22
2913





CCR5-3494
+
AGAGAACAGUUCUUCUUUUUAAG
23
2914





CCR5-3495
+
CAGAGAACAGUUCUUCUUUUUAAG
24
2915





CCR5-3496
+
CUCAGCUCUUCUGGCCAG
18
2916





CCR5-3497
+
UCUCAGCUCUUCUGGCCAG
19
2917





CCR5-3498
+
GUCUCAGCUCUUCUGGCCAG
20
2918





CCR5-3499
+
UGUCUCAGCUCUUCUGGCCAG
21
2919





CCR5-3500
+
AUGUCUCAGCUCUUCUGGCCAG
22
2920





CCR5-3501
+
GAUGUCUCAGCUCUUCUGGCCAG
23
2921





CCR5-3502
+
GGAUGUCUCAGCUCUUCUGGCCAG
24
2922





CCR5-3503
+
AACUAACAGGCCAAGCAG
18
2923





CCR5-3504
+
UAACUAACAGGCCAAGCAG
19
2924





CCR5-3505
+
CUAACUAACAGGCCAAGCAG
20
2925





CCR5-3506
+
GCUAACUAACAGGCCAAGCAG
21
2926





CCR5-3507
+
AGCUAACUAACAGGCCAAGCAG
22
2927





CCR5-3508
+
AAGCUAACUAACAGGCCAAGCAG
23
2928





CCR5-3509
+
GAAGCUAACUAACAGGCCAAGCAG
24
2929





CCR5-3510
+
AAAGGAUAUCAGAGCUAG
18
2930





CCR5-3511
+
UAAAGGAUAUCAGAGCUAG
19
2931





CCR5-3512
+
AUAAAGGAUAUCAGAGCUAG
20
2932





CCR5-3513
+
AAUAAAGGAUAUCAGAGCUAG
21
2933





CCR5-3514
+
GAAUAAAGGAUAUCAGAGCUAG
22
2934





CCR5-3515
+
AGAAUAAAGGAUAUCAGAGCUAG
23
2935





CCR5-3516
+
AAGAAUAAAGGAUAUCAGAGCUAG
24
2936





CCR5-3517
+
AACCAACUUUAAAUGUAG
18
2937





CCR5-3518
+
AAACCAACUUUAAAUGUAG
19
2938





CCR5-2949
+
UAAACCAACUUUAAAUGUAG
20
2939





CCR5-3519
+
UUAAACCAACUUUAAAUGUAG
21
2940





CCR5-3520
+
CUUAAACCAACUUUAAAUGUAG
22
2941





CCR5-3521
+
ACUUAAACCAACUUUAAAUGUAG
23
2942





CCR5-3522
+
AACUUAAACCAACUUUAAAUGUAG
24
2943





CCR5-3523
+
GGGGAGAGUUUCUUGUAG
18
2944





CCR5-3524
+
CGGGGAGAGUUUCUUGUAG
19
2945





CCR5-2820
+
CCGGGGAGAGUUUCUUGUAG
20
2946





CCR5-3525
+
ACCGGGGAGAGUUUCUUGUAG
21
2947





CCR5-3526
+
UACCGGGGAGAGUUUCUUGUAG
22
2948





CCR5-3527
+
UUACCGGGGAGAGUUUCUUGUAG
23
2949





CCR5-3528
+
CUUACCGGGGAGAGUUUCUUGUAG
24
2950





CCR5-3529
+
GGGUUUAGUUCUCCUUAG
18
2951





CCR5-3530
+
AGGGUUUAGUUCUCCUUAG
19
2952





CCR5-3531
+
GAGGGUUUAGUUCUCCUUAG
20
2953





CCR5-3532
+
AGAGGGUUUAGUUCUCCUUAG
21
2954





CCR5-3533
+
GAGAGGGUUUAGUUCUCCUUAG
22
2955





CCR5-3534
+
GGAGAGGGUUUAGUUCUCCUUAG
23
2956





CCR5-3535
+
UGGAGAGGGUUUAGUUCUCCUUAG
24
2957





CCR5-3536
+
CUGAGAGGUUACUUACCG
18
2958





CCR5-3537
+
GCUGAGAGGUUACUUACCG
19
2959





CCR5-2821
+
AGCUGAGAGGUUACUUACCG
20
2960





CCR5-3538
+
CAGCUGAGAGGUUACUUACCG
21
2961





CCR5-3539
+
GCAGCUGAGAGGUUACUUACCG
22
2962





CCR5-3540
+
AGCAGCUGAGAGGUUACUUACCG
23
2963





CCR5-3541
+
AAGCAGCUGAGAGGUUACUUACCG
24
2964





CCR5-3542
+
UGUUUCUUUUGAAGGAGG
18
2965





CCR5-3543
+
CUGUUUCUUUUGAAGGAGG
19
2966





CCR5-3544
+
GCUGUUUCUUUUGAAGGAGG
20
2967





CCR5-3545
+
UGCUGUUUCUUUUGAAGGAGG
21
2968





CCR5-3546
+
AUGCUGUUUCUUUUGAAGGAGG
22
2969





CCR5-3547
+
AAUGCUGUUUCUUUUGAAGGAGG
23
2970





CCR5-3548
+
AAAUGCUGUUUCUUUUGAAGGAGG
24
2971





CCR5-3549
+
UUAAACCAACUUUAAAUG
18
2972





CCR5-3550
+
CUUAAACCAACUUUAAAUG
19
2973





CCR5-3551
+
ACUUAAACCAACUUUAAAUG
20
2974





CCR5-3552
+
AACUUAAACCAACUUUAAAUG
21
2975





CCR5-3553
+
CAACUUAAACCAACUUUAAAUG
22
2976





CCR5-3554
+
CCAACUUAAACCAACUUUAAAUG
23
2977





CCR5-3555
+
GCCAACUUAAACCAACUUUAAAUG
24
2978





CCR5-3556
+
UCAGAAGGCAUCUCACUG
18
2979





CCR5-3557
+
UUCAGAAGGCAUCUCACUG
19
2980





CCR5-3558
+
AUUCAGAAGGCAUCUCACUG
20
2981





CCR5-3559
+
UAUUCAGAAGGCAUCUCACUG
21
2982





CCR5-3560
+
AUAUUCAGAAGGCAUCUCACUG
22
2983





CCR5-3561
+
CAUAUUCAGAAGGCAUCUCACUG
23
2984





CCR5-3562
+
ACAUAUUCAGAAGGCAUCUCACUG
24
2985





CCR5-3563
+
ACCGGGGAGAGUUUCUUG
18
2986





CCR5-3564
+
UACCGGGGAGAGUUUCUUG
19
2987





CCR5-3565
+
UUACCGGGGAGAGUUUCUUG
20
2988





CCR5-3566
+
CUUACCGGGGAGAGUUUCUUG
21
2989





CCR5-3567
+
ACUUACCGGGGAGAGUUUCUUG
22
2990





CCR5-3568
+
UACUUACCGGGGAGAGUUUCUUG
23
2991





CCR5-3569
+
UUACUUACCGGGGAGAGUUUCUUG
24
2992





CCR5-3570
+
GAAAUGCUGUUUCUUUUG
18
2993





CCR5-3571
+
GGAAAUGCUGUUUCUUUUG
19
2994





CCR5-3572
+
AGGAAAUGCUGUUUCUUUUG
20
2995





CCR5-3573
+
UAGGAAAUGCUGUUUCUUUUG
21
2996





CCR5-3574
+
GUAGGAAAUGCUGUUUCUUUUG
22
2997





CCR5-3575
+
AGUAGGAAAUGCUGUUUCUUUUG
23
2998





CCR5-3576
+
AAGUAGGAAAUGCUGUUUCUUUUG
24
2999





CCR5-3577
+
AUUGAAGGCGAAAAGAAU
18
3000





CCR5-3578
+
UAUUGAAGGCGAAAAGAAU
19
3001





CCR5-3579
+
GUAUUGAAGGCGAAAAGAAU
20
3002





CCR5-3580
+
UGUAUUGAAGGCGAAAAGAAU
21
3003





CCR5-3581
+
GUGUAUUGAAGGCGAAAAGAAU
22
3004





CCR5-3582
+
AGUGUAUUGAAGGCGAAAAGAAU
23
3005





CCR5-3583
+
AAGUGUAUUGAAGGCGAAAAGAAU
24
3006





CCR5-3584
+
AUAAAGAAUAAAGGAUAU
18
3007





CCR5-3585
+
UAUAAAGAAUAAAGGAUAU
19
3008





CCR5-3586
+
AUAUAAAGAAUAAAGGAUAU
20
3009





CCR5-3587
+
AAUAUAAAGAAUAAAGGAUAU
21
3010





CCR5-3588
+
AAAUAUAAAGAAUAAAGGAUAU
22
3011





CCR5-3589
+
AAAAUAUAAAGAAUAAAGGAUAU
23
3012





CCR5-3590
+
GAAAAUAUAAAGAAUAAAGGAUAU
24
3013





CCR5-3591
+
CUAACAGGCCAAGCAGCU
18
3014





CCR5-3592
+
ACUAACAGGCCAAGCAGCU
19
3015





CCR5-3593
+
AACUAACAGGCCAAGCAGCU
20
3016





CCR5-3594
+
UAACUAACAGGCCAAGCAGCU
21
3017





CCR5-3595
+
CUAACUAACAGGCCAAGCAGCU
22
3018





CCR5-3596
+
GCUAACUAACAGGCCAAGCAGCU
23
3019





CCR5-3597
+
AGCUAACUAACAGGCCAAGCAGCU
24
3020





CCR5-3598
+
AAAGUCUUUUACUCAUCU
18
3021





CCR5-3599
+
UAAAGUCUUUUACUCAUCU
19
3022





CCR5-3600
+
GUAAAGUCUUUUACUCAUCU
20
3023





CCR5-3601
+
UGUAAAGUCUUUUACUCAUCU
21
3024





CCR5-3602
+
CUGUAAAGUCUUUUACUCAUCU
22
3025





CCR5-3603
+
CCUGUAAAGUCUUUUACUCAUCU
23
3026





CCR5-3604
+
UCCUGUAAAGUCUUUUACUCAUCU
24
3027





CCR5-3605
+
UAUAGACAGUAUAAAAGU
18
3028





CCR5-3606
+
AUAUAGACAGUAUAAAAGU
19
3029





CCR5-2967
+
CAUAUAGACAGUAUAAAAGU
20
3030





CCR5-3607
+
UCAUAUAGACAGUAUAAAAGU
21
3031





CCR5-3608
+
AUCAUAUAGACAGUAUAAAAGU
22
3032





CCR5-3609
+
AAUCAUAUAGACAGUAUAAAAGU
23
3033





CCR5-3610
+
CAAUCAUAUAGACAGUAUAAAAGU
24
3034





CCR5-3611
+
CUUUGAUGUUAUAACCGU
18
3035





CCR5-3612
+
UCUUUGAUGUUAUAACCGU
19
3036





CCR5-3613
+
AUCUUUGAUGUUAUAACCGU
20
3037





CCR5-3614
+
UAUCUUUGAUGUUAUAACCGU
21
3038





CCR5-3615
+
GUAUCUUUGAUGUUAUAACCGU
22
3039





CCR5-3616
+
UGUAUCUUUGAUGUUAUAACCGU
23
3040





CCR5-3617
+
UUGUAUCUUUGAUGUUAUAACCGU
24
3041





CCR5-3618
+
AGAGAAUAGAUCUCUGGU
18
3042





CCR5-3619
+
UAGAGAAUAGAUCUCUGGU
19
3043





CCR5-3620
+
CUAGAGAAUAGAUCUCUGGU
20
3044





CCR5-3621
+
GCUAGAGAAUAGAUCUCUGGU
21
3045





CCR5-3622
+
AGCUAGAGAAUAGAUCUCUGGU
22
3046





CCR5-3623
+
AAGCUAGAGAAUAGAUCUCUGGU
23
3047





CCR5-3624
+
UAAGCUAGAGAAUAGAUCUCUGGU
24
3048





CCR5-3625
+
CCACUACACAGAAUCUGU
18
3049





CCR5-3626
+
CCCACUACACAGAAUCUGU
19
3050





CCR5-3627
+
UCCCACUACACAGAAUCUGU
20
3051





CCR5-3628
+
AUCCCACUACACAGAAUCUGU
21
3052





CCR5-3629
+
CAUCCCACUACACAGAAUCUGU
22
3053





CCR5-3630
+
UCAUCCCACUACACAGAAUCUGU
23
3054





CCR5-3631
+
CUCAUCCCACUACACAGAAUCUGU
24
3055





CCR5-3632
+
AUAUUUUAAGAUAAUUGU
18
3056





CCR5-3633
+
UAUAUUUUAAGAUAAUUGU
19
3057





CCR5-3634
+
UUAUAUUUUAAGAUAAUUGU
20
3058





CCR5-3635
+
AUUAUAUUUUAAGAUAAUUGU
21
3059





CCR5-3636
+
GAUUAUAUUUUAAGAUAAUUGU
22
3060





CCR5-3637
+
AGAUUAUAUUUUAAGAUAAUUGU
23
3061





CCR5-3638
+
AAGAUUAUAUUUUAAGAUAAUUGU
24
3062





CCR5-3639
+
CCGGGGAGAGUUUCUUGU
18
3063





CCR5-3640
+
ACCGGGGAGAGUUUCUUGU
19
3064





CCR5-2974
+
UACCGGGGAGAGUUUCUUGU
20
3065





CCR5-3641
+
UUACCGGGGAGAGUUUCUUGU
21
3066





CCR5-3642
+
CUUACCGGGGAGAGUUUCUUGU
22
3067





CCR5-3643
+
ACUUACCGGGGAGAGUUUCUUGU
23
3068





CCR5-3644
+
UACUUACCGGGGAGAGUUUCUUGU
24
3069





CCR5-3645
+
UCUCUGCAAAUCUUUCUU
18
3070





CCR5-3646
+
CUCUCUGCAAAUCUUUCUU
19
3071





CCR5-3647
+
UCUCUCUGCAAAUCUUUCUU
20
3072





CCR5-3648
+
AUCUCUCUGCAAAUCUUUCUU
21
3073





CCR5-3649
+
CAUCUCUCUGCAAAUCUUUCUU
22
3074





CCR5-3650
+
UCAUCUCUCUGCAAAUCUUUCUU
23
3075





CCR5-3651
+
CUCAUCUCUCUGCAAAUCUUUCUU
24
3076





CCR5-3652
+
UAGGAAAUGCUGUUUCUU
18
3077





CCR5-3653
+
GUAGGAAAUGCUGUUUCUU
19
3078





CCR5-3654
+
AGUAGGAAAUGCUGUUUCUU
20
3079





CCR5-3655
+
AAGUAGGAAAUGCUGUUUCUU
21
3080





CCR5-3656
+
AAAGUAGGAAAUGCUGUUUCUU
22
3081





CCR5-3657
+
AAAAGUAGGAAAUGCUGUUUCUU
23
3082





CCR5-3658
+
UAAAAGUAGGAAAUGCUGUUUCUU
24
3083





CCR5-3659
+
CAGUAAGGCUAAAAGGUU
18
3084





CCR5-3660
+
ACAGUAAGGCUAAAAGGUU
19
3085





CCR5-3661
+
AACAGUAAGGCUAAAAGGUU
20
3086





CCR5-3662
+
CAACAGUAAGGCUAAAAGGUU
21
3087





CCR5-3663
+
UCAACAGUAAGGCUAAAAGGUU
22
3088





CCR5-3664
+
UUCAACAGUAAGGCUAAAAGGUU
23
3089





CCR5-3665
+
UUUCAACAGUAAGGCUAAAAGGUU
24
3090





CCR5-3666
+
UGGUCUGAAGGUUUAUUU
18
3091





CCR5-3667
+
CUGGUCUGAAGGUUUAUUU
19
3092





CCR5-3668
+
UCUGGUCUGAAGGUUUAUUU
20
3093





CCR5-3669
+
CUCUGGUCUGAAGGUUUAUUU
21
3094





CCR5-3670
+
UCUCUGGUCUGAAGGUUUAUUU
22
3095





CCR5-3671
+
AUCUCUGGUCUGAAGGUUUAUUU
23
3096





CCR5-3672
+
GAUCUCUGGUCUGAAGGUUUAUUU
24
3097





CCR5-3673
+
UCUGCAAAUCUUUCUUUU
18
3098





CCR5-3674
+
CUCUGCAAAUCUUUCUUUU
19
3099





CCR5-3675
+
UCUCUGCAAAUCUUUCUUUU
20
3100





CCR5-3676
+
CUCUCUGCAAAUCUUUCUUUU
21
3101





CCR5-3677
+
UCUCUCUGCAAAUCUUUCUUUU
22
3102





CCR5-3678
+
AUCUCUCUGCAAAUCUUUCUUUU
23
3103





CCR5-3679
+
CAUCUCUCUGCAAAUCUUUCUUUU
24
3104





CCR5-3680

GGGGAGAGUGGAGAAAAA
18
3105





CCR5-3681

CGGGGAGAGUGGAGAAAAA
19
3106





CCR5-2905

ACGGGGAGAGUGGAGAAAAA
20
3107





CCR5-3682

UACGGGGAGAGUGGAGAAAAA
21
3108





CCR5-3683

AUACGGGGAGAGUGGAGAAAAA
22
3109





CCR5-3684

GAUACGGGGAGAGUGGAGAAAAA
23
3110





CCR5-3685

GGAUACGGGGAGAGUGGAGAAAAA
24
3111





CCR5-3686

CGGGGAGAGUGGAGAAAA
18
3112





CCR5-3687

ACGGGGAGAGUGGAGAAAA
19
3113





CCR5-2906

UACGGGGAGAGUGGAGAAAA
20
3114





CCR5-3688

AUACGGGGAGAGUGGAGAAAA
21
3115





CCR5-3689

GAUACGGGGAGAGUGGAGAAAA
22
3116





CCR5-3690

GGAUACGGGGAGAGUGGAGAAAA
23
3117





CCR5-3691

GGGAUACGGGGAGAGUGGAGAAAA
24
3118





CCR5-3692

ACGGGGAGAGUGGAGAAA
18
3119





CCR5-3693

UACGGGGAGAGUGGAGAAA
19
3120





CCR5-3694

AUACGGGGAGAGUGGAGAAA
20
3121





CCR5-3695

GAUACGGGGAGAGUGGAGAAA
21
3122





CCR5-3696

GGAUACGGGGAGAGUGGAGAAA
22
3123





CCR5-3697

GGGAUACGGGGAGAGUGGAGAAA
23
3124





CCR5-3698

GGGGAUACGGGGAGAGUGGAGAAA
24
3125





CCR5-3699

UUUUAAGCUCAACUUAAA
18
3126





CCR5-3700

AUUUUAAGCUCAACUUAAA
19
3127





CCR5-3701

UAUUUUAAGCUCAACUUAAA
20
3128





CCR5-3702

UUAUUUUAAGCUCAACUUAAA
21
3129





CCR5-3703

CUUAUUUUAAGCUCAACUUAAA
22
3130





CCR5-3704

GCUUAUUUUAAGCUCAACUUAAA
23
3131





CCR5-3705

AGCUUAUUUUAAGCUCAACUUAAA
24
3132





CCR5-3706

UGAGUGAAAGACUUUAAA
18
3133





CCR5-3707

GUGAGUGAAAGACUUUAAA
19
3134





CCR5-2909

UGUGAGUGAAAGACUUUAAA
20
3135





CCR5-3708

UUGUGAGUGAAAGACUUUAAA
21
3136





CCR5-3709

AUUGUGAGUGAAAGACUUUAAA
22
3137





CCR5-3710

GAUUGUGAGUGAAAGACUUUAAA
23
3138





CCR5-3711

UGAUUGUGAGUGAAAGACUUUAAA
24
3139





CCR5-3712

ACAAUCCUUACCUCUCAA
18
3140





CCR5-3713

AACAAUCCUUACCUCUCAA
19
3141





CCR5-3714

UAACAAUCCUUACCUCUCAA
20
3142





CCR5-3715

CUAACAAUCCUUACCUCUCAA
21
3143





CCR5-3716

ACUAACAAUCCUUACCUCUCAA
22
3144





CCR5-3717

AACUAACAAUCCUUACCUCUCAA
23
3145





CCR5-3718

UAACUAACAAUCCUUACCUCUCAA
24
3146





CCR5-3719

AACUCCACCCUCCUUCAA
18
3147





CCR5-3720

UAACUCCACCCUCCUUCAA
19
3148





CCR5-3721

UUAACUCCACCCUCCUUCAA
20
3149





CCR5-3722

UUUAACUCCACCCUCCUUCAA
21
3150





CCR5-3723

AUUUAACUCCACCCUCCUUCAA
22
3151





CCR5-3724

GAUUUAACUCCACCCUCCUUCAA
23
3152





CCR5-3725

UGAUUUAACUCCACCCUCCUUCAA
24
3153





CCR5-3726

GUGAGUGAAAGACUUUAA
18
3154





CCR5-3727

UGUGAGUGAAAGACUUUAA
19
3155





CCR5-2913

UUGUGAGUGAAAGACUUUAA
20
3156





CCR5-3728

AUUGUGAGUGAAAGACUUUAA
21
3157





CCR5-3729

GAUUGUGAGUGAAAGACUUUAA
22
3158





CCR5-3730

UGAUUGUGAGUGAAAGACUUUAA
23
3159





CCR5-3731

AUGAUUGUGAGUGAAAGACUUUAA
24
3160





CCR5-3732

GACUUUACAGGAAACCCA
18
3161





CCR5-3733

AGACUUUACAGGAAACCCA
19
3162





CCR5-3734

AAGACUUUACAGGAAACCCA
20
3163





CCR5-3735

AAAGACUUUACAGGAAACCCA
21
3164





CCR5-3736

AAAAGACUUUACAGGAAACCCA
22
3165





CCR5-3737

UAAAAGACUUUACAGGAAACCCA
23
3166





CCR5-3738

GUAAAAGACUUUACAGGAAACCCA
24
3167





CCR5-3739

CAAAAACAAAAUAAUCCA
18
3168





CCR5-3740

ACAAAAACAAAAUAAUCCA
19
3169





CCR5-3741

AACAAAAACAAAAUAAUCCA
20
3170





CCR5-3742

GAACAAAAACAAAAUAAUCCA
21
3171





CCR5-3743

AGAACAAAAACAAAAUAAUCCA
22
3172





CCR5-3744

GAGAACAAAAACAAAAUAAUCCA
23
3173





CCR5-3745

AGAGAACAAAAACAAAAUAAUCCA
24
3174





CCR5-3746

AGAACUAAACCCUCUCCA
18
3175





CCR5-3747

GAGAACUAAACCCUCUCCA
19
3176





CCR5-3748

GGAGAACUAAACCCUCUCCA
20
3177





CCR5-3749

AGGAGAACUAAACCCUCUCCA
21
3178





CCR5-3750

AAGGAGAACUAAACCCUCUCCA
22
3179





CCR5-3751

UAAGGAGAACUAAACCCUCUCCA
23
3180





CCR5-3752

CUAAGGAGAACUAAACCCUCUCCA
24
3181





CCR5-3753

UGUGUAGUGGGAUGAGCA
18
3182





CCR5-3754

CUGUGUAGUGGGAUGAGCA
19
3183





CCR5-3755

UCUGUGUAGUGGGAUGAGCA
20
3184





CCR5-3756

UUCUGUGUAGUGGGAUGAGCA
21
3185





CCR5-3757

AUUCUGUGUAGUGGGAUGAGCA
22
3186





CCR5-3758

GAUUCUGUGUAGUGGGAUGAGCA
23
3187





CCR5-3759

AGAUUCUGUGUAGUGGGAUGAGCA
24
3188





CCR5-3760

UCAAAAGAAAGAUUUGCA
18
3189





CCR5-3761

CUCAAAAGAAAGAUUUGCA
19
3190





CCR5-3762

UCUCAAAAGAAAGAUUUGCA
20
3191





CCR5-3763

CUCUCAAAAGAAAGAUUUGCA
21
3192





CCR5-3764

CCUCUCAAAAGAAAGAUUUGCA
22
3193





CCR5-3765

ACCUCUCAAAAGAAAGAUUUGCA
23
3194





CCR5-3766

UACCUCUCAAAAGAAAGAUUUGCA
24
3195





CCR5-3767

AUAGGGGAUACGGGGAGA
18
3196





CCR5-3768

GAUAGGGGAUACGGGGAGA
19
3197





CCR5-3769

GGAUAGGGGAUACGGGGAGA
20
3198





CCR5-3770

GGGAUAGGGGAUACGGGGAGA
21
3199





CCR5-3771

UGGGAUAGGGGAUACGGGGAGA
22
3200





CCR5-3772

GUGGGAUAGGGGAUACGGGGAGA
23
3201





CCR5-3773

GGUGGGAUAGGGGAUACGGGGAGA
24
3202





CCR5-3774

GUGGGGGUUGGGGUGGGA
18
3203





CCR5-3775

UGUGGGGGUUGGGGUGGGA
19
3204





CCR5-3776

GUGUGGGGGUUGGGGUGGGA
20
3205





CCR5-3777

UGUGUGGGGGUUGGGGUGGGA
21
3206





CCR5-3778

CUGUGUGGGGGUUGGGGUGGGA
22
3207





CCR5-3779

UCUGUGUGGGGGUUGGGGUGGGA
23
3208





CCR5-3780

AUCUGUGUGGGGGUUGGGGUGGGA
24
3209





CCR5-3781

UACAAAACAUGAUUGUGA
18
3210





CCR5-3782

AUACAAAACAUGAUUGUGA
19
3211





CCR5-3783

GAUACAAAACAUGAUUGUGA
20
3212





CCR5-3784

AGAUACAAAACAUGAUUGUGA
21
3213





CCR5-3785

AAGAUACAAAACAUGAUUGUGA
22
3214





CCR5-3786

AAAGAUACAAAACAUGAUUGUGA
23
3215





CCR5-3787

CAAAGAUACAAAACAUGAUUGUGA
24
3216





CCR5-3788

AAUAUAAUCUUUAAGAUA
18
3217





CCR5-3789

AAAUAUAAUCUUUAAGAUA
19
3218





CCR5-2922

AAAAUAUAAUCUUUAAGAUA
20
3219





CCR5-3790

UAAAAUAUAAUCUUUAAGAUA
21
3220





CCR5-3791

UUAAAAUAUAAUCUUUAAGAUA
22
3221





CCR5-3792

CUUAAAAUAUAAUCUUUAAGAUA
23
3222





CCR5-3793

UCUUAAAAUAUAAUCUUUAAGAUA
24
3223





CCR5-3794

GGGGUGGGAUAGGGGAUA
18
3224





CCR5-3795

UGGGGUGGGAUAGGGGAUA
19
3225





CCR5-2923

UUGGGGUGGGAUAGGGGAUA
20
3226





CCR5-3796

GUUGGGGUGGGAUAGGGGAUA
21
3227





CCR5-3797

GGUUGGGGUGGGAUAGGGGAUA
22
3228





CCR5-3798

GGGUUGGGGUGGGAUAGGGGAUA
23
3229





CCR5-3799

GGGGUUGGGGUGGGAUAGGGGAUA
24
3230





CCR5-3800

AAAUCUUAUCUUCUGCUA
18
3231





CCR5-3801

GAAAUCUUAUCUUCUGCUA
19
3232





CCR5-2925

UGAAAUCUUAUCUUCUGCUA
20
3233





CCR5-3802

UUGAAAUCUUAUCUUCUGCUA
21
3234





CCR5-3803

CUUGAAAUCUUAUCUUCUGCUA
22
3235





CCR5-3804

UCUUGAAAUCUUAUCUUCUGCUA
23
3236





CCR5-3805

AUCUUGAAAUCUUAUCUUCUGCUA
24
3237





CCR5-3806

UCUAACAGAUUCUGUGUA
18
3238





CCR5-3807

UUCUAACAGAUUCUGUGUA
19
3239





CCR5-3808

UUUCUAACAGAUUCUGUGUA
20
3240





CCR5-3809

UUUUCUAACAGAUUCUGUGUA
21
3241





CCR5-3810

AUUUUCUAACAGAUUCUGUGUA
22
3242





CCR5-3811

UAUUUUCUAACAGAUUCUGUGUA
23
3243





CCR5-3812

AUAUUUUCUAACAGAUUCUGUGUA
24
3244





CCR5-3813

GAUGAGUAAAAGACUUUA
18
3245





CCR5-3814

AGAUGAGUAAAAGACUUUA
19
3246





CCR5-3815

GAGAUGAGUAAAAGACUUUA
20
3247





CCR5-3816

UGAGAUGAGUAAAAGACUUUA
21
3248





CCR5-3817

CUGAGAUGAGUAAAAGACUUUA
22
3249





CCR5-3818

UCUGAGAUGAGUAAAAGACUUUA
23
3250





CCR5-3819

UUCUGAGAUGAGUAAAAGACUUUA
24
3251





CCR5-3820

UGUGAGUGAAAGACUUUA
18
3252





CCR5-3821

UUGUGAGUGAAAGACUUUA
19
3253





CCR5-3822

AUUGUGAGUGAAAGACUUUA
20
3254





CCR5-3823

GAUUGUGAGUGAAAGACUUUA
21
3255





CCR5-3824

UGAUUGUGAGUGAAAGACUUUA
22
3256





CCR5-3825

AUGAUUGUGAGUGAAAGACUUUA
23
3257





CCR5-3826

CAUGAUUGUGAGUGAAAGACUUUA
24
3258





CCR5-3827

GUAAAUAAACCUUCAGAC
18
3259





CCR5-3828

CGUAAAUAAACCUUCAGAC
19
3260





CCR5-3829

CCGUAAAUAAACCUUCAGAC
20
3261





CCR5-3830

CCCGUAAAUAAACCUUCAGAC
21
3262





CCR5-3831

GCCCGUAAAUAAACCUUCAGAC
22
3263





CCR5-3832

AGCCCGUAAAUAAACCUUCAGAC
23
3264





CCR5-3833

AAGCCCGUAAAUAAACCUUCAGAC
24
3265





CCR5-3834

GGGUGGGAUAGGGGAUAC
18
3266





CCR5-3835

GGGGUGGGAUAGGGGAUAC
19
3267





CCR5-2934

UGGGGUGGGAUAGGGGAUAC
20
3268





CCR5-3836

UUGGGGUGGGAUAGGGGAUAC
21
3269





CCR5-3837

GUUGGGGUGGGAUAGGGGAUAC
22
3270





CCR5-3838

GGUUGGGGUGGGAUAGGGGAUAC
23
3271





CCR5-3839

GGGUUGGGGUGGGAUAGGGGAUAC
24
3272





CCR5-3840

AGACAUCCGUUCCCCUAC
18
3273





CCR5-3841

GAGACAUCCGUUCCCCUAC
19
3274





CCR5-3842

UGAGACAUCCGUUCCCCUAC
20
3275





CCR5-3843

CUGAGACAUCCGUUCCCCUAC
21
3276





CCR5-3844

GCUGAGACAUCCGUUCCCCUAC
22
3277





CCR5-3845

AGCUGAGACAUCCGUUCCCCUAC
23
3278





CCR5-3846

GAGCUGAGACAUCCGUUCCCCUAC
24
3279





CCR5-3847

AUGAGUAAAAGACUUUAC
18
3280





CCR5-3848

GAUGAGUAAAAGACUUUAC
19
3281





CCR5-2936

AGAUGAGUAAAAGACUUUAC
20
3282





CCR5-3849

GAGAUGAGUAAAAGACUUUAC
21
3283





CCR5-3850

UGAGAUGAGUAAAAGACUUUAC
22
3284





CCR5-3851

CUGAGAUGAGUAAAAGACUUUAC
23
3285





CCR5-3852

UCUGAGAUGAGUAAAAGACUUUAC
24
3286





CCR5-3853

UUGCACAGCUCAUCUGGC
18
3287





CCR5-3854

UUUGCACAGCUCAUCUGGC
19
3288





CCR5-3855

AUUUGCACAGCUCAUCUGGC
20
3289





CCR5-3856

GAUUUGCACAGCUCAUCUGGC
21
3290





CCR5-3857

UGAUUUGCACAGCUCAUCUGGC
22
3291





CCR5-3858

UUGAUUUGCACAGCUCAUCUGGC
23
3292





CCR5-3859

AUUGAUUUGCACAGCUCAUCUGGC
24
3293





CCR5-3860

UGAGUCUUAGCUGAAAUC
18
3294





CCR5-3861

AUGAGUCUUAGCUGAAAUC
19
3295





CCR5-3862

GAUGAGUCUUAGCUGAAAUC
20
3296





CCR5-3863

AGAUGAGUCUUAGCUGAAAUC
21
3297





CCR5-3864

GAGAUGAGUCUUAGCUGAAAUC
22
3298





CCR5-3865

AGAGAUGAGUCUUAGCUGAAAUC
23
3299





CCR5-3866

GAGAGAUGAGUCUUAGCUGAAAUC
24
3300





CCR5-3867

UAAGCUCAACUUAAAAAG
18
3301





CCR5-3868

UUAAGCUCAACUUAAAAAG
19
3302





CCR5-3869

UUUAAGCUCAACUUAAAAAG
20
3303





CCR5-3870

UUUUAAGCUCAACUUAAAAAG
21
3304





CCR5-3871

AUUUUAAGCUCAACUUAAAAAG
22
3305





CCR5-3872

UAUUUUAAGCUCAACUUAAAAAG
23
3306





CCR5-3873

UUAUUUUAAGCUCAACUUAAAAAG
24
3307





CCR5-3874

AUCUUAUCUUCUGCUAAG
18
3308





CCR5-3875

AAUCUUAUCUUCUGCUAAG
19
3309





CCR5-3876

AAAUCUUAUCUUCUGCUAAG
20
3310





CCR5-3877

GAAAUCUUAUCUUCUGCUAAG
21
3311





CCR5-3878

UGAAAUCUUAUCUUCUGCUAAG
22
3312





CCR5-3879

UUGAAAUCUUAUCUUCUGCUAAG
23
3313





CCR5-3880

CUUGAAAUCUUAUCUUCUGCUAAG
24
3314





CCR5-3881

CACAGCUCAUCUGGCCAG
18
3315





CCR5-3882

GCACAGCUCAUCUGGCCAG
19
3316





CCR5-3883

UGCACAGCUCAUCUGGCCAG
20
3317





CCR5-3884

UUGCACAGCUCAUCUGGCCAG
21
3318





CCR5-3885

UUUGCACAGCUCAUCUGGCCAG
22
3319





CCR5-3886

AUUUGCACAGCUCAUCUGGCCAG
23
3320





CCR5-3887

GAUUUGCACAGCUCAUCUGGCCAG
24
3321





CCR5-3888

CUCAUCUGGCCAGAAGAG
18
3322





CCR5-3889

GCUCAUCUGGCCAGAAGAG
19
3323





CCR5-3890

AGCUCAUCUGGCCAGAAGAG
20
3324





CCR5-3891

CAGCUCAUCUGGCCAGAAGAG
21
3325





CCR5-3892

ACAGCUCAUCUGGCCAGAAGAG
22
3326





CCR5-3893

CACAGCUCAUCUGGCCAGAAGAG
23
3327





CCR5-3894

GCACAGCUCAUCUGGCCAGAAGAG
24
3328





CCR5-3895

UAGGGGAUACGGGGAGAG
18
3329





CCR5-3896

AUAGGGGAUACGGGGAGAG
19
3330





CCR5-2819

GAUAGGGGAUACGGGGAGAG
20
3331





CCR5-3897

GGAUAGGGGAUACGGGGAGAG
21
3332





CCR5-3898

GGGAUAGGGGAUACGGGGAGAG
22
3333





CCR5-3899

UGGGAUAGGGGAUACGGGGAGAG
23
3334





CCR5-3900

GUGGGAUAGGGGAUACGGGGAGAG
24
3335





CCR5-3901

UCUGUGUAGUGGGAUGAG
18
3336





CCR5-3902

UUCUGUGUAGUGGGAUGAG
19
3337





CCR5-3903

AUUCUGUGUAGUGGGAUGAG
20
3338





CCR5-3904

GAUUCUGUGUAGUGGGAUGAG
21
3339





CCR5-3905

AGAUUCUGUGUAGUGGGAUGAG
22
3340





CCR5-3906

CAGAUUCUGUGUAGUGGGAUGAG
23
3341





CCR5-3907

ACAGAUUCUGUGUAGUGGGAUGAG
24
3342





CCR5-3908

CAGAGAGAUGAGUCUUAG
18
3343





CCR5-3909

GCAGAGAGAUGAGUCUUAG
19
3344





CCR5-3910

UGCAGAGAGAUGAGUCUUAG
20
3345





CCR5-3911

UUGCAGAGAGAUGAGUCUUAG
21
3346





CCR5-3912

UUUGCAGAGAGAUGAGUCUUAG
22
3347





CCR5-3913

AUUUGCAGAGAGAUGAGUCUUAG
23
3348





CCR5-3914

GAUUUGCAGAGAGAUGAGUCUUAG
24
3349





CCR5-3915

GGUGGGAUAGGGGAUACG
18
3350





CCR5-3916

GGGUGGGAUAGGGGAUACG
19
3351





CCR5-2951

GGGGUGGGAUAGGGGAUACG
20
3352





CCR5-3917

UGGGGUGGGAUAGGGGAUACG
21
3353





CCR5-3918

UUGGGGUGGGAUAGGGGAUACG
22
3354





CCR5-3919

GUUGGGGUGGGAUAGGGGAUACG
23
3355





CCR5-3920

GGUUGGGGUGGGAUAGGGGAUACG
24
3356





CCR5-3921

UGAGCAUCUGUGUGGGGG
18
3357





CCR5-3922

GUGAGCAUCUGUGUGGGGG
19
3358





CCR5-3923

GGUGAGCAUCUGUGUGGGGG
20
3359





CCR5-3924

UGGUGAGCAUCUGUGUGGGGG
21
3360





CCR5-3925

GUGGUGAGCAUCUGUGUGGGGG
22
3361





CCR5-3926

GGUGGUGAGCAUCUGUGUGGGGG
23
3362





CCR5-3927

GGGUGGUGAGCAUCUGUGUGGGGG
24
3363





CCR5-3928

CAGAUUCUGUGUAGUGGG
18
3364





CCR5-3929

ACAGAUUCUGUGUAGUGGG
19
3365





CCR5-3930

AACAGAUUCUGUGUAGUGGG
20
3366





CCR5-3931

UAACAGAUUCUGUGUAGUGGG
21
3367





CCR5-3932

CUAACAGAUUCUGUGUAGUGGG
22
3368





CCR5-3933

UCUAACAGAUUCUGUGUAGUGGG
23
3369





CCR5-3934

UUCUAACAGAUUCUGUGUAGUGGG
24
3370





CCR5-3935

AUCUGUGUGGGGGUUGGG
18
3371





CCR5-3936

CAUCUGUGUGGGGGUUGGG
19
3372





CCR5-3937

GCAUCUGUGUGGGGGUUGGG
20
3373





CCR5-3938

AGCAUCUGUGUGGGGGUUGGG
21
3374





CCR5-3939

GAGCAUCUGUGUGGGGGUUGGG
22
3375





CCR5-3940

UGAGCAUCUGUGUGGGGGUUGGG
23
3376





CCR5-3941

GUGAGCAUCUGUGUGGGGGUUGGG
24
3377





CCR5-3942

AACCUUUUAGCCUUACUG
18
3378





CCR5-3943

UAACCUUUUAGCCUUACUG
19
3379





CCR5-3944

UUAACCUUUUAGCCUUACUG
20
3380





CCR5-3945

CUUAACCUUUUAGCCUUACUG
21
3381





CCR5-3946

UCUUAACCUUUUAGCCUUACUG
22
3382





CCR5-3947

UUCUUAACCUUUUAGCCUUACUG
23
3383





CCR5-3948

UUUCUUAACCUUUUAGCCUUACUG
24
3384





CCR5-3949

GGGGAUACGGGGAGAGUG
18
3385





CCR5-3950

AGGGGAUACGGGGAGAGUG
19
3386





CCR5-3951

UAGGGGAUACGGGGAGAGUG
20
3387





CCR5-3952

AUAGGGGAUACGGGGAGAGUG
21
3388





CCR5-3953

GAUAGGGGAUACGGGGAGAGUG
22
3389





CCR5-3954

GGAUAGGGGAUACGGGGAGAGUG
23
3390





CCR5-3955

GGGAUAGGGGAUACGGGGAGAGUG
24
3391





CCR5-3956

GAACAAUAAUAUUGGGUG
18
3392





CCR5-3957

AGAACAAUAAUAUUGGGUG
19
3393





CCR5-3958

GAGAACAAUAAUAUUGGGUG
20
3394





CCR5-3959

AGAGAACAAUAAUAUUGGGUG
21
3395





CCR5-3960

CAGAGAACAAUAAUAUUGGGUG
22
3396





CCR5-3961

ACAGAGAACAAUAAUAUUGGGUG
23
3397





CCR5-3962

UACAGAGAACAAUAAUAUUGGGUG
24
3398





CCR5-3963

GGGUGGUGAGCAUCUGUG
18
3399





CCR5-3964

UGGGUGGUGAGCAUCUGUG
19
3400





CCR5-2959

UUGGGUGGUGAGCAUCUGUG
20
3401





CCR5-3965

AUUGGGUGGUGAGCAUCUGUG
21
3402





CCR5-3966

UAUUGGGUGGUGAGCAUCUGUG
22
3403





CCR5-3967

AUAUUGGGUGGUGAGCAUCUGUG
23
3404





CCR5-3968

AAUAUUGGGUGGUGAGCAUCUGUG
24
3405





CCR5-3969

UCUCAAAAGAAAGAUUUG
18
3406





CCR5-3970

CUCUCAAAAGAAAGAUUUG
19
3407





CCR5-3971

CCUCUCAAAAGAAAGAUUUG
20
3408





CCR5-3972

ACCUCUCAAAAGAAAGAUUUG
21
3409





CCR5-3973

UACCUCUCAAAAGAAAGAUUUG
22
3410





CCR5-3974

UUACCUCUCAAAAGAAAGAUUUG
23
3411





CCR5-3975

CUUACCUCUCAAAAGAAAGAUUUG
24
3412





CCR5-3976

AAUUUCUUUUACUAAAAU
18
3413





CCR5-3977

UAAUUUCUUUUACUAAAAU
19
3414





CCR5-3978

GUAAUUUCUUUUACUAAAAU
20
3415





CCR5-3979

AGUAAUUUCUUUUACUAAAAU
21
3416





CCR5-3980

UAGUAAUUUCUUUUACUAAAAU
22
3417





CCR5-3981

AUAGUAAUUUCUUUUACUAAAAU
23
3418





CCR5-3982

GAUAGUAAUUUCUUUUACUAAAAU
24
3419





CCR5-3983

AGGGGACACAGGGUUAAU
18
3420





CCR5-3984

AAGGGGACACAGGGUUAAU
19
3421





CCR5-3985

AAAGGGGACACAGGGUUAAU
20
3422





CCR5-3986

AAAAGGGGACACAGGGUUAAU
21
3423





CCR5-3987

AAAAAGGGGACACAGGGUUAAU
22
3424





CCR5-3988

GAAAAAGGGGACACAGGGUUAAU
23
3425





CCR5-3989

AGAAAAAGGGGACACAGGGUUAAU
24
3426





CCR5-3990

AAAUAUAAUCUUUAAGAU
18
3427





CCR5-3991

AAAAUAUAAUCUUUAAGAU
19
3428





CCR5-3992

UAAAAUAUAAUCUUUAAGAU
20
3429





CCR5-3993

UUAAAAUAUAAUCUUUAAGAU
21
3430





CCR5-3994

CUUAAAAUAUAAUCUUUAAGAU
22
3431





CCR5-3995

UCUUAAAAUAUAAUCUUUAAGAU
23
3432





CCR5-3996

AUCUUAAAAUAUAAUCUUUAAGAU
24
3433





CCR5-3997

UGGGGUGGGAUAGGGGAU
18
3434





CCR5-3998

UUGGGGUGGGAUAGGGGAU
19
3435





CCR5-3999

GUUGGGGUGGGAUAGGGGAU
20
3436





CCR5-4000

GGUUGGGGUGGGAUAGGGGAU
21
3437





CCR5-4001

GGGUUGGGGUGGGAUAGGGGAU
22
3438





CCR5-4002

GGGGUUGGGGUGGGAUAGGGGAU
23
3439





CCR5-4003

GGGGGUUGGGGUGGGAUAGGGGAU
24
3440





CCR5-4004

UGGGGGUUGGGGUGGGAU
18
3441





CCR5-4005

GUGGGGGUUGGGGUGGGAU
19
3442





CCR5-2962

UGUGGGGGUUGGGGUGGGAU
20
3443





CCR5-4006

GUGUGGGGGUUGGGGUGGGAU
21
3444





CCR5-4007

UGUGUGGGGGUUGGGGUGGGAU
22
3445





CCR5-4008

CUGUGUGGGGGUUGGGGUGGGAU
23
3446





CCR5-4009

UCUGUGUGGGGGUUGGGGUGGGAU
24
3447





CCR5-4010

GAAAUCUUAUCUUCUGCU
18
3448





CCR5-4011

UGAAAUCUUAUCUUCUGCU
19
3449





CCR5-4012

UUGAAAUCUUAUCUUCUGCU
20
3450





CCR5-4013

CUUGAAAUCUUAUCUUCUGCU
21
3451





CCR5-4014

UCUUGAAAUCUUAUCUUCUGCU
22
3452





CCR5-4015

AUCUUGAAAUCUUAUCUUCUGCU
23
3453





CCR5-4016

AAUCUUGAAAUCUUAUCUUCUGCU
24
3454





CCR5-4017

UAAGGAAAGGGUCACAGU
18
3455





CCR5-4018

AUAAGGAAAGGGUCACAGU
19
3456





CCR5-4019

GAUAAGGAAAGGGUCACAGU
20
3457





CCR5-4020

AGAUAAGGAAAGGGUCACAGU
21
3458





CCR5-4021

AAGAUAAGGAAAGGGUCACAGU
22
3459





CCR5-4022

UAAGAUAAGGAAAGGGUCACAGU
23
3460





CCR5-4023

UUAAGAUAAGGAAAGGGUCACAGU
24
3461





CCR5-4024

AAAACAAAAUAAUCCAGU
18
3462





CCR5-4025

AAAAACAAAAUAAUCCAGU
19
3463





CCR5-4026

CAAAAACAAAAUAAUCCAGU
20
3464





CCR5-4027

ACAAAAACAAAAUAAUCCAGU
21
3465





CCR5-4028

AACAAAAACAAAAUAAUCCAGU
22
3466





CCR5-4029

GAACAAAAACAAAAUAAUCCAGU
23
3467





CCR5-4030

AGAACAAAAACAAAAUAAUCCAGU
24
3468





CCR5-4031

UGGGUGGUGAGCAUCUGU
18
3469





CCR5-4032

UUGGGUGGUGAGCAUCUGU
19
3470





CCR5-4033

AUUGGGUGGUGAGCAUCUGU
20
3471





CCR5-4034

UAUUGGGUGGUGAGCAUCUGU
21
3472





CCR5-4035

AUAUUGGGUGGUGAGCAUCUGU
22
3473





CCR5-4036

AAUAUUGGGUGGUGAGCAUCUGU
23
3474





CCR5-4037

UAAUAUUGGGUGGUGAGCAUCUGU
24
3475





CCR5-4038

UGGCCUGUUAGUUAGCUU
18
3476





CCR5-4039

UUGGCCUGUUAGUUAGCUU
19
3477





CCR5-4040

CUUGGCCUGUUAGUUAGCUU
20
3478





CCR5-4041

GCUUGGCCUGUUAGUUAGCUU
21
3479





CCR5-4042

UGCUUGGCCUGUUAGUUAGCUU
22
3480





CCR5-4043

CUGCUUGGCCUGUUAGUUAGCUU
23
3481





CCR5-4044

GCUGCUUGGCCUGUUAGUUAGCUU
24
3482









Table 6E provides exemplary targeting domains for knocking down the CCR5 gene selected according to the fifth tier parameters. Within the additional 500 bp (e.g., upstream or downstream) of a transcription start site (TSS), e.g., extending to 1 kb upstream and downstream of a TSS and PAM is NNGRRV. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a S. aureus eiCas9 molecule or eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain) to alter the CCR5 gene (e.g., reduce or eliminate CCR5 gene expression, CCR5 protein function, or the level of CCR5 protein). One or more gRNAs may be used to target an eiCas9 to the promoter region of the CCR5 gene.









TABLE 6E







5th Tier











gRNA
DNA

Target Site



Name
Strand
Targeting Domain
Length
SEQ ID NO





CCR5-4208
+
UGGAGGAAAAAGAAAAAA
18
3651





CCR5-4209
+
CUGGAGGAAAAAGAAAAAA
19
3652





CCR5-4210
+
UCUGGAGGAAAAAGAAAAAA
20
3653





CCR5-4211
+
GUCUGGAGGAAAAAGAAAAAA
21
3654





CCR5-4212
+
UGUCUGGAGGAAAAAGAAAAAA
22
3655





CCR5-4213
+
UUGUCUGGAGGAAAAAGAAAAAA
23
3656





CCR5-4214
+
CUUGUCUGGAGGAAAAAGAAAAAA
24
3657





CCR5-4215
+
UCUGGAGGAAAAAGAAAA
18
3658





CCR5-4216
+
GUCUGGAGGAAAAAGAAAA
19
3659





CCR5-4217
+
UGUCUGGAGGAAAAAGAAAA
20
3660





CCR5-4218
+
UUGUCUGGAGGAAAAAGAAAA
21
3661





CCR5-4219
+
CUUGUCUGGAGGAAAAAGAAAA
22
3662





CCR5-4220
+
UCUUGUCUGGAGGAAAAAGAAAA
23
3663





CCR5-4221
+
CUCUUGUCUGGAGGAAAAAGAAAA
24
3664





CCR5-4222
+
CCUCUUGUCUGGAGGAAA
18
3665





CCR5-4223
+
CCCUCUUGUCUGGAGGAAA
19
3666





CCR5-4224
+
UCCCUCUUGUCUGGAGGAAA
20
3667





CCR5-4225
+
UUCCCUCUUGUCUGGAGGAAA
21
3668





CCR5-4226
+
CUUCCCUCUUGUCUGGAGGAAA
22
3669





CCR5-4227
+
GCUUCCCUCUUGUCUGGAGGAAA
23
3670





CCR5-4228
+
GGCUUCCCUCUUGUCUGGAGGAAA
24
3671





CCR5-4229
+
GAUGUCACCAACCGCCAA
18
3672





CCR5-4230
+
AGAUGUCACCAACCGCCAA
19
3673





CCR5-4231
+
CAGAUGUCACCAACCGCCAA
20
3674





CCR5-4232
+
UCAGAUGUCACCAACCGCCAA
21
3675





CCR5-4233
+
UUCAGAUGUCACCAACCGCCAA
22
3676





CCR5-4234
+
UUUCAGAUGUCACCAACCGCCAA
23
3677





CCR5-4235
+
UUUUCAGAUGUCACCAACCGCCAA
24
3678





CCR5-4236
+
CAAGGUCACGGAAGCCCA
18
3679





CCR5-4237
+
CCAAGGUCACGGAAGCCCA
19
3680





CCR5-4238
+
GCCAAGGUCACGGAAGCCCA
20
3681





CCR5-4239
+
AGCCAAGGUCACGGAAGCCCA
21
3682





CCR5-4240
+
GAGCCAAGGUCACGGAAGCCCA
22
3683





CCR5-4241
+
AGAGCCAAGGUCACGGAAGCCCA
23
3684





CCR5-4242
+
UAGAGCCAAGGUCACGGAAGCCCA
24
3685





CCR5-4243
+
AUUCUAGAGCCAAGGUCA
18
3686





CCR5-4244
+
UAUUCUAGAGCCAAGGUCA
19
3687





CCR5-3069
+
UUAUUCUAGAGCCAAGGUCA
20
3688





CCR5-4245
+
UUUAUUCUAGAGCCAAGGUCA
21
3689





CCR5-4246
+
UUUUAUUCUAGAGCCAAGGUCA
22
3690





CCR5-4247
+
UUUUUAUUCUAGAGCCAAGGUCA
23
3691





CCR5-4248
+
CUUUUUAUUCUAGAGCCAAGGUCA
24
3692





CCR5-4249
+
CCUGGGUCCAGAAAAAGA
18
3693





CCR5-4250
+
UCCUGGGUCCAGAAAAAGA
19
3694





CCR5-3071
+
AUCCUGGGUCCAGAAAAAGA
20
3695





CCR5-4251
+
GAUCCUGGGUCCAGAAAAAGA
21
3696





CCR5-4252
+
AGAUCCUGGGUCCAGAAAAAGA
22
3697





CCR5-4253
+
AAGAUCCUGGGUCCAGAAAAAGA
23
3698





CCR5-4254
+
UAAGAUCCUGGGUCCAGAAAAAGA
24
3699





CCR5-4255
+
AACAAAAUAGUGAACAGA
18
3700





CCR5-4256
+
CAACAAAAUAGUGAACAGA
19
3701





CCR5-4257
+
GCAACAAAAUAGUGAACAGA
20
3702





CCR5-4258
+
GGCAACAAAAUAGUGAACAGA
21
3703





CCR5-4259
+
GGGCAACAAAAUAGUGAACAGA
22
3704





CCR5-4260
+
AGGGCAACAAAAUAGUGAACAGA
23
3705





CCR5-4261
+
AAGGGCAACAAAAUAGUGAACAGA
24
3706





CCR5-4262
+
AGAUAGAUUAUAUCUGGA
18
3707





CCR5-4263
+
CAGAUAGAUUAUAUCUGGA
19
3708





CCR5-4264
+
UCAGAUAGAUUAUAUCUGGA
20
3709





CCR5-4265
+
UUCAGAUAGAUUAUAUCUGGA
21
3710





CCR5-4266
+
CUUCAGAUAGAUUAUAUCUGGA
22
3711





CCR5-4267
+
GCUUCAGAUAGAUUAUAUCUGGA
23
3712





CCR5-4268
+
AGCUUCAGAUAGAUUAUAUCUGGA
24
3713





CCR5-4269
+
CUUAGACUAGGCAGCUGA
18
3714





CCR5-4270
+
CCUUAGACUAGGCAGCUGA
19
3715





CCR5-4271
+
ACCUUAGACUAGGCAGCUGA
20
3716





CCR5-4272
+
CACCUUAGACUAGGCAGCUGA
21
3717





CCR5-4273
+
GCACCUUAGACUAGGCAGCUGA
22
3718





CCR5-4274
+
UGCACCUUAGACUAGGCAGCUGA
23
3719





CCR5-4275
+
CUGCACCUUAGACUAGGCAGCUGA
24
3720





CCR5-4276
+
UUGAAGGGCAACAAAAUA
18
3721





CCR5-4277
+
UUUGAAGGGCAACAAAAUA
19
3722





CCR5-4278
+
GUUUGAAGGGCAACAAAAUA
20
3723





CCR5-4279
+
GGUUUGAAGGGCAACAAAAUA
21
3724





CCR5-4280
+
UGGUUUGAAGGGCAACAAAAUA
22
3725





CCR5-4281
+
CUGGUUUGAAGGGCAACAAAAUA
23
3726





CCR5-4282
+
ACUGGUUUGAAGGGCAACAAAAUA
24
3727





CCR5-4283
+
GUAUAUAGUAUAGUCAUA
18
3728





CCR5-4284
+
UGUAUAUAGUAUAGUCAUA
19
3729





CCR5-4285
+
CUGUAUAUAGUAUAGUCAUA
20
3730





CCR5-4286
+
ACUGUAUAUAGUAUAGUCAUA
21
3731





CCR5-4287
+
GACUGUAUAUAGUAUAGUCAUA
22
3732





CCR5-4288
+
UGACUGUAUAUAGUAUAGUCAUA
23
3733





CCR5-4289
+
AUGACUGUAUAUAGUAUAGUCAUA
24
3734





CCR5-4290
+
CAUGAAACUGAUAUAUUA
18
3735





CCR5-4291
+
CCAUGAAACUGAUAUAUUA
19
3736





CCR5-4292
+
GCCAUGAAACUGAUAUAUUA
20
3737





CCR5-4293
+
UGCCAUGAAACUGAUAUAUUA
21
3738





CCR5-4294
+
GUGCCAUGAAACUGAUAUAUUA
22
3739





CCR5-4295
+
UGUGCCAUGAAACUGAUAUAUUA
23
3740





CCR5-4296
+
CUGUGCCAUGAAACUGAUAUAUUA
24
3741





CCR5-4297
+
AGUAUAGUCAUAAAGAAC
18
3742





CCR5-4298
+
UAGUAUAGUCAUAAAGAAC
19
3743





CCR5-4299
+
AUAGUAUAGUCAUAAAGAAC
20
3744





CCR5-4300
+
UAUAGUAUAGUCAUAAAGAAC
21
3745





CCR5-4301
+
AUAUAGUAUAGUCAUAAAGAAC
22
3746





CCR5-4302
+
UAUAUAGUAUAGUCAUAAAGAAC
23
3747





CCR5-4303
+
GUAUAUAGUAUAGUCAUAAAGAAC
24
3748





CCR5-4304
+
CAGCUCUGCUGACAAUAC
18
3749





CCR5-4305
+
UCAGCUCUGCUGACAAUAC
19
3750





CCR5-4306
+
CUCAGCUCUGCUGACAAUAC
20
3751





CCR5-4307
+
UCUCAGCUCUGCUGACAAUAC
21
3752





CCR5-4308
+
UUCUCAGCUCUGCUGACAAUAC
22
3753





CCR5-4309
+
CUUCUCAGCUCUGCUGACAAUAC
23
3754





CCR5-4310
+
UCUUCUCAGCUCUGCUGACAAUAC
24
3755





CCR5-4311
+
AACCUGUUUAGCUCACCC
18
3756





CCR5-4312
+
AAACCUGUUUAGCUCACCC
19
3757





CCR5-4313
+
GAAACCUGUUUAGCUCACCC
20
3758





CCR5-4314
+
GGAAACCUGUUUAGCUCACCC
21
3759





CCR5-4315
+
GGGAAACCUGUUUAGCUCACCC
22
3760





CCR5-4316
+
UGGGAAACCUGUUUAGCUCACCC
23
3761





CCR5-4317
+
AUGGGAAACCUGUUUAGCUCACCC
24
3762





CCR5-4318
+
GAGUUGUCAUACAUACCC
18
3763





CCR5-4319
+
AGAGUUGUCAUACAUACCC
19
3764





CCR5-4320
+
AAGAGUUGUCAUACAUACCC
20
3765





CCR5-4321
+
UAAGAGUUGUCAUACAUACCC
21
3766





CCR5-4322
+
UUAAGAGUUGUCAUACAUACCC
22
3767





CCR5-4323
+
AUUAAGAGUUGUCAUACAUACCC
23
3768





CCR5-4324
+
AAUUAAGAGUUGUCAUACAUACCC
24
3769





CCR5-4325
+
GCAGCUGAGAGAAGCCCC
18
3770





CCR5-4326
+
GGCAGCUGAGAGAAGCCCC
19
3771





CCR5-4327
+
AGGCAGCUGAGAGAAGCCCC
20
3772





CCR5-4328
+
UAGGCAGCUGAGAGAAGCCCC
21
3773





CCR5-4329
+
CUAGGCAGCUGAGAGAAGCCCC
22
3774





CCR5-4330
+
ACUAGGCAGCUGAGAGAAGCCCC
23
3775





CCR5-4331
+
GACUAGGCAGCUGAGAGAAGCCCC
24
3776





CCR5-4332
+
GCCAAGGUCACGGAAGCC
18
3777





CCR5-4333
+
AGCCAAGGUCACGGAAGCC
19
3778





CCR5-4334
+
GAGCCAAGGUCACGGAAGCC
20
3779





CCR5-4335
+
AGAGCCAAGGUCACGGAAGCC
21
3780





CCR5-4336
+
UAGAGCCAAGGUCACGGAAGCC
22
3781





CCR5-4337
+
CUAGAGCCAAGGUCACGGAAGCC
23
3782





CCR5-4338
+
UCUAGAGCCAAGGUCACGGAAGCC
24
3783





CCR5-4339
+
CAGAUGUCACCAACCGCC
18
3784





CCR5-4340
+
UCAGAUGUCACCAACCGCC
19
3785





CCR5-4341
+
UUCAGAUGUCACCAACCGCC
20
3786





CCR5-4342
+
UUUCAGAUGUCACCAACCGCC
21
3787





CCR5-4343
+
UUUUCAGAUGUCACCAACCGCC
22
3788





CCR5-4344
+
AUUUUCAGAUGUCACCAACCGCC
23
3789





CCR5-4345
+
GAUUUUCAGAUGUCACCAACCGCC
24
3790





CCR5-4346
+
UUAUAUACUAACUGUGCC
18
3791





CCR5-4347
+
AUUAUAUACUAACUGUGCC
19
3792





CCR5-4348
+
AAUUAUAUACUAACUGUGCC
20
3793





CCR5-4349
+
GAAUUAUAUACUAACUGUGCC
21
3794





CCR5-4350
+
AGAAUUAUAUACUAACUGUGCC
22
3795





CCR5-4351
+
AAGAAUUAUAUACUAACUGUGCC
23
3796





CCR5-4352
+
AAAGAAUUAUAUACUAACUGUGCC
24
3797





CCR5-4353
+
CAGAGGGCAUCUUGUGGC
18
3798





CCR5-4354
+
CCAGAGGGCAUCUUGUGGC
19
3799





CCR5-4355
+
CCCAGAGGGCAUCUUGUGGC
20
3800





CCR5-4356
+
GCCCAGAGGGCAUCUUGUGGC
21
3801





CCR5-4357
+
AGCCCAGAGGGCAUCUUGUGGC
22
3802





CCR5-4358
+
AAGCCCAGAGGGCAUCUUGUGGC
23
3803





CCR5-4359
+
GAAGCCCAGAGGGCAUCUUGUGGC
24
3804





CCR5-4360
+
UAUUCUAGAGCCAAGGUC
18
3805





CCR5-4361
+
UUAUUCUAGAGCCAAGGUC
19
3806





CCR5-4362
+
UUUAUUCUAGAGCCAAGGUC
20
3807





CCR5-4363
+
UUUUAUUCUAGAGCCAAGGUC
21
3808





CCR5-4364
+
UUUUUAUUCUAGAGCCAAGGUC
22
3809





CCR5-4365
+
CUUUUUAUUCUAGAGCCAAGGUC
23
3810





CCR5-4366
+
GCUUUUUAUUCUAGAGCCAAGGUC
24
3811





CCR5-4367
+
CCACUAAGAUCCUGGGUC
18
3812





CCR5-4368
+
CCCACUAAGAUCCUGGGUC
19
3813





CCR5-4369
+
CCCCACUAAGAUCCUGGGUC
20
3814





CCR5-4370
+
UCCCCACUAAGAUCCUGGGUC
21
3815





CCR5-4371
+
AUCCCCACUAAGAUCCUGGGUC
22
3816





CCR5-4372
+
AAUCCCCACUAAGAUCCUGGGUC
23
3817





CCR5-4373
+
AAAUCCCCACUAAGAUCCUGGGUC
24
3818





CCR5-4374
+
UUAGGCUUCCCUCUUGUC
18
3819





CCR5-4375
+
UUUAGGCUUCCCUCUUGUC
19
3820





CCR5-3097
+
UUUUAGGCUUCCCUCUUGUC
20
3821





CCR5-4376
+
UUUUUAGGCUUCCCUCUUGUC
21
3822





CCR5-4377
+
AUUUUUAGGCUUCCCUCUUGUC
22
3823





CCR5-4378
+
CAUUUUUAGGCUUCCCUCUUGUC
23
3824





CCR5-4379
+
CCAUUUUUAGGCUUCCCUCUUGUC
24
3825





CCR5-4380
+
AGCCAAAGCUUUUUAUUC
18
3826





CCR5-4381
+
AAGCCAAAGCUUUUUAUUC
19
3827





CCR5-4382
+
CAAGCCAAAGCUUUUUAUUC
20
3828





CCR5-4383
+
ACAAGCCAAAGCUUUUUAUUC
21
3829





CCR5-4384
+
CACAAGCCAAAGCUUUUUAUUC
22
3830





CCR5-4385
+
UCACAAGCCAAAGCUUUUUAUUC
23
3831





CCR5-4386
+
AUCACAAGCCAAAGCUUUUUAUUC
24
3832





CCR5-4387
+
UCCUGGGUCCAGAAAAAG
18
3833





CCR5-4388
+
AUCCUGGGUCCAGAAAAAG
19
3834





CCR5-4389
+
GAUCCUGGGUCCAGAAAAAG
20
3835





CCR5-4390
+
AGAUCCUGGGUCCAGAAAAAG
21
3836





CCR5-4391
+
AAGAUCCUGGGUCCAGAAAAAG
22
3837





CCR5-4392
+
UAAGAUCCUGGGUCCAGAAAAAG
23
3838





CCR5-4393
+
CUAAGAUCCUGGGUCCAGAAAAAG
24
3839





CCR5-4394
+
GCACCUUAGACUAGGCAG
18
3840





CCR5-4395
+
UGCACCUUAGACUAGGCAG
19
3841





CCR5-4396
+
CUGCACCUUAGACUAGGCAG
20
3842





CCR5-4397
+
CCUGCACCUUAGACUAGGCAG
21
3843





CCR5-4398
+
CCCUGCACCUUAGACUAGGCAG
22
3844





CCR5-4399
+
UCCCUGCACCUUAGACUAGGCAG
23
3845





CCR5-4400
+
CUCCCUGCACCUUAGACUAGGCAG
24
3846





CCR5-4401
+
UAAGUUCAGCUGCUCUAG
18
3847





CCR5-4402
+
UUAAGUUCAGCUGCUCUAG
19
3848





CCR5-4403
+
UUUAAGUUCAGCUGCUCUAG
20
3849





CCR5-4404
+
AUUUAAGUUCAGCUGCUCUAG
21
3850





CCR5-4405
+
UAUUUAAGUUCAGCUGCUCUAG
22
3851





CCR5-4406
+
CUAUUUAAGUUCAGCUGCUCUAG
23
3852





CCR5-4407
+
UCUAUUUAAGUUCAGCUGCUCUAG
24
3853





CCR5-4408
+
AUGAAACUGAUAUAUUAG
18
3854





CCR5-4409
+
CAUGAAACUGAUAUAUUAG
19
3855





CCR5-3105
+
CCAUGAAACUGAUAUAUUAG
20
3856





CCR5-4410
+
GCCAUGAAACUGAUAUAUUAG
21
3857





CCR5-4411
+
UGCCAUGAAACUGAUAUAUUAG
22
3858





CCR5-4412
+
GUGCCAUGAAACUGAUAUAUUAG
23
3859





CCR5-4413
+
UGUGCCAUGAAACUGAUAUAUUAG
24
3860





CCR5-4414
+
GGCUUCCCUCUUGUCUGG
18
3861





CCR5-4415
+
AGGCUUCCCUCUUGUCUGG
19
3862





CCR5-3108
+
UAGGCUUCCCUCUUGUCUGG
20
3863





CCR5-4416
+
UUAGGCUUCCCUCUUGUCUGG
21
3864





CCR5-4417
+
UUUAGGCUUCCCUCUUGUCUGG
22
3865





CCR5-4418
+
UUUUAGGCUUCCCUCUUGUCUGG
23
3866





CCR5-4419
+
UUUUUAGGCUUCCCUCUUGUCUGG
24
3867





CCR5-4420
+
CCAUAUACUUAUGUCAUG
18
3868





CCR5-4421
+
ACCAUAUACUUAUGUCAUG
19
3869





CCR5-3111
+
GACCAUAUACUUAUGUCAUG
20
3870





CCR5-4422
+
UGACCAUAUACUUAUGUCAUG
21
3871





CCR5-4423
+
UUGACCAUAUACUUAUGUCAUG
22
3872





CCR5-4424
+
CUUGACCAUAUACUUAUGUCAUG
23
3873





CCR5-4425
+
ACUUGACCAUAUACUUAUGUCAUG
24
3874





CCR5-4426
+
AGGCUUCCCUCUUGUCUG
18
3875





CCR5-4427
+
UAGGCUUCCCUCUUGUCUG
19
3876





CCR5-4428
+
UUAGGCUUCCCUCUUGUCUG
20
3877





CCR5-4429
+
UUUAGGCUUCCCUCUUGUCUG
21
3878





CCR5-4430
+
UUUUAGGCUUCCCUCUUGUCUG
22
3879





CCR5-4431
+
UUUUUAGGCUUCCCUCUUGUCUG
23
3880





CCR5-4432
+
AUUUUUAGGCUUCCCUCUUGUCUG
24
3881





CCR5-4433
+
UAAAUGCUUACUGGUUUG
18
3882





CCR5-4434
+
AUAAAUGCUUACUGGUUUG
19
3883





CCR5-4435
+
CAUAAAUGCUUACUGGUUUG
20
3884





CCR5-4436
+
UCAUAAAUGCUUACUGGUUUG
21
3885





CCR5-4437
+
CUCAUAAAUGCUUACUGGUUUG
22
3886





CCR5-4438
+
CCUCAUAAAUGCUUACUGGUUUG
23
3887





CCR5-4439
+
UCCUCAUAAAUGCUUACUGGUUUG
24
3888





CCR5-4440
+
ACCAUAUACUUAUGUCAU
18
3889





CCR5-4441
+
GACCAUAUACUUAUGUCAU
19
3890





CCR5-4442
+
UGACCAUAUACUUAUGUCAU
20
3891





CCR5-4443
+
UUGACCAUAUACUUAUGUCAU
21
3892





CCR5-4444
+
CUUGACCAUAUACUUAUGUCAU
22
3893





CCR5-4445
+
ACUUGACCAUAUACUUAUGUCAU
23
3894





CCR5-4446
+
AACUUGACCAUAUACUUAUGUCAU
24
3895





CCR5-4447
+
CUGGGUCCAGAAAAAGAU
18
3896





CCR5-4448
+
CCUGGGUCCAGAAAAAGAU
19
3897





CCR5-3122
+
UCCUGGGUCCAGAAAAAGAU
20
3898





CCR5-4449
+
AUCCUGGGUCCAGAAAAAGAU
21
3899





CCR5-4450
+
GAUCCUGGGUCCAGAAAAAGAU
22
3900





CCR5-4451
+
AGAUCCUGGGUCCAGAAAAAGAU
23
3901





CCR5-4452
+
AAGAUCCUGGGUCCAGAAAAAGAU
24
3902





CCR5-4453
+
GCCAUGAAACUGAUAUAU
18
3903





CCR5-4454
+
UGCCAUGAAACUGAUAUAU
19
3904





CCR5-4455
+
GUGCCAUGAAACUGAUAUAU
20
3905





CCR5-4456
+
UGUGCCAUGAAACUGAUAUAU
21
3906





CCR5-4457
+
CUGUGCCAUGAAACUGAUAUAU
22
3907





CCR5-4458
+
ACUGUGCCAUGAAACUGAUAUAU
23
3908





CCR5-4459
+
AACUGUGCCAUGAAACUGAUAUAU
24
3909





CCR5-4460
+
GCUUCAGAUAGAUUAUAU
18
3910





CCR5-4461
+
AGCUUCAGAUAGAUUAUAU
19
3911





CCR5-4462
+
UAGCUUCAGAUAGAUUAUAU
20
3912





CCR5-4463
+
AUAGCUUCAGAUAGAUUAUAU
21
3913





CCR5-4464
+
CAUAGCUUCAGAUAGAUUAUAU
22
3914





CCR5-4465
+
UCAUAGCUUCAGAUAGAUUAUAU
23
3915





CCR5-4466
+
CUCAUAGCUUCAGAUAGAUUAUAU
24
3916





CCR5-4467
+
ACCUUAGACUAGGCAGCU
18
3917





CCR5-4468
+
CACCUUAGACUAGGCAGCU
19
3918





CCR5-4469
+
GCACCUUAGACUAGGCAGCU
20
3919





CCR5-4470
+
UGCACCUUAGACUAGGCAGCU
21
3920





CCR5-4471
+
CUGCACCUUAGACUAGGCAGCU
22
3921





CCR5-4472
+
CCUGCACCUUAGACUAGGCAGCU
23
3922





CCR5-4473
+
CCCUGCACCUUAGACUAGGCAGCU
24
3923





CCR5-4474
+
AGAGGGCAUCUUGUGGCU
18
3924





CCR5-4475
+
CAGAGGGCAUCUUGUGGCU
19
3925





CCR5-3129
+
CCAGAGGGCAUCUUGUGGCU
20
3926





CCR5-4476
+
CCCAGAGGGCAUCUUGUGGCU
21
3927





CCR5-4477
+
GCCCAGAGGGCAUCUUGUGGCU
22
3928





CCR5-4478
+
AGCCCAGAGGGCAUCUUGUGGCU
23
3929





CCR5-4479
+
AAGCCCAGAGGGCAUCUUGUGGCU
24
3930





CCR5-4480
+
GGGUCUCAUUUGCCUUCU
18
3931





CCR5-4481
+
GGGGUCUCAUUUGCCUUCU
19
3932





CCR5-4482
+
UGGGGUCUCAUUUGCCUUCU
20
3933





CCR5-4483
+
UUGGGGUCUCAUUUGCCUUCU
21
3934





CCR5-4484
+
UUUGGGGUCUCAUUUGCCUUCU
22
3935





CCR5-4485
+
GUUUGGGGUCUCAUUUGCCUUCU
23
3936





CCR5-4486
+
UGUUUGGGGUCUCAUUUGCCUUCU
24
3937





CCR5-4487
+
AAAAUCCUCACAUUUUCU
18
3938





CCR5-4488
+
UAAAAUCCUCACAUUUUCU
19
3939





CCR5-4489
+
GUAAAAUCCUCACAUUUUCU
20
3940





CCR5-4490
+
UGUAAAAUCCUCACAUUUUCU
21
3941





CCR5-4491
+
UUGUAAAAUCCUCACAUUUUCU
22
3942





CCR5-4492
+
AUUGUAAAAUCCUCACAUUUUCU
23
3943





CCR5-4493
+
AAUUGUAAAAUCCUCACAUUUUCU
24
3944





CCR5-4494
+
UCAUAAAUGCUUACUGGU
18
3945





CCR5-4495
+
CUCAUAAAUGCUUACUGGU
19
3946





CCR5-4496
+
CCUCAUAAAUGCUUACUGGU
20
3947





CCR5-4497
+
UCCUCAUAAAUGCUUACUGGU
21
3948





CCR5-4498
+
GUCCUCAUAAAUGCUUACUGGU
22
3949





CCR5-4499
+
AGUCCUCAUAAAUGCUUACUGGU
23
3950





CCR5-4500
+
GAGUCCUCAUAAAUGCUUACUGGU
24
3951





CCR5-4501
+
GGCACGUAAUUUUGCUGU
18
3952





CCR5-4502
+
GGGCACGUAAUUUUGCUGU
19
3953





CCR5-4503
+
GGGGCACGUAAUUUUGCUGU
20
3954





CCR5-4504
+
GGGGGCACGUAAUUUUGCUGU
21
3955





CCR5-4505
+
UGGGGGCACGUAAUUUUGCUGU
22
3956





CCR5-4506
+
UUGGGGGCACGUAAUUUUGCUGU
23
3957





CCR5-4507
+
AUUGGGGGCACGUAAUUUUGCUGU
24
3958





CCR5-4508
+
UUUAGGCUUCCCUCUUGU
18
3959





CCR5-4509
+
UUUUAGGCUUCCCUCUUGU
19
3960





CCR5-4510
+
UUUUUAGGCUUCCCUCUUGU
20
3961





CCR5-4511
+
AUUUUUAGGCUUCCCUCUUGU
21
3962





CCR5-4512
+
CAUUUUUAGGCUUCCCUCUUGU
22
3963





CCR5-4513
+
CCAUUUUUAGGCUUCCCUCUUGU
23
3964





CCR5-4514
+
ACCAUUUUUAGGCUUCCCUCUUGU
24
3965





CCR5-4515
+
AAAAGCUCAUUUUUAAUU
18
3966





CCR5-4516
+
GAAAAGCUCAUUUUUAAUU
19
3967





CCR5-4517
+
AGAAAAGCUCAUUUUUAAUU
20
3968





CCR5-4518
+
UAGAAAAGCUCAUUUUUAAUU
21
3969





CCR5-4519
+
CUAGAAAAGCUCAUUUUUAAUU
22
3970





CCR5-4520
+
CCUAGAAAAGCUCAUUUUUAAUU
23
3971





CCR5-4521
+
CCCUAGAAAAGCUCAUUUUUAAUU
24
3972





CCR5-4522
+
ACUUAGACACAACUUCUU
18
3973





CCR5-4523
+
GACUUAGACACAACUUCUU
19
3974





CCR5-4524
+
AGACUUAGACACAACUUCUU
20
3975





CCR5-4525
+
CAGACUUAGACACAACUUCUU
21
3976





CCR5-4526
+
CCAGACUUAGACACAACUUCUU
22
3977





CCR5-4527
+
ACCAGACUUAGACACAACUUCUU
23
3978





CCR5-4528
+
AACCAGACUUAGACACAACUUCUU
24
3979





CCR5-4529

UAUGGUUCAAAAUUAAAA
18
3980





CCR5-4530

UUAUGGUUCAAAAUUAAAA
19
3981





CCR5-4531

UUUAUGGUUCAAAAUUAAAA
20
3982





CCR5-4532

CUUUAUGGUUCAAAAUUAAAA
21
3983





CCR5-4533

UCUUUAUGGUUCAAAAUUAAAA
22
3984





CCR5-4534

UUCUUUAUGGUUCAAAAUUAAAA
23
3985





CCR5-4535

AUUCUUUAUGGUUCAAAAUUAAAA
24
3986





CCR5-4536

UCUUUUUCCUCCAGACAA
18
3987





CCR5-4537

UUCUUUUUCCUCCAGACAA
19
3988





CCR5-4538

UUUCUUUUUCCUCCAGACAA
20
3989





CCR5-4539

UUUUCUUUUUCCUCCAGACAA
21
3990





CCR5-4540

UUUUUCUUUUUCCUCCAGACAA
22
3991





CCR5-4541

UUUUUUCUUUUUCCUCCAGACAA
23
3992





CCR5-4542

CUUUUUUCUUUUUCCUCCAGACAA
24
3993





CCR5-4543

UGAUCUCUAAGAAGGCAA
18
3994





CCR5-4544

GUGAUCUCUAAGAAGGCAA
19
3995





CCR5-4545

UGUGAUCUCUAAGAAGGCAA
20
3996





CCR5-4546

UUGUGAUCUCUAAGAAGGCAA
21
3997





CCR5-4547

CUUGUGAUCUCUAAGAAGGCAA
22
3998





CCR5-4548

GCUUGUGAUCUCUAAGAAGGCAA
23
3999





CCR5-4549

GGCUUGUGAUCUCUAAGAAGGCAA
24
4000





CCR5-4550

ACUCACAGGGUUUAAUAA
18
4001





CCR5-4551

GACUCACAGGGUUUAAUAA
19
4002





CCR5-4552

AGACUCACAGGGUUUAAUAA
20
4003





CCR5-4553

GAGACUCACAGGGUUUAAUAA
21
4004





CCR5-4554

UGAGACUCACAGGGUUUAAUAA
22
4005





CCR5-4555

UUGAGACUCACAGGGUUUAAUAA
23
4006





CCR5-4556

UUUGAGACUCACAGGGUUUAAUAA
24
4007





CCR5-4557

AGAGCUGAGAAGACAGCA
18
4008





CCR5-4558

CAGAGCUGAGAAGACAGCA
19
4009





CCR5-4559

GCAGAGCUGAGAAGACAGCA
20
4010





CCR5-4560

AGCAGAGCUGAGAAGACAGCA
21
4011





CCR5-4561

CAGCAGAGCUGAGAAGACAGCA
22
4012





CCR5-4562

UCAGCAGAGCUGAGAAGACAGCA
23
4013





CCR5-4563

GUCAGCAGAGCUGAGAAGACAGCA
24
4014





CCR5-4564

CUACAAACACAAACUUCA
18
4015





CCR5-4565

ACUACAAACACAAACUUCA
19
4016





CCR5-4566

AACUACAAACACAAACUUCA
20
4017





CCR5-4567

AAACUACAAACACAAACUUCA
21
4018





CCR5-4568

GAAACUACAAACACAAACUUCA
22
4019





CCR5-4569

AGAAACUACAAACACAAACUUCA
23
4020





CCR5-4570

CAGAAACUACAAACACAAACUUCA
24
4021





CCR5-4571

UUUUUCCUCCAGACAAGA
18
4022





CCR5-4572

CUUUUUCCUCCAGACAAGA
19
4023





CCR5-3072

UCUUUUUCCUCCAGACAAGA
20
4024





CCR5-4573

UUCUUUUUCCUCCAGACAAGA
21
4025





CCR5-4574

UUUCUUUUUCCUCCAGACAAGA
22
4026





CCR5-4575

UUUUCUUUUUCCUCCAGACAAGA
23
4027





CCR5-4576

UUUUUCUUUUUCCUCCAGACAAGA
24
4028





CCR5-4577

UACGUGCCCCCAAUCCUA
18
4029





CCR5-4578

UUACGUGCCCCCAAUCCUA
19
4030





CCR5-4579

AUUACGUGCCCCCAAUCCUA
20
4031





CCR5-4580

AAUUACGUGCCCCCAAUCCUA
21
4032





CCR5-4581

AAAUUACGUGCCCCCAAUCCUA
22
4033





CCR5-4582

AAAAUUACGUGCCCCCAAUCCUA
23
4034





CCR5-4583

CAAAAUUACGUGCCCCCAAUCCUA
24
4035





CCR5-4584

UCUGGACCCAGGAUCUUA
18
4036





CCR5-4585

UUCUGGACCCAGGAUCUUA
19
4037





CCR5-4586

UUUCUGGACCCAGGAUCUUA
20
4038





CCR5-4587

UUUUCUGGACCCAGGAUCUUA
21
4039





CCR5-4588

UUUUUCUGGACCCAGGAUCUUA
22
4040





CCR5-4589

CUUUUUCUGGACCCAGGAUCUUA
23
4041





CCR5-4590

UCUUUUUCUGGACCCAGGAUCUUA
24
4042





CCR5-4591

UUUCUUUUUCCUCCAGAC
18
4043





CCR5-4592

UUUUCUUUUUCCUCCAGAC
19
4044





CCR5-4593

UUUUUCUUUUUCCUCCAGAC
20
4045





CCR5-4594

UUUUUUCUUUUUCCUCCAGAC
21
4046





CCR5-4595

CUUUUUUCUUUUUCCUCCAGAC
22
4047





CCR5-4596

UCUUUUUUCUUUUUCCUCCAGAC
23
4048





CCR5-4597

CUCUUUUUUCUUUUUCCUCCAGAC
24
4049





CCR5-4598

GUCAUCUAUGACCUUCCC
18
4050





CCR5-4599

UGUCAUCUAUGACCUUCCC
19
4051





CCR5-3087

UUGUCAUCUAUGACCUUCCC
20
4052





CCR5-4600

GUUGUCAUCUAUGACCUUCCC
21
4053





CCR5-4601

UGUUGUCAUCUAUGACCUUCCC
22
4054





CCR5-4602

CUGUUGUCAUCUAUGACCUUCCC
23
4055





CCR5-4603

GCUGUUGUCAUCUAUGACCUUCCC
24
4056





CCR5-4604

UGUCAUCUAUGACCUUCC
18
4057





CCR5-4605

UUGUCAUCUAUGACCUUCC
19
4058





CCR5-4606

GUUGUCAUCUAUGACCUUCC
20
4059





CCR5-4607

UGUUGUCAUCUAUGACCUUCC
21
4060





CCR5-4608

CUGUUGUCAUCUAUGACCUUCC
22
4061





CCR5-4609

GCUGUUGUCAUCUAUGACCUUCC
23
4062





CCR5-4610

GGCUGUUGUCAUCUAUGACCUUCC
24
4063





CCR5-4611

UAAGAGAAAAUUCUCAGC
18
4064





CCR5-4612

AUAAGAGAAAAUUCUCAGC
19
4065





CCR5-4613

AAUAAGAGAAAAUUCUCAGC
20
4066





CCR5-4614

UAAUAAGAGAAAAUUCUCAGC
21
4067





CCR5-4615

UUAAUAAGAGAAAAUUCUCAGC
22
4068





CCR5-4616

UUUAAUAAGAGAAAAUUCUCAGC
23
4069





CCR5-4617

GUUUAAUAAGAGAAAAUUCUCAGC
24
4070





CCR5-4618

CUGCCUAGUCUAAGGUGC
18
4071





CCR5-4619

GCUGCCUAGUCUAAGGUGC
19
4072





CCR5-3091

AGCUGCCUAGUCUAAGGUGC
20
4073





CCR5-4620

CAGCUGCCUAGUCUAAGGUGC
21
4074





CCR5-4621

UCAGCUGCCUAGUCUAAGGUGC
22
4075





CCR5-4622

CUCAGCUGCCUAGUCUAAGGUGC
23
4076





CCR5-4623

UCUCAGCUGCCUAGUCUAAGGUGC
24
4077





CCR5-4624

GACAGCAGAGAGCUACUC
18
4078





CCR5-4625

AGACAGCAGAGAGCUACUC
19
4079





CCR5-4626

AAGACAGCAGAGAGCUACUC
20
4080





CCR5-4627

GAAGACAGCAGAGAGCUACUC
21
4081





CCR5-4628

AGAAGACAGCAGAGAGCUACUC
22
4082





CCR5-4629

GAGAAGACAGCAGAGAGCUACUC
23
4083





CCR5-4630

UGAGAAGACAGCAGAGAGCUACUC
24
4084





CCR5-4631

AUUAAAAAUGAGCUUUUC
18
4085





CCR5-4632

AAUUAAAAAUGAGCUUUUC
19
4086





CCR5-4633

AAAUUAAAAAUGAGCUUUUC
20
4087





CCR5-4634

AAAAUUAAAAAUGAGCUUUUC
21
4088





CCR5-4635

CAAAAUUAAAAAUGAGCUUUUC
22
4089





CCR5-4636

UCAAAAUUAAAAAUGAGCUUUUC
23
4090





CCR5-4637

UUCAAAAUUAAAAAUGAGCUUUUC
24
4091





CCR5-4638

CUUUUUCCUCCAGACAAG
18
4092





CCR5-4639

UCUUUUUCCUCCAGACAAG
19
4093





CCR5-3101

UUCUUUUUCCUCCAGACAAG
20
4094





CCR5-4640

UUUCUUUUUCCUCCAGACAAG
21
4095





CCR5-4641

UUUUCUUUUUCCUCCAGACAAG
22
4096





CCR5-4642

UUUUUCUUUUUCCUCCAGACAAG
23
4097





CCR5-4643

UUUUUUCUUUUUCCUCCAGACAAG
24
4098





CCR5-4644

GCAGAGCUGAGAAGACAG
18
4099





CCR5-4645

AGCAGAGCUGAGAAGACAG
19
4100





CCR5-4646

CAGCAGAGCUGAGAAGACAG
20
4101





CCR5-4647

UCAGCAGAGCUGAGAAGACAG
21
4102





CCR5-4648

GUCAGCAGAGCUGAGAAGACAG
22
4103





CCR5-4649

UGUCAGCAGAGCUGAGAAGACAG
23
4104





CCR5-4650

UUGUCAGCAGAGCUGAGAAGACAG
24
4105





CCR5-4651

AAUUCUCAGCUAGAGCAG
18
4106





CCR5-4652

AAAUUCUCAGCUAGAGCAG
19
4107





CCR5-4653

AAAAUUCUCAGCUAGAGCAG
20
4108





CCR5-4654

GAAAAUUCUCAGCUAGAGCAG
21
4109





CCR5-4655

AGAAAAUUCUCAGCUAGAGCAG
22
4110





CCR5-4656

GAGAAAAUUCUCAGCUAGAGCAG
23
4111





CCR5-4657

AGAGAAAAUUCUCAGCUAGAGCAG
24
4112





CCR5-4658

AUUCAUCUGUGGUGGCAG
18
4113





CCR5-4659

CAUUCAUCUGUGGUGGCAG
19
4114





CCR5-4660

ACAUUCAUCUGUGGUGGCAG
20
4115





CCR5-4661

GACAUUCAUCUGUGGUGGCAG
21
4116





CCR5-4662

UGACAUUCAUCUGUGGUGGCAG
22
4117





CCR5-4663

AUGACAUUCAUCUGUGGUGGCAG
23
4118





CCR5-4664

CAUGACAUUCAUCUGUGGUGGCAG
24
4119





CCR5-4665

AAUCUCAAGUAUUGUCAG
18
4120





CCR5-4666

AAAUCUCAAGUAUUGUCAG
19
4121





CCR5-4667

AAAAUCUCAAGUAUUGUCAG
20
4122





CCR5-4668

GAAAAUCUCAAGUAUUGUCAG
21
4123





CCR5-4669

UGAAAAUCUCAAGUAUUGUCAG
22
4124





CCR5-4670

CUGAAAAUCUCAAGUAUUGUCAG
23
4125





CCR5-4671

UCUGAAAAUCUCAAGUAUUGUCAG
24
4126





CCR5-4672

CAAGUAUUGUCAGCAGAG
18
4127





CCR5-4673

UCAAGUAUUGUCAGCAGAG
19
4128





CCR5-4674

CUCAAGUAUUGUCAGCAGAG
20
4129





CCR5-4675

UCUCAAGUAUUGUCAGCAGAG
21
4130





CCR5-4676

AUCUCAAGUAUUGUCAGCAGAG
22
4131





CCR5-4677

AAUCUCAAGUAUUGUCAGCAGAG
23
4132





CCR5-4678

AAAUCUCAAGUAUUGUCAGCAGAG
24
4133





CCR5-4679

CUGGACCCAGGAUCUUAG
18
4134





CCR5-4680

UCUGGACCCAGGAUCUUAG
19
4135





CCR5-3106

UUCUGGACCCAGGAUCUUAG
20
4136





CCR5-4681

UUUCUGGACCCAGGAUCUUAG
21
4137





CCR5-4682

UUUUCUGGACCCAGGAUCUUAG
22
4138





CCR5-4683

UUUUUCUGGACCCAGGAUCUUAG
23
4139





CCR5-4684

CUUUUUCUGGACCCAGGAUCUUAG
24
4140





CCR5-4685

UUAACUAUGGGCUCACGG
18
4141





CCR5-4686

UUUAACUAUGGGCUCACGG
19
4142





CCR5-4687

UUUUAACUAUGGGCUCACGG
20
4143





CCR5-4688

GUUUUAACUAUGGGCUCACGG
21
4144





CCR5-4689

AGUUUUAACUAUGGGCUCACGG
22
4145





CCR5-4690

GAGUUUUAACUAUGGGCUCACGG
23
4146





CCR5-4691

AGAGUUUUAACUAUGGGCUCACGG
24
4147





CCR5-4692

GCUGCCUAGUCUAAGGUG
18
4148





CCR5-4693

AGCUGCCUAGUCUAAGGUG
19
4149





CCR5-4694

CAGCUGCCUAGUCUAAGGUG
20
4150





CCR5-4695

UCAGCUGCCUAGUCUAAGGUG
21
4151





CCR5-4696

CUCAGCUGCCUAGUCUAAGGUG
22
4152





CCR5-4697

UCUCAGCUGCCUAGUCUAAGGUG
23
4153





CCR5-4698

CUCUCAGCUGCCUAGUCUAAGGUG
24
4154





CCR5-4699

ACAAACUUCACAGAAAAU
18
4155





CCR5-4700

CACAAACUUCACAGAAAAU
19
4156





CCR5-4701

ACACAAACUUCACAGAAAAU
20
4157





CCR5-4702

AACACAAACUUCACAGAAAAU
21
4158





CCR5-4703

AAACACAAACUUCACAGAAAAU
22
4159





CCR5-4704

CAAACACAAACUUCACAGAAAAU
23
4160





CCR5-4705

ACAAACACAAACUUCACAGAAAAU
24
4161





CCR5-4706

AGACUCACAGGGUUUAAU
18
4162





CCR5-4707

GAGACUCACAGGGUUUAAU
19
4163





CCR5-4708

UGAGACUCACAGGGUUUAAU
20
4164





CCR5-4709

UUGAGACUCACAGGGUUUAAU
21
4165





CCR5-4710

UUUGAGACUCACAGGGUUUAAU
22
4166





CCR5-4711

GUUUGAGACUCACAGGGUUUAAU
23
4167





CCR5-4712

AGUUUGAGACUCACAGGGUUUAAU
24
4168





CCR5-4713

CUUGGCGGUUGGUGACAU
18
4169





CCR5-4714

UCUUGGCGGUUGGUGACAU
19
4170





CCR5-4715

CUCUUGGCGGUUGGUGACAU
20
4171





CCR5-4716

UCUCUUGGCGGUUGGUGACAU
21
4172





CCR5-4717

CUCUCUUGGCGGUUGGUGACAU
22
4173





CCR5-4718

GCUCUCUUGGCGGUUGGUGACAU
23
4174





CCR5-4719

AGCUCUCUUGGCGGUUGGUGACAU
24
4175





CCR5-4720

UAAUCUAUCUGAAGCUAU
18
4176





CCR5-4721

AUAAUCUAUCUGAAGCUAU
19
4177





CCR5-4722

UAUAAUCUAUCUGAAGCUAU
20
4178





CCR5-4723

AUAUAAUCUAUCUGAAGCUAU
21
4179





CCR5-4724

GAUAUAAUCUAUCUGAAGCUAU
22
4180





CCR5-4725

AGAUAUAAUCUAUCUGAAGCUAU
23
4181





CCR5-4726

CAGAUAUAAUCUAUCUGAAGCUAU
24
4182





CCR5-4727

ACUCCAGAUAUAAUCUAU
18
4183





CCR5-4728

CACUCCAGAUAUAAUCUAU
19
4184





CCR5-4729

UCACUCCAGAUAUAAUCUAU
20
4185





CCR5-4730

UUCACUCCAGAUAUAAUCUAU
21
4186





CCR5-4731

CUUCACUCCAGAUAUAAUCUAU
22
4187





CCR5-4732

UCUUCACUCCAGAUAUAAUCUAU
23
4188





CCR5-4733

UUCUUCACUCCAGAUAUAAUCUAU
24
4189





CCR5-4734

AAACCAGUAAGCAUUUAU
18
4190





CCR5-4735

CAAACCAGUAAGCAUUUAU
19
4191





CCR5-4736

UCAAACCAGUAAGCAUUUAU
20
4192





CCR5-4737

UUCAAACCAGUAAGCAUUUAU
21
4193





CCR5-4738

CUUCAAACCAGUAAGCAUUUAU
22
4194





CCR5-4739

CCUUCAAACCAGUAAGCAUUUAU
23
4195





CCR5-4740

CCCUUCAAACCAGUAAGCAUUUAU
24
4196





CCR5-4741

CUCUUAAUUGUGGCAACU
18
4197





CCR5-4742

ACUCUUAAUUGUGGCAACU
19
4198





CCR5-4743

AACUCUUAAUUGUGGCAACU
20
4199





CCR5-4744

CAACUCUUAAUUGUGGCAACU
21
4200





CCR5-4745

ACAACUCUUAAUUGUGGCAACU
22
4201





CCR5-4746

GACAACUCUUAAUUGUGGCAACU
23
4202





CCR5-4747

UGACAACUCUUAAUUGUGGCAACU
24
4203





CCR5-4748

GUCUAAAGAGUUUUAACU
18
4204





CCR5-4749

UGUCUAAAGAGUUUUAACU
19
4205





CCR5-4750

UUGUCUAAAGAGUUUUAACU
20
4206





CCR5-4751

GUUGUCUAAAGAGUUUUAACU
21
4207





CCR5-4752

UGUUGUCUAAAGAGUUUUAACU
22
4208





CCR5-4753

CUGUUGUCUAAAGAGUUUUAACU
23
4209





CCR5-4754

CCUGUUGUCUAAAGAGUUUUAACU
24
4210





CCR5-4755

CGAGCCACAAGAUGCCCU
18
4211





CCR5-4756

CCGAGCCACAAGAUGCCCU
19
4212





CCR5-4757

CCCGAGCCACAAGAUGCCCU
20
4213





CCR5-4758

UCCCGAGCCACAAGAUGCCCU
21
4214





CCR5-4759

CUCCCGAGCCACAAGAUGCCCU
22
4215





CCR5-4760

ACUCCCGAGCCACAAGAUGCCCU
23
4216





CCR5-4761

UACUCCCGAGCCACAAGAUGCCCU
24
4217





CCR5-4762

UAUAAUCUAUCUGAAGCU
18
4218





CCR5-4763

AUAUAAUCUAUCUGAAGCU
19
4219





CCR5-4764

GAUAUAAUCUAUCUGAAGCU
20
4220





CCR5-4765

AGAUAUAAUCUAUCUGAAGCU
21
4221





CCR5-4766

CAGAUAUAAUCUAUCUGAAGCU
22
4222





CCR5-4767

CCAGAUAUAAUCUAUCUGAAGCU
23
4223





CCR5-4768

UCCAGAUAUAAUCUAUCUGAAGCU
24
4224





CCR5-4769

AGUAUUGUCAGCAGAGCU
18
4225





CCR5-4770

AAGUAUUGUCAGCAGAGCU
19
4226





CCR5-4771

CAAGUAUUGUCAGCAGAGCU
20
4227





CCR5-4772

UCAAGUAUUGUCAGCAGAGCU
21
4228





CCR5-4773

CUCAAGUAUUGUCAGCAGAGCU
22
4229





CCR5-4774

UCUCAAGUAUUGUCAGCAGAGCU
23
4230





CCR5-4775

AUCUCAAGUAUUGUCAGCAGAGCU
24
4231





CCR5-4776

CUUUGGCUUGUGAUCUCU
18
4232





CCR5-4777

GCUUUGGCUUGUGAUCUCU
19
4233





CCR5-4778

AGCUUUGGCUUGUGAUCUCU
20
4234





CCR5-4779

AAGCUUUGGCUUGUGAUCUCU
21
4235





CCR5-4780

AAAGCUUUGGCUUGUGAUCUCU
22
4236





CCR5-4781

AAAAGCUUUGGCUUGUGAUCUCU
23
4237





CCR5-4782

AAAAAGCUUUGGCUUGUGAUCUCU
24
4238





CCR5-4783

UUAAAAAUGAGCUUUUCU
18
4239





CCR5-4784

AUUAAAAAUGAGCUUUUCU
19
4240





CCR5-3134

AAUUAAAAAUGAGCUUUUCU
20
4241





CCR5-4785

AAAUUAAAAAUGAGCUUUUCU
21
4242





CCR5-4786

AAAAUUAAAAAUGAGCUUUUCU
22
4243





CCR5-4787

CAAAAUUAAAAAUGAGCUUUUCU
23
4244





CCR5-4788

UCAAAAUUAAAAAUGAGCUUUUCU
24
4245





CCR5-4789

GUCUAAGGUGCAGGGAGU
18
4246





CCR5-4790

AGUCUAAGGUGCAGGGAGU
19
4247





CCR5-4791

UAGUCUAAGGUGCAGGGAGU
20
4248





CCR5-4792

CUAGUCUAAGGUGCAGGGAGU
21
4249





CCR5-4793

CCUAGUCUAAGGUGCAGGGAGU
22
4250





CCR5-4794

GCCUAGUCUAAGGUGCAGGGAGU
23
4251





CCR5-4795

UGCCUAGUCUAAGGUGCAGGGAGU
24
4252





CCR5-4796

UCAAACCAGUAAGCAUUU
18
4253





CCR5-4797

UUCAAACCAGUAAGCAUUU
19
4254





CCR5-4798

CUUCAAACCAGUAAGCAUUU
20
4255





CCR5-4799

CCUUCAAACCAGUAAGCAUUU
21
4256





CCR5-4800

CCCUUCAAACCAGUAAGCAUUU
22
4257





CCR5-4801

GCCCUUCAAACCAGUAAGCAUUU
23
4258





CCR5-4802

UGCCCUUCAAACCAGUAAGCAUUU
24
4259





CCR5-4803

CAGGUUUCCCAUCUUUUU
18
4260





CCR5-4804

ACAGGUUUCCCAUCUUUUU
19
4261





CCR5-4805

AACAGGUUUCCCAUCUUUUU
20
4262





CCR5-4806

AAACAGGUUUCCCAUCUUUUU
21
4263





CCR5-4807

UAAACAGGUUUCCCAUCUUUUU
22
4264





CCR5-4808

CUAAACAGGUUUCCCAUCUUUUU
23
4265





CCR5-4809

GCUAAACAGGUUUCCCAUCUUUUU
24
4266









Table 7A provides exemplary targeting domains for knocking down the CCR5 gene selected according to the first tier parameters. The targeting domains bind within 500 bp (e.g., upstream or downstream) of a transcription start site (TSS) and have a high level of orthogonality. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a N. meningitidis eiCas9 molecule or eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain) to alter the CCR5 gene (e.g., reduce or eliminate CCR5 gene expression, CCR5 protein function, or the level of CCR5 protein). One or more gRNAs may be used to target an eiCas9 to the promoter region of the CCR5 gene.









TABLE 7A







1st Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-4810

AUCCUUACCUCUCAAAA
17
4267





CCR5-4811
+
CUAAAAGGUUAAGAAAA
17
4268





CCR5-4812

AGCUGCUUGGCCUGUUA
17
4269





CCR5-4813
+
AUUACUAUCCAAGAAGC
17
4270





CCR5-4814

GUGAUCUUGUACAAAUC
17
4271





CCR5-4815

CCGGUAAGUAACCUCUC
17
4272





CCR5-4816
+
AUUUACGGGCUUUUCUC
17
4273





CCR5-4817

AGACCAGAGAUCUAUUC
17
4274





CCR5-4818
+
GUUCUCCUUAGCAGAAG
17
4275





CCR5-4819
+
AUCUUUCUUUUGAGAGG
17
4276





CCR5-4820

UUUUAUACUGUCUAUAU
17
4277





CCR5-4821

UUCGCCUUCAAUACACU
17
4278





CCR5-4822
+
UGACCCUUUCCUUAUCU
17
4279





CCR5-4823

CUACUUUUAUACUGUCU
17
4280





CCR5-4824

UAAAAAGAAGAACUGUU
17
4281





CCR5-4825
+
GGUCUGAAGGUUUAUUU
17
4282





CCR5-4826

ACAAUCCUUACCUCUCAAAA
20
4283





CCR5-4827
+
AGGCUAAAAGGUUAAGAAAA
20
4284





CCR5-4828

UACAUUUAAAGUUGGUUUAA
20
4285





CCR5-4829

CUCAGCUGCUUGGCCUGUUA
20
4286





CCR5-4830
+
GAAAUUACUAUCCAAGAAGC
20
4287





CCR5-4831

CCUGUGAUCUUGUACAAAUC
20
4288





CCR5-4832

UCCCCGGUAAGUAACCUCUC
20
4289





CCR5-4833
+
UUUAUUUACGGGCUUUUCUC
20
4290





CCR5-4834

UUCAGACCAGAGAUCUAUUC
20
4291





CCR5-4835
+
UUAGUUCUCCUUAGCAGAAG
20
4292





CCR5-3491
+
GAACAGUUCUUCUUUUUAAG
20
4293





CCR5-4836
+
CAAAUCUUUCUUUUGAGAGG
20
4294





CCR5-4837

UACUUUUAUACUGUCUAUAU
20
4295





CCR5-4838

CUUUUCGCCUUCAAUACACU
20
4296





CCR5-4839
+
CUGUGACCCUUUCCUUAUCU
20
4297





CCR5-4840

UUCCUACUUUUAUACUGUCU
20
4298





CCR5-4841
+
CCUUAGCAGAAGAUAAGAUU
20
4299





CCR5-4842

ACUUAAAAAGAAGAACUGUU
20
4300





CCR5-3668
+
UCUGGUCUGAAGGUUUAUUU
20
4301









Table 7B provides exemplary targeting domains for knocking down the CCR5 gene selected according to the second tier parameters. The targeting domains bind within 500 bp (e.g., upstream or downstream) of a transcription start site (TSS). It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a N. meningitidis eiCas9 molecule or eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain) to alter the CCR5 gene (e.g., reduce or eliminate CCR5 gene expression, CCR5 protein function, or the level of CCR5 protein). One or more gRNAs may be used to target an eiCas9 to the promoter region of the CCR5 gene.









TABLE 7B







2nd Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-4843

AACAUCAAAGAUACAAA
17
4302





CCR5-4844

AUUUAAAGUUGGUUUAA
17
4303





CCR5-4845
+
UGAUUUGUACAAGAUCA
17
4304





CCR5-4846
+
CAGUUCUUCUUUUUAAG
17
4305





CCR5-4847

AUUUCUUUUACUAAAAU
17
4306





CCR5-4848

UAUUCUUUAUAUUUUCU
17
4307





CCR5-4849
+
UAGCAGAAGAUAAGAUU
17
4308





CCR5-4850

UAUAACAUCAAAGAUACAAA
20
4309





CCR5-3386
+
AAAUGAUUUGUACAAGAUCA
20
4310





CCR5-3978

GUAAUUUCUUUUACUAAAAU
20
4311





CCR5-4851

CUUUAUUCUUUAUAUUUUCU
20
4312









Table 7C provides exemplary targeting domains for knocking down the CCR5 gene selected according to the third tier parameters. Within the additional 500 bp (e.g., upstream or downstream) of a transcription start site (TSS), e.g., extending to 1 kb upstream and downstream of a TSS. It is contemplated herein that in an embodiment the targeting domain hybridizes to the target domain through complementary base pairing. Any of the targeting domains in the table can be used with a N. meningitidis eiCas9 molecule or eiCas9 fusion protein (e.g., an eiCas9 fused to a transcription repressor domain) to alter the CCR5 gene (e.g., reduce or eliminate CCR5 gene expression, CCR5 protein function, or the level of CCR5 protein). One or more gRNAs may be used to target an eiCas9 to the promoter region of the CCR5 gene.









TABLE 7C







3rd Tier














Target



gRNA
DNA

Site
SEQ ID


Name
Strand
Targeting Domain
Length
NO





CCR5-4852

AUGGUUCAAAAUUAAAA
17
4313





CCR5-4853
+
AUGUCACCAACCGCCAA
17
4314





CCR5-4854
+
AAUUUCUCAUAGCUUCA
17
4315





CCR5-4855

ACCUUGGCUCUAGAAUA
17
4316





CCR5-4856
+
AGCUCUGCUGACAAUAC
17
4317





CCR5-4857

GCUCUAGAAUAAAAAGC
17
4318





CCR5-4858
+
UCUUAGAGAUCACAAGC
17
4319





CCR5-3022

UGGACCCAGGAUCUUAG
17
4320





CCR5-4859

AAACUUCACAGAAAAUG
17
4321





CCR5-4860

UGCCAGAUACAUAGGUG
17
4322





CCR5-4861
+
AUAGUGUGAGUCCUCAU
17
4323





CCR5-4862

GAGCCACAAGAUGCCCU
17
4324





CCR5-4863
+
UCAUGUGGAAAAUUUCU
17
4325





CCR5-3052

UAAAAAUGAGCUUUUCU
17
4326





CCR5-4864
+
AUUAAUUUUGACCAUUU
17
4327





CCR5-4531

UUUAUGGUUCAAAAUUAAAA
20
4328





CCR5-4231
+
CAGAUGUCACCAACCGCCAA
20
4329





CCR5-4865
+
GAAAAUUUCUCAUAGCUUCA
20
4330





CCR5-4866

GUGACCUUGGCUCUAGAAUA
20
4331





CCR5-4306
+
CUCAGCUCUGCUGACAAUAC
20
4332





CCR5-4867

UUGGCUCUAGAAUAAAAAGC
20
4333





CCR5-4868
+
CCUUCUUAGAGAUCACAAGC
20
4334





CCR5-3106

UUCUGGACCCAGGAUCUUAG
20
4335





CCR5-4869

CACAAACUUCACAGAAAAUG
20
4336





CCR5-4870

CUAUGCCAGAUACAUAGGUG
20
4337





CCR5-4871
+
GGCAUAGUGUGAGUCCUCAU
20
4338





CCR5-4757

CCCGAGCCACAAGAUGCCCU
20
4339





CCR5-4872
+
AUGUCAUGUGGAAAAUUUCU
20
4340





CCR5-3134

AAUUAAAAAUGAGCUUUUCU
20
4341





CCR5-4873
+
AAUAUUAAUUUUGACCAUUU
20
4342









III. Cas9 Molecules

Cas9 molecules of a variety of species can be used in the methods and compositions described herein. While the S. pyogenes, S. aureus, and S. thermophilus Cas9 molecules are the subject of much of the disclosure herein, Cas9 molecules of, derived from, or based on the Cas9 proteins of other species listed herein can be used as well. In other words, while the much of the description herein uses S. pyogenes and S. thermophilus Cas9 molecules, Cas9 molecules from the other species can replace them, e.g., Staphylococcus aureus and Neisseria meningitides Cas9 molecules. Additional Cas9 species include: Acidovorax avenae, Actinobacillus pleuropneumonias, Actinobacillus succinogenes, Actinobacillus suis, Actinomyces sp., cycliphilus denitrificans, Aminomonas paucivorans, Bacillus cereus, Bacillus smithii, Bacillus thuringiensis, Bacteroides sp., Blastopirellula marina, Bradyrhizobium sp., Brevibacillus laterosporus, Campylobacter coli, Campylobacter jejuni, Campylobacter lari, Candidatus Puniceispirillum, Clostridium cellulolyticum, Clostridium perfringens, Corynebacterium accolens, Corynebacterium diphtheria, Corynebacterium matruchotii, Dinoroseobacter shibae, Eubacterium dolichum, gamma proteobacterium, Gluconacetobacter diazotrophicus, Haemophilus parainfluenzae, Haemophilus sputorum, Helicobacter canadensis, Helicobacter cinaedi, Helicobacter mustelae, Ilyobacter polytropus, Kingella kingae, Lactobacillus crispatus, Listeria ivanovii, Listeria monocytogenes, Listeriaceae bacterium, Methylocystis sp., Methylosinus trichosporium, Mobiluncus mulieris, Neisseria bacilliformis, Neisseria cinerea, Neisseria flavescens, Neisseria lactamica, Neisseria sp., Neisseria wadsworthii, Nitrosomonas sp., Parvibaculum lavamentivorans, Pasteurella multocida, Phascolarctobacterium succinatutens, Ralstonia syzygii, Rhodopseudomonas palustris, Rhodovulum sp., Simonsiella muelleri, Sphingomonas sp., Sporolactobacillus vineae, Staphylococcus lugdunensis, Streptococcus sp., Subdoligranulum sp., Tistrella mobilis, Treponema sp., or Verminephrobacter eiseniae.


A Cas9 molecule, or Cas9 polypeptide, as that term is used herein, refers to a molecule or polypeptide that can interact with a guide RNA (gRNA) molecule and, in concert with the gRNA molecule, home or localizes to a site which comprises a target domain and PAM sequence. Cas9 molecule and Cas9 polypeptide, as those terms are used herein, refer to naturally occurring Cas9 molecules and to engineered, altered, or modified Cas9 molecules or Cas9 polypeptides that differ, e.g., by at least one amino acid residue, from a reference sequence, e.g., the most similar naturally occurring Cas9 molecule or a sequence of Table 8.


Cas9 Domains


Crystal structures have been determined for two different naturally occurring bacterial Cas9 molecules (Jinek et al., Science, 343(6176):1247997, 2014) and for S. pyogenes Cas9 with a guide RNA (e.g., a synthetic fusion of crRNA and tracrRNA) (Nishimasu et al., Cell, 156:935-949, 2014; and Anders et al., Nature, 2014, doi: 10.1038/nature13579).


A naturally occurring Cas9 molecule comprises two lobes: a recognition (REC) lobe and a nuclease (NUC) lobe; each of which further comprises domains described herein. FIGS. 9A-9B provide a schematic of the organization of important Cas9 domains in the primary structure. The domain nomenclature and the numbering of the amino acid residues encompassed by each domain used throughout this disclosure is as described in Nishimasu et al. The numbering of the amino acid residues is with reference to Cas9 from S. pyogenes.


The REC lobe comprises the arginine-rich bridge helix (BH), the REC1 domain, and the REC2 domain. The REC lobe does not share structural similarity with other known proteins, indicating that it is a Cas9-specific functional domain. The BH domain is a long a helix and arginine rich region and comprises amino acids 60-93 of the sequence of S. pyogenes Cas9. The REC1 domain is important for recognition of the repeat:anti-repeat duplex, e.g., of a gRNA or a tracrRNA, and is therefore critical for Cas9 activity by recognizing the target sequence. The REC1 domain comprises two REC1 motifs at amino acids 94 to 179 and 308 to 717 of the sequence of S. pyogenes Cas9. These two REC1 domains, though separated by the REC2 domain in the linear primary structure, assemble in the tertiary structure to form the REC1 domain. The REC2 domain, or parts thereof, may also play a role in the recognition of the repeat:anti-repeat duplex. The REC2 domain comprises amino acids 180-307 of the sequence of S. pyogenes Cas9.


The NUC lobe comprises the RuvC domain (also referred to herein as RuvC-like domain), the HNH domain (also referred to herein as HNH-like domain), and the PAM-interacting (PI) domain. The RuvC domain shares structural similarity to retroviral integrase superfamily members and cleaves a single strand, e.g., the non-complementary strand of the target nucleic acid molecule. The RuvC domain is assembled from the three split RuvC motifs (RuvCI, RuvCII, and RuvCIII, which are often commonly referred to in the art as RuvCI domain, or N-terminal RuvC domain, RuvCII domain, and RuvCIII domain) at amino acids 1-59, 718-769, and 909-1098, respectively, of the sequence of S. pyogenes Cas9. Similar to the REC1 domain, the three RuvC motifs are linearly separated by other domains in the primary structure, however in the tertiary structure, the three RuvC motifs assemble and form the RuvC domain. The HNH domain shares structural similarity with HNH endonucleases, and cleaves a single strand, e.g., the complementary strand of the target nucleic acid molecule. The HNH domain lies between the RuvC II-III motifs and comprises amino acids 775-908 of the sequence of S. pyogenes Cas9. The PI domain interacts with the PAM of the target nucleic acid molecule, and comprises amino acids 1099-1368 of the sequence of S. pyogenes Cas9.


A RuvC-Like Domain and an HNH-Like Domain


In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises an HNH-like domain and a RuvC-like domain. In an embodiment, cleavage activity is dependent on a RuvC-like domain and an HNH-like domain. A Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, can comprise one or more of the following domains: a RuvC-like domain and an HNH-like domain. In an embodiment, a Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide and the eaCas9 molecule or eaCas9 polypeptide comprises a RuvC-like domain, e.g., a RuvC-like domain described below, and/or an HNH-like domain, e.g., an HNH-like domain described below.


RuvC-Like Domains


In an embodiment, a RuvC-like domain cleaves, a single strand, e.g., the non-complementary strand of the target nucleic acid molecule. The Cas9 molecule or Cas9 polypeptide can include more than one RuvC-like domain (e.g., one, two, three or more RuvC-like domains). In an embodiment, a RuvC-like domain is at least 5, 6, 7, 8 amino acids in length but not more than 20, 19, 18, 17, 16 or 15 amino acids in length. In an embodiment, the Cas9 molecule or Cas9 polypeptide comprises an N-terminal RuvC-like domain of about 10 to 20 amino acids, e.g., about 15 amino acids in length.


N-Terminal RuvC-Like Domains


Some naturally occurring Cas9 molecules comprise more than one RuvC-like domain with cleavage being dependent on the N-terminal RuvC-like domain. Accordingly, Cas9 molecules or Cas9 polypeptide can comprise an N-terminal RuvC-like domain. Exemplary N-terminal RuvC-like domains are described below.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an N-terminal RuvC-like domain comprising an amino acid sequence of formula I:









(SEQ ID NO: 8)









D-X1-G-X2-X3-X4-X5-G-X6-X7-X8-X9,






wherein,


X1 is selected from I, V, M, L and T (e.g., selected from I, V, and L);


X2 is selected from T, I, V, S, N, Y, E and L (e.g., selected from T, V, and I);


X3 is selected from N, S, G, A, D, T, R, M and F (e.g., A or N);


X4 is selected from S, Y, N and F (e.g., S);


X5 is selected from V, I, L, C, T and F (e.g., selected from V, I and L);


X6 is selected from W, F, V, Y, S and L (e.g., W);


X7 is selected from A, S, C, V and G (e.g., selected from A and S);


X8 is selected from V, I, L, A, M and H (e.g., selected from V, I, M and L); and


X9 is selected from any amino acid or is absent (e.g., selected from T, V, I, L, Δ, F, S, A, Y, M and R, or, e.g., selected from T, V, I, L and Δ).


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of SEQ ID NO:8, by as many as 1 but no more than 2, 3, 4, or 5 residues.


In embodiment, the N-terminal RuvC-like domain is cleavage competent.


In embodiment, the N-terminal RuvC-like domain is cleavage incompetent.


In an embodiment, a eaCas9 molecule or eaCas9 polypeptide comprises an N-terminal RuvC-like domain comprising an amino acid sequence of formula II:









(SEQ ID NO: 9)









D-X1-G-X2-X3-S-X5-G-X6-X7-X8-X9,,






wherein


X1 is selected from I, V, M, L and T (e.g., selected from I, V, and L);


X2 is selected from T, I, V, S, N, Y, E and L (e.g., selected from T, V, and I);


X3 is selected from N, S, G, A, D, T, R, M and F (e.g., A or N);


X5 is selected from V, I, L, C, T and F (e.g., selected from V, I and L);


X6 is selected from W, F, V, Y, S and L (e.g., W);


X7 is selected from A, S, C, V and G (e.g., selected from A and S);


X8 is selected from V, I, L, A, M and H (e.g., selected from V, I, M and L); and


X9 is selected from any amino acid or is absent (e.g., selected from T, V, I, L, Δ, F, S, A, Y, M and R or selected from e.g., T, V, I, L and Δ).


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of SEQ ID NO:9 by as many as 1 but no more than 2, 3, 4, or 5 residues.


In an embodiment, the N-terminal RuvC-like domain comprises an amino acid sequence of formula III:









(SEQ ID NO: 10)









D-I-G-X2-X3-S-V-G-W-A-X8-X9,






wherein


X2 is selected from T, I, V, S, N, Y, E and L (e.g., selected from T, V, and I);


X3 is selected from N, S, G, A, D, T, R, M and F (e.g., A or N);


X8 is selected from V, I, L, A, M and H (e.g., selected from V, I, M and L); and


X9 is selected from any amino acid or is absent (e.g., selected from T, V, I, L, Δ, F, S, A, Y, M and R or selected from e.g., T, V, I, L and Δ).


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of SEQ ID NO:10 by as many as 1 but no more than, 2, 3, 4, or 5 residues.


In an embodiment, the N-terminal RuvC-like domain comprises an amino acid sequence of formula III:









(SEQ ID NO: 11)









D-I-G-T-N-S-V-G-W-A-V-X,






wherein


X is a non-polar alkyl amino acid or a hydroxyl amino acid, e.g., X is selected from V, I, L and T (e.g., the eaCas9 molecule can comprise an N-terminal RuvC-like domain shown in FIGS. 2A-2G (is depicted as Y)).


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of SEQ ID NO:11 by as many as 1 but no more than, 2, 3, 4, or 5 residues.


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of an N-terminal RuvC like domain disclosed herein, e.g., in FIGS. 3A-3B or FIGS. 7A-7B, as many as 1 but no more than 2, 3, 4, or 5 residues. In an embodiment, 1, 2, 3 or all of the highly conserved residues identified in FIGS. 3A-3B or FIGS. 7A-7B are present.


In an embodiment, the N-terminal RuvC-like domain differs from a sequence of an N-terminal RuvC-like domain disclosed herein, e.g., in FIGS. 4A-4B or FIGS. 7A-7B, as many as 1 but no more than 2, 3, 4, or 5 residues. In an embodiment, 1, 2, or all of the highly conserved residues identified in FIGS. 4A-4B or FIGS. 7A-7B are present.


Additional RuvC-Like Domains


In addition to the N-terminal RuvC-like domain, the Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, can comprise one or more additional RuvC-like domains. In an embodiment, the Cas9 molecule or Cas9 polypeptide can comprise two additional RuvC-like domains. Preferably, the additional RuvC-like domain is at least 5 amino acids in length and, e.g., less than 15 amino acids in length, e.g., 5 to 10 amino acids in length, e.g., 8 amino acids in length.


An additional RuvC-like domain can comprise an amino acid sequence:


I-X1-X2-E-X3-A-R-E (SEQ ID NO:12), wherein


X1 is V or H,


X2 is I, L or V (e.g., I or V); and


X3 is M or T.


In an embodiment, the additional RuvC-like domain comprises the amino acid sequence:


I—V-X2-E-M-A-R-E (SEQ ID NO:13), wherein


X2 is I, L or V (e.g., I or V) (e.g., the eaCas9 molecule or eaCas9 polypeptide can comprise an additional RuvC-like domain shown in FIG. 2A-2G or FIGS. 7A-7B (depicted as B)).


An additional RuvC-like domain can comprise an amino acid sequence:


H-H-A-X1-D-A-X2-X3 (SEQ ID NO: 14), wherein


X1 is H or L;


X2 is R or V; and


X3 is E or V.


In an embodiment, the additional RuvC-like domain comprises the amino acid sequence:









(SEQ ID NO: 15)









H-H-A-H-D-A-Y-L.






In an embodiment, the additional RuvC-like domain differs from a sequence of SEQ ID NO: 12, 13, 14 or 15 by as many as 1 but no more than 2, 3, 4, or 5 residues.


In some embodiments, the sequence flanking the N-terminal RuvC-like domain is a sequence of formula V:









(SEQ ID NO: 16)









K-X1′-Y-X2′-X3′-X4′-Z-T-D-X9′-Y,.







wherein


X1′ is selected from K and P,


X2′ is selected from V, L, I, and F (e.g., V, I and L);


X3′ is selected from G, A and S (e.g., G),


X4′ is selected from L, I, V and F (e.g., L);


X9′ is selected from D, E, N and Q; and


Z is an N-terminal RuvC-like domain, e.g., as described above.


HNH-Like Domains


In an embodiment, an HNH-like domain cleaves a single stranded complementary domain, e.g., a complementary strand of a double stranded nucleic acid molecule. In an embodiment, an HNH-like domain is at least 15, 20, 25 amino acids in length but not more than 40, 35 or 30 amino acids in length, e.g., 20 to 35 amino acids in length, e.g., 25 to 30 amino acids in length. Exemplary HNH-like domains are described below.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an HNH-like domain having an amino acid sequence of formula VI:


X1-X2-X3-H-X4-X5-P-X6-X7-X8-X9-X10-X11-X12-X13-X14-X15-N-X16-X17-X18-X19-X20-X21-X22-X23-N(SEQ ID NO: 17), wherein


X1 is selected from D, E, Q and N (e.g., D and E);


X2 is selected from L, I, R, Q, V, M and K;


X3 is selected from D and E;


X4 is selected from I, V, T, A and L (e.g., A, I and V);


X5 is selected from V, Y, I, L, F and W (e.g., V, I and L);


X6 is selected from Q, H, R, K, Y, I, L, F and W;


X7 is selected from S, A, D, T and K (e.g., S and A);


X8 is selected from F, L, V, K, Y, M, I, R, A, E, D and Q (e.g., F);


X9 is selected from L, R, T, I, V, S, C, Y, K, F and G;


X10 is selected from K, Q, Y, T, F, L, W, M, A, E, G, and S;


X11 is selected from D, S, N, R, L and T (e.g., D);


X12 is selected from D, N and S;


X13 is selected from S, A, T, G and R (e.g., S);


X14 is selected from I, L, F, S, R, Y, Q, W, D, K and H (e.g., I, L and F);


X15 is selected from D, S, I, N, E, A, H, F, L, Q, M, G, Y and V;


X16 is selected from K, L, R, M, T and F (e.g., L, R and K);


X17 is selected from V, L, I, A and T;


X18 is selected from L, I, V and A (e.g., L and I);


X19 is selected from T, V, C, E, S and A (e.g., T and V);


X20 is selected from R, F, T, W, E, L, N, C, K, V, S, Q, I, Y, H and A;


X21 is selected from S, P, R, K, N, A, H, Q, G and L;


X22 is selected from D, G, T, N, S, K, A, I, E, L, Q, R and Y; and


X23 is selected from K, V, A, E, Y, I, C, L, S, T, G, K, M, D and F.


In an embodiment, a HNH-like domain differs from a sequence of SEQ ID NO: 17 by at least one but no more than, 2, 3, 4, or 5 residues.


In an embodiment, the HNH-like domain is cleavage competent.


In an embodiment, the HNH-like domain is cleavage incompetent.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an HNH-like domain comprising an amino acid sequence of formula VII:









(SEQ ID NO: 18)







X1-X2-X3-H-X4-X5-P-X6-S-X8-X9-X10-D-D-S-X14-X15-N-





K-V-L-X19-X20-X21-X22-X23-N,









wherein


X1 is selected from D and E;


X2 is selected from L, I, R, Q, V, M and K;


X3 is selected from D and E;


X4 is selected from I, V, T, A and L (e.g., A, I and V);


X5 is selected from V, Y, I, L, F and W (e.g., V, I and L);


X6 is selected from Q, H, R, K, Y, I, L, F and W;


X8 is selected from F, L, V, K, Y, M, I, R, A, E, D and Q (e.g., F);


X9 is selected from L, R, T, I, V, S, C, Y, K, F and G;


X10 is selected from K, Q, Y, T, F, L, W, M, A, E, G, and S;


X14 is selected from I, L, F, S, R, Y, Q, W, D, K and H (e.g., I, L and F);


X15 is selected from D, S, I, N, E, A, H, F, L, Q, M, G, Y and V;


X19 is selected from T, V, C, E, S and A (e.g., T and V);


X20 is selected from R, F, T, W, E, L, N, C, K, V, S, Q, I, Y, H and A;


X21 is selected from S, P, R, K, N, A, H, Q, G and L;


X22 is selected from D, G, T, N, S, K, A, I, E, L, Q, R and Y; and


X23 is selected from K, V, A, E, Y, I, C, L, S, T, G, K, M, D and F.


In an embodiment, the HNH-like domain differs from a sequence of SEQ ID NO: 18 by 1, 2, 3, 4, or 5 residues.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an HNH-like domain comprising an amino acid sequence of formula VII:









(SEQ ID NO: 19)







X1-V-X3-H-I-V-P-X6-S-X8-X9-X10-D-D-S-X14-X15-N-K-





V-L-T-X20-X21-X22-X23-N,






wherein


X1 is selected from D and E;


X3 is selected from D and E;


X6 is selected from Q, H, R, K, Y, I, L and W;


X8 is selected from F, L, V, K, Y, M, I, R, A, E, D and Q (e.g., F);


X9 is selected from L, R, T, I, V, S, C, Y, K, F and G;


X10 is selected from K, Q, Y, T, F, L, W, M, A, E, G, and S;


X14 is selected from I, L, F, S, R, Y, Q, W, D, K and H (e.g., I, L and F);


X15 is selected from D, S, I, N, E, A, H, F, L, Q, M, G, Y and V;


X20 is selected from R, F, T, W, E, L, N, C, K, V, S, Q, I, Y, H and A;


X21 is selected from S, P, R, K, N, A, H, Q, G and L;


X22 is selected from D, G, T, N, S, K, A, I, E, L, Q, R and Y; and


X23 is selected from K, V, A, E, Y, I, C, L, S, T, G, K, M, D and F.


In an embodiment, the HNH-like domain differs from a sequence of SEQ ID NO: 19 by 1, 2, 3, 4, or 5 residues.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an HNH-like domain having an amino acid sequence of formula VIII:









(SEQ ID NO: 20)







D-X2-D-H-I-X5-P-Q-X7-F-X9-X10-D-X12-S-I-D-N-X16-V-





L-X19-X20-S-X22-X23-N,






wherein


X2 is selected from I and V;


X5 is selected from I and V;


X7 is selected from A and S;


X9 is selected from I and L;


X10 is selected from K and T;


X12 is selected from D and N;


X16 is selected from R, K and L; X19 is selected from T and V;


X20 is selected from S and R;


X22 is selected from K, D and A; and


X23 is selected from E, K, G and N (e.g., the eaCas9 molecule or eaCas9 polypeptide can comprise an HNH-like domain as described herein).


In an embodiment, the HNH-like domain differs from a sequence of SEQ ID NO: 20 by as many as 1 but no more than 2, 3, 4, or 5 residues.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises the amino acid sequence of formula IX:









(SEQ ID NO: 21)







L-Y-Y-L-Q-N-G-X1′-D-M-Y-X2′-X3′-X4′-X5′-L-D-I-X6′-





X7′-L-S-X8′-Y-Z-N-R-X9′-K-X10′-D-X11′-V-P,






wherein


X1′ is selected from K and R;


X2′ is selected from V and T;


X3′ is selected from G and D;


X4′ is selected from E, Q and D;


X5′ is selected from E and D;


X6′ is selected from D, N and H;


X7′ is selected from Y, R and N;


X8′ is selected from Q, D and N; X9′ is selected from G and E;


X10′ is selected from S and G;


X11′ is selected from D and N; and


Z is an HNH-like domain, e.g., as described above.


In an embodiment, the eaCas9 molecule or eaCas9 polypeptide comprises an amino acid sequence that differs from a sequence of SEQ ID NO:21 by as many as 1 but no more than 2, 3, 4, or 5 residues.


In an embodiment, the HNH-like domain differs from a sequence of an HNH-like domain disclosed herein, e.g., in FIGS. 5A-5C or FIGS. 7A-7B, as many as 1 but no more than 2, 3, 4, or 5 residues. In an embodiment, 1 or both of the highly conserved residues identified in FIGS. 5A-5C or FIGS. 7A-7B are present.


In an embodiment, the HNH-like domain differs from a sequence of an HNH-like domain disclosed herein, e.g., in FIGS. 6A-6B or FIGS. 7A-7B, as many as 1 but no more than 2, 3, 4, or 5 residues. In an embodiment, 1, 2, all 3 of the highly conserved residues identified in FIGS. 6A-6B or FIGS. 7A-7B are present.


Cas9 Activities


Nuclease and Helicase Activities


In an embodiment, the Cas9 molecule or Cas9 polypeptide is capable of cleaving a target nucleic acid molecule. Typically wild type Cas9 molecules cleave both strands of a target nucleic acid molecule. Cas9 molecules and Cas9 polypeptides can be engineered to alter nuclease cleavage (or other properties), e.g., to provide a Cas9 molecule or Cas9 polypeptide which is a nickase, or which lacks the ability to cleave target nucleic acid. A Cas9 molecule or Cas9 polypeptide that is capable of cleaving a target nucleic acid molecule is referred to herein as an eaCas9 (an enzymatically active Cas9) molecule or eaCas9 polypeptide. In an embodiment, an eaCas9 molecule or Cas9 polypeptide comprises one or more of the following activities:


a nickase activity, i.e., the ability to cleave a single strand, e.g., the non-complementary strand or the complementary strand, of a nucleic acid molecule;


a double stranded nuclease activity, i.e., the ability to cleave both strands of a double stranded nucleic acid and create a double stranded break, which in an embodiment is the presence of two nickase activities;


an endonuclease activity;


an exonuclease activity; and


a helicase activity, i.e., the ability to unwind the helical structure of a double stranded nucleic acid.


In an embodiment, an enzymatically active Cas9 or an eaCas9 molecule or an eaCas9 polypeptide cleaves both DNA strands and results in a double stranded break. In an embodiment, an eaCas9 molecule cleaves only one strand, e.g., the strand to which the gRNA hybridizes to, or the strand complementary to the strand the gRNA hybridizes with. In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises cleavage activity associated with an HNH-like domain. In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises cleavage activity associated with an N-terminal RuvC-like domain. In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises cleavage activity associated with an HNH-like domain and cleavage activity associated with an N-terminal RuvC-like domain. In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an active, or cleavage competent, HNH-like domain and an inactive, or cleavage incompetent, N-terminal RuvC-like domain. In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an inactive, or cleavage incompetent, HNH-like domain and an active, or cleavage competent, N-terminal RuvC-like domain.


Some Cas9 molecules or Cas9 polypeptides have the ability to interact with a gRNA molecule, and in conjunction with the gRNA molecule localize to a core target domain, but are incapable of cleaving the target nucleic acid, or incapable of cleaving at efficient rates. Cas9 molecules having no, or no substantial, cleavage activity are referred to herein as an eiCas9 molecule or eiCas9 polypeptide. For example, an eiCas9 molecule or eiCas9 polypeptide can lack cleavage activity or have substantially less, e.g., less than 20, 10, 5, 1 or 0.1% of the cleavage activity of a reference Cas9 molecule or eiCas9 polypeptide, as measured by an assay described herein.


Targeting and PAMs


A Cas9 molecule or Cas9 polypeptide, is a polypeptide that can interact with a guide RNA (gRNA) molecule and, in concert with the gRNA molecule, localizes to a site which comprises a target domain and PAM sequence.


In an embodiment, the ability of an eaCas9 molecule or eaCas9 polypeptide to interact with and cleave a target nucleic acid is PAM sequence dependent. A PAM sequence is a sequence in the target nucleic acid. In an embodiment, cleavage of the target nucleic acid occurs upstream from the PAM sequence. EaCas9 molecules from different bacterial species can recognize different sequence motifs (e.g., PAM sequences). In an embodiment, an eaCas9 molecule of S. pyogenes recognizes the sequence motif NGG and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. See, e.g., Mali et al., SCIENCE 2013; 339(6121): 823-826. In an embodiment, an eaCas9 molecule of S. thermophilus recognizes the sequence motif NGGNG and NNAGAAW (W=A or T) and directs cleavage of a core target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from these sequences. See, e.g., Horvath et al., SCIENCE 2010; 327(5962):167-170, and Deveau et al., J BACTERIOL 2008; 190(4): 1390-1400. In an embodiment, an eaCas9 molecule of S. mutans recognizes the sequence motif NGG and/or NAAR (R=A or G) and directs cleavage of a core target nucleic acid sequence 1 to 10, e.g., 3 to 5 base pairs, upstream from this sequence. See, e.g., Deveau et al., J BACTERIOL 2008; 190(4): 1390-1400. In an embodiment, an eaCas9 molecule of S. aureus recognizes the sequence motif NNGRR (R=A or G) and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. In an embodiment, an eaCas9 molecule of S. aureus recognizes the sequence motif NNGRRN (R=A or G) and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. In an embodiment, an eaCas9 molecule of S. aureus recognizes the sequence motif NNGRRT (R=A or G) and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. In an embodiment, an eaCas9 molecule of S. aureus recognizes the sequence motif NNGRRV (R=A or G, V=A, G or C) and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. In an embodiment, an eaCas9 molecule of Neisseria meningitidis recognizes the sequence motif NNNNGATT or NNNGCTT and directs cleavage of a target nucleic acid sequence 1 to 10, e.g., 3 to 5, base pairs upstream from that sequence. See, e.g., Hou et al., PNAS Early Edition 2013, 1-6. The ability of a Cas9 molecule to recognize a PAM sequence can be determined, e.g., using a transformation assay described in Jinek et al., SCIENCE 2012 337:816. In the aforementioned embodiments, N can be any nucleotide residue, e.g., any of A, G, C or T.


As is discussed herein, Cas9 molecules can be engineered to alter the PAM specificity of the Cas9 molecule.


Exemplary naturally occurring Cas9 molecules are described in Chylinski et al., RNA BIOLOGY 2013 10:5, 727-737. Such Cas9 molecules include Cas9 molecules of a cluster 1 bacterial family, cluster 2 bacterial family, cluster 3 bacterial family, cluster 4 bacterial family, cluster 5 bacterial family, cluster 6 bacterial family, a cluster 7 bacterial family, a cluster 8 bacterial family, a cluster 9 bacterial family, a cluster 10 bacterial family, a cluster 11 bacterial family, a cluster 12 bacterial family, a cluster 13 bacterial family, a cluster 14 bacterial family, a cluster 15 bacterial family, a cluster 16 bacterial family, a cluster 17 bacterial family, a cluster 18 bacterial family, a cluster 19 bacterial family, a cluster 20 bacterial family, a cluster 21 bacterial family, a cluster 22 bacterial family, a cluster 23 bacterial family, a cluster 24 bacterial family, a cluster 25 bacterial family, a cluster 26 bacterial family, a cluster 27 bacterial family, a cluster 28 bacterial family, a cluster 29 bacterial family, a cluster 30 bacterial family, a cluster 31 bacterial family, a cluster 32 bacterial family, a cluster 33 bacterial family, a cluster 34 bacterial family, a cluster 35 bacterial family, a cluster 36 bacterial family, a cluster 37 bacterial family, a cluster 38 bacterial family, a cluster 39 bacterial family, a cluster 40 bacterial family, a cluster 41 bacterial family, a cluster 42 bacterial family, a cluster 43 bacterial family, a cluster 44 bacterial family, a cluster 45 bacterial family, a cluster 46 bacterial family, a cluster 47 bacterial family, a cluster 48 bacterial family, a cluster 49 bacterial family, a cluster 50 bacterial family, a cluster 51 bacterial family, a cluster 52 bacterial family, a cluster 53 bacterial family, a cluster 54 bacterial family, a cluster 55 bacterial family, a cluster 56 bacterial family, a cluster 57 bacterial family, a cluster 58 bacterial family, a cluster 59 bacterial family, a cluster 60 bacterial family, a cluster 61 bacterial family, a cluster 62 bacterial family, a cluster 63 bacterial family, a cluster 64 bacterial family, a cluster 65 bacterial family, a cluster 66 bacterial family, a cluster 67 bacterial family, a cluster 68 bacterial family, a cluster 69 bacterial family, a cluster 70 bacterial family, a cluster 71 bacterial family, a cluster 72 bacterial family, a cluster 73 bacterial family, a cluster 74 bacterial family, a cluster 75 bacterial family, a cluster 76 bacterial family, a cluster 77 bacterial family, or a cluster 78 bacterial family.


Exemplary naturally occurring Cas9 molecules include a Cas9 molecule of a cluster 1 bacterial family. Examples include a Cas9 molecule of: S. pyogenes (e.g., strain SF370, MGAS10270, MGAS10750, MGAS2096, MGAS315, MGAS5005, MGAS6180, MGAS9429, NZ131 and SSI-1), S. thermophilus (e.g., strain LMD-9), S. pseudoporcinus (e.g., strain SPIN 20026), S. mutans (e.g., strain UA159, NN2025), S. macacae (e.g., strain NCTC11558), S. gallolyticus (e.g., strain UCN34, ATCC BAA-2069), S. equines (e.g., strain ATCC 9812, MGCS 124), S. dysdalactiae (e.g., strain GGS 124), S. bovis (e.g., strain ATCC 700338), S. anginosus (e.g., strain F0211), S. agalactiae (e.g., strain NEM316, A909), Listeria monocytogenes (e.g., strain F6854), Listeria innocua (L. innocua, e.g., strain Clip11262), Enterococcus italicus (e.g., strain DSM 15952), or Enterococcus faecium (e.g., strain 1,231,408). Additional exemplary Cas9 molecules are a Cas9 molecule of Neisseria meningitides (Hou et al., PNAS Early Edition 2013, 1-6 and a S. aureus cas9 molecule.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence:


having 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% homology with;


differs at no more than, 2, 5, 10, 15, 20, 30, or 40% of the amino acid residues when compared with;


differs by at least 1, 2, 5, 10 or 20 amino acids, but by no more than 100, 80, 70, 60, 50, 40 or 30 amino acids from; or


is identical to any Cas9 molecule sequence described herein, or a naturally occurring Cas9 molecule sequence, e.g., a Cas9 molecule from a species listed herein or described in Chylinski et al., RNA BIOLOGY 2013 10:5, 727-737; Hou et al., PNAS Early Edition 2013, 1-6; SEQ ID NO:1-4. In an embodiment, the Cas9 molecule or Cas9 polypeptide comprises one or more of the following activities: a nickase activity; a double stranded cleavage activity (e.g., an endonuclease and/or exonuclease activity); a helicase activity; or the ability, together with a gRNA molecule, to localize to a target nucleic acid.


In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises any of the amino acid sequence of the consensus sequence of FIGS. 2A-2G, wherein “*” indicates any amino acid found in the corresponding position in the amino acid sequence of a Cas9 molecule of S. pyogenes, S. thermophilus, S. mutans and L. innocua, and “-” indicates any amino acid. In an embodiment, a Cas9 molecule or Cas9 polypeptide differs from the sequence of the consensus sequence disclosed in FIGS. 2A-2G by at least 1, but no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid residues. In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises the amino acid sequence of SEQ ID NO:7 of FIGS. 7A-7B, wherein “*” indicates any amino acid found in the corresponding position in the amino acid sequence of a Cas9 molecule of S. pyogenes, or N. meningitides, “-” indicates any amino acid, and “-” indicates any amino acid or absent. In an embodiment, a Cas9 molecule or Cas9 polypeptide differs from the sequence of SEQ ID NO:6 or 7 disclosed in FIGS. 7A-7B by at least 1, but no more than 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acid residues.


A comparison of the sequence of a number of Cas9 molecules indicate that certain regions are conserved. These are identified below as:


region 1 (residues 1 to 180, or in the case of region 1′ residues 120 to 180)


region 2 (residues 360 to 480);


region 3 (residues 660 to 720);


region 4 (residues 817 to 900); and


region 5 (residues 900 to 960);


In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises regions 1-5, together with sufficient additional Cas9 molecule sequence to provide a biologically active molecule, e.g., a Cas9 molecule having at least one activity described herein. In an embodiment, each of regions 1-5, independently, have 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% homology with the corresponding residues of a Cas9 molecule or Cas9 polypeptide described herein, e.g., a sequence from FIGS. 2A-2G or from FIGS. 7A-7B.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 1:


having 50%, 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% homology with amino acids 1-180 (the numbering is according to the motif sequence in FIG. 2; 52% of residues in the four Cas9 sequences in FIGS. 2A-2G are conserved) of the amino acid sequence of Cas9 of S. pyogenes;


differs by at least 1, 2, 5, 10 or 20 amino acids but by no more than 90, 80, 70, 60, 50, 40 or 30 amino acids from amino acids 1-180 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or Listeria innocua; or


is identical to 1-180 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 1′:


having 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% homology with amino acids 120-180 (55% of residues in the four Cas9 sequences in FIG. 2 are conserved) of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua;


differs by at least 1, 2, or 5 amino acids but by no more than 35, 30, 25, 20 or 10 amino acids from amino acids 120-180 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua; or


is identical to 120-180 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 2:


having 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% homology with amino acids 360-480 (52% of residues in the four Cas9 sequences in FIG. 2 are conserved) of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua;


differs by at least 1, 2, or 5 amino acids but by no more than 35, 30, 25, 20 or 10 amino acids from amino acids 360-480 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua; or


is identical to 360-480 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 3:


having 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology with amino acids 660-720 (56% of residues in the four Cas9 sequences in FIG. 2 are conserved) of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua;


differs by at least 1, 2, or 5 amino acids but by no more than 35, 30, 25, 20 or 10 amino acids from amino acids 660-720 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua; or


is identical to 660-720 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 4:


having 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology with amino acids 817-900 (55% of residues in the four Cas9 sequences in FIGS. 2A-2G are conserved) of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua;


differs by at least 1, 2, or 5 amino acids but by no more than 35, 30, 25, 20 or 10 amino acids from amino acids 817-900 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua; or


is identical to 817-900 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


In an embodiment, a Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, comprises an amino acid sequence referred to as region 5:


having 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology with amino acids 900-960 (60% of residues in the four Cas9 sequences in FIGS. 2A-2G are conserved) of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua;


differs by at least 1, 2, or 5 amino acids but by no more than 35, 30, 25, 20 or 10 amino acids from amino acids 900-960 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua; or


is identical to 900-960 of the amino acid sequence of Cas9 of S. pyogenes, S. thermophilus, S. mutans or L. innocua.


Engineered or Altered Cas9 Molecules and Cas9 Polypeptides


Cas9 molecules and Cas9 polypeptides described herein, e.g., naturally occurring Cas9 molecules, can possess any of a number of properties, including: nickase activity, nuclease activity (e.g., endonuclease and/or exonuclease activity); helicase activity; the ability to associate functionally with a gRNA molecule; and the ability to target (or localize to) a site on a nucleic acid (e.g., PAM recognition and specificity). In an embodiment, a Cas9 molecule or Cas9 polypeptide can include all or a subset of these properties. In typical embodiments, a Cas9 molecule or Cas9 polypeptide have the ability to interact with a gRNA molecule and, in concert with the gRNA molecule, localize to a site in a nucleic acid. Other activities, e.g., PAM specificity, cleavage activity, or helicase activity can vary more widely in Cas9 molecules and Cas9 polypeptides.


Cas9 molecules include engineered Cas9 molecules and engineered Cas9 polypeptides (engineered, as used in this context, means merely that the Cas9 molecule or Cas9 polypeptide differs from a reference sequences, and implies no process or origin limitation). An engineered Cas9 molecule or Cas9 polypeptide can comprise altered enzymatic properties, e.g., altered nuclease activity, (as compared with a naturally occurring or other reference Cas9 molecule) or altered helicase activity. As discussed herein, an engineered Cas9 molecule or Cas9 polypeptide can have nickase activity (as opposed to double strand nuclease activity). In an embodiment an engineered Cas9 molecule or Cas9 polypeptide can have an alteration that alters its size, e.g., a deletion of amino acid sequence that reduces its size, e.g., without significant effect on one or more, or any Cas9 activity. In an embodiment, an engineered Cas9 molecule or Cas9 polypeptide can comprise an alteration that affects PAM recognition. E.g., an engineered Cas9 molecule can be altered to recognize a PAM sequence other than that recognized by the endogenous wild-type PI domain. In an embodiment, a Cas9 molecule or Cas9 polypeptide can differ in sequence from a naturally occurring Cas9 molecule but not have significant alteration in one or more Cas9 activities.


Cas9 molecules or Cas9 polypeptides with desired properties can be made in a number of ways, e.g., by alteration of a parental, e.g., naturally occurring Cas9 molecules or Cas9 polypeptides to provide an altered Cas9 molecule or Cas9 polypeptide having a desired property. For example, one or more mutations or differences relative to a parental Cas9 molecule, e.g., a naturally occurring or engineered Cas9 molecule, can be introduced. Such mutations and differences comprise: substitutions (e.g., conservative substitutions or substitutions of non-essential amino acids); insertions; or deletions. In an embodiment, a Cas9 molecule or Cas9 polypeptide can comprises one or more mutations or differences, e.g., at least 1, 2, 3, 4, 5, 10, 15, 20, 30, 40 or 50 mutations, but less than 200, 100, or 80 mutations relative to a reference, e.g., a parental, Cas9 molecule.


In an embodiment, a mutation or mutations do not have a substantial effect on a Cas9 activity, e.g. a Cas9 activity described herein. In an embodiment, a mutation or mutations have a substantial effect on a Cas9 activity, e.g. a Cas9 activity described herein.


Non-Cleaving and Modified-Cleavage Cas9 Molecules and Cas9 Polypeptides


In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises a cleavage property that differs from naturally occurring Cas9 molecules, e.g., that differs from the naturally occurring Cas9 molecule having the closest homology. For example, a Cas9 molecule or Cas9 polypeptide can differ from naturally occurring Cas9 molecules, e.g., a Cas9 molecule of S. pyogenes, as follows: its ability to modulate, e.g., decreased or increased, cleavage of a double stranded nucleic acid (endonuclease and/or exonuclease activity), e.g., as compared to a naturally occurring Cas9 molecule (e.g., a Cas9 molecule of S. pyogenes); its ability to modulate, e.g., decreased or increased, cleavage of a single strand of a nucleic acid, e.g., a non-complementary strand of a nucleic acid molecule or a complementary strand of a nucleic acid molecule (nickase activity), e.g., as compared to a naturally occurring Cas9 molecule (e.g., a Cas9 molecule of S. pyogenes); or the ability to cleave a nucleic acid molecule, e.g., a double stranded or single stranded nucleic acid molecule, can be eliminated.


Modified Cleavage eaCas9 Molecules and eaCas9 Polypeptides


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises one or more of the following activities: cleavage activity associated with an N-terminal RuvC-like domain; cleavage activity associated with an HNH-like domain; cleavage activity associated with an HNH-like domain and cleavage activity associated with an N-terminal RuvC-like domain.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an active, or cleavage competent, HNH-like domain (e.g., an HNH-like domain described herein, e.g., SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21) and an inactive, or cleavage incompetent, N-terminal RuvC-like domain. An exemplary inactive, or cleavage incompetent N-terminal RuvC-like domain can have a mutation of an aspartic acid in an N-terminal RuvC-like domain, e.g., an aspartic acid at position 9 of the consensus sequence disclosed in FIGS. 2A-2G or an aspartic acid at position 10 of SEQ ID NO: 7, e.g., can be substituted with an alanine. In an embodiment, the eaCas9 molecule or eaCas9 polypeptide differs from wild type in the N-terminal RuvC-like domain and does not cleave the target nucleic acid, or cleaves with significantly less efficiency, e.g., less than 20, 10, 5, 1 or 0.1% of the cleavage activity of a reference Cas9 molecule, e.g., as measured by an assay described herein. The reference Cas9 molecule can by a naturally occurring unmodified Cas9 molecule, e.g., a naturally occurring Cas9 molecule such as a Cas9 molecule of S. pyogenes, or S. thermophilus. In an embodiment, the reference Cas9 molecule is the naturally occurring Cas9 molecule having the closest sequence identity or homology.


In an embodiment, an eaCas9 molecule or eaCas9 polypeptide comprises an inactive, or cleavage incompetent, HNH domain and an active, or cleavage competent, N-terminal RuvC-like domain (e.g., a RuvC-like domain described herein, e.g., SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, or SEQ ID NO: 16). Exemplary inactive, or cleavage incompetent HNH-like domains can have a mutation at one or more of: a histidine in an HNH-like domain, e.g., a histidine shown at position 856 of the consensus sequence disclosed in FIGS. 2A-2G, e.g., can be substituted with an alanine; and one or more asparagines in an HNH-like domain, e.g., an asparagine shown at position 870 of the consensus sequence disclosed in FIGS. 2A-2G and/or at position 879 of the consensus sequence disclosed in FIGS. 2A-2G, e.g., can be substituted with an alanine. In an embodiment, the eaCas9 differs from wild type in the HNH-like domain and does not cleave the target nucleic acid, or cleaves with significantly less efficiency, e.g., less than 20, 10, 5, 1 or 0.1% of the cleavage activity of a reference Cas9 molecule, e.g., as measured by an assay described herein. The reference Cas9 molecule can by a naturally occurring unmodified Cas9 molecule, e.g., a naturally occurring Cas9 molecule such as a Cas9 molecule of S. pyogenes, or S. thermophilus. In an embodiment, the reference Cas9 molecule is the naturally occurring Cas9 molecule having the closest sequence identity or homology.


Alterations in the Ability to Cleave One or Both Strands of a Target Nucleic Acid


In an embodiment, exemplary Cas9 activities comprise one or more of PAM specificity, cleavage activity, and helicase activity. A mutation(s) can be present, e.g., in one or more RuvC-like domain, e.g., an N-terminal RuvC-like domain; an HNH-like domain; a region outside the RuvC-like domains and the HNH-like domain. In some embodiments, a mutation(s) is present in a RuvC-like domain, e.g., an N-terminal RuvC-like domain. In some embodiments, a mutation(s) is present in an HNH-like domain. In some embodiments, mutations are present in both a RuvC-like domain, e.g., an N-terminal RuvC-like domain and an HNH-like domain.


Exemplary mutations that may be made in the RuvC domain or HNH domain with reference to the S. pyogenes sequence include: D10A, E762A, H840A, N854A, N863A and/or D986A.


In an embodiment, a Cas9 molecule or Cas9 polypeptide is an eiCas9 molecule or eiCas9 polypeptide comprising one or more differences in a RuvC domain and/or in an HNH domain as compared to a reference Cas9 molecule, and the eiCas9 molecule or eiCas9 polypeptide does not cleave a nucleic acid, or cleaves with significantly less efficiency than does wildtype, e.g., when compared with wild type in a cleavage assay, e.g., as described herein, cuts with less than 50, 25, 10, or 1% of a reference Cas9 molecule, as measured by an assay described herein.


Whether or not a particular sequence, e.g., a substitution, may affect one or more activity, such as targeting activity, cleavage activity, etc., can be evaluated or predicted, e.g., by evaluating whether the mutation is conservative or by the method described in Section IV. In an embodiment, a “non-essential” amino acid residue, as used in the context of a Cas9 molecule, is a residue that can be altered from the wild-type sequence of a Cas9 molecule, e.g., a naturally occurring Cas9 molecule, e.g., an eaCas9 molecule, without abolishing or more preferably, without substantially altering a Cas9 activity (e.g., cleavage activity), whereas changing an “essential” amino acid residue results in a substantial loss of activity (e.g., cleavage activity).


In an embodiment, a Cas9 molecule or Cas9 polypeptide comprises a cleavage property that differs from naturally occurring Cas9 molecules, e.g., that differs from the naturally occurring Cas9 molecule having the closest homology. For example, a Cas9 molecule or Cas9 polypeptide can differ from naturally occurring Cas9 molecules, e.g., a Cas9 molecule of S aureus, S. pyogenes, or C. jejuni as follows: its ability to modulate, e.g., decreased or increased, cleavage of a double stranded break (endonuclease and/or exonuclease activity), e.g., as compared to a naturally occurring Cas9 molecule (e.g., a Cas9 molecule of S aureus, S. pyogenes, or C. jejuni); its ability to modulate, e.g., decreased or increased, cleavage of a single strand of a nucleic acid, e.g., a non-complimentary strand of a nucleic acid molecule or a complementary strand of a nucleic acid molecule (nickase activity), e.g., as compared to a naturally occurring Cas9 molecule (e.g., a Cas9 molecule of S aureus, S. pyogenes, or C. jejuni); or the ability to cleave a nucleic acid molecule, e.g., a double stranded or single stranded nucleic acid molecule, can be eliminated.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide comprising one or more of the following activities: cleavage activity associated with a RuvC domain; cleavage activity associated with an HNH domain; cleavage activity associated with an HNH domain and cleavage activity associated with a RuvC domain.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eiCas9 molecule or eiCas9 polypeptide which does not cleave a nucleic acid molecule (either double stranded or single stranded nucleic acid molecules) or cleaves a nucleic acid molecule with significantly less efficiency, e.g., less than 20, 10, 5, 1 or 0.1% of the cleavage activity of a reference Cas9 molecule, e.g., as measured by an assay described herein. The reference Cas9 molecule can be a naturally occurring unmodified Cas9 molecule, e.g., a naturally occurring Cas9 molecule such as a Cas9 molecule of S. pyogenes, S. thermophilus, S. aureus, C. jejuni or N. meningitidis. In an embodiment, the reference Cas9 molecule is the naturally occurring Cas9 molecule having the closest sequence identity or homology. In an embodiment, the eiCas9 molecule or eiCas9 polypeptide lacks substantial cleavage activity associated with a RuvC domain and cleavage activity associated with an HNH domain.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide comprising the fixed amino acid residues of S. pyogenes shown in the consensus sequence disclosed in FIGS. 2A-2G, and has one or more amino acids that differ from the amino acid sequence of S. pyogenes (e.g., has a substitution) at one or more residue (e.g., 2, 3, 5, 10, 15, 20, 30, 50, 70, 80, 90, 100, 200 amino acid residues) represented by an “-” in the consensus sequence disclosed in FIGS. 2A-2G or SEQ ID NO: 7.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide comprises a sequence in which:


the sequence corresponding to the fixed sequence of the consensus sequence disclosed in FIGS. 2A-2G differs at no more than 1, 2, 3, 4, 5, 10, 15, or 20% of the fixed residues in the consensus sequence disclosed in FIGS. 2A-2G;

    • the sequence corresponding to the residues identified by “*” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, or 40% of the “*” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. pyogenes Cas9 molecule; and, the sequence corresponding to the residues identified by “-” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 5, 10, 15, 20, 25, 30, 35, 40, 45, 55, or 60% of the “-” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. pyogenes Cas9 molecule.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide comprising the fixed amino acid residues of S. thermophilus shown in the consensus sequence disclosed in FIGS. 2A-2G, and has one or more amino acids that differ from the amino acid sequence of S. thermophilus (e.g., has a substitution) at one or more residue (e.g., 2, 3, 5, 10, 15, 20, 30, 50, 70, 80, 90, 100, 200 amino acid residues) represented by an “-” in the consensus sequence disclosed in FIGS. 2A-2G.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide comprises a sequence in which:


the sequence corresponding to the fixed sequence of the consensus sequence disclosed in FIGS. 2A-2G differs at no more than 1, 2, 3, 4, 5, 10, 15, or 20% of the fixed residues in the consensus sequence disclosed in FIGS. 2A-2G;


the sequence corresponding to the residues identified by “*” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, or 40% of the “*” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. thermophilus Cas9 molecule; and,


the sequence corresponding to the residues identified by “-” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 5, 10, 15, 20, 25, 30, 35, 40, 45, 55, or 60% of the “-” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. thermophilus Cas9 molecule.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide comprising the fixed amino acid residues of S. mutans shown in the consensus sequence disclosed in FIGS. 2A-2G, and has one or more amino acids that differ from the amino acid sequence of S. mutans (e.g., has a substitution) at one or more residue (e.g., 2, 3, 5, 10, 15, 20, 30, 50, 70, 80, 90, 100, 200 amino acid residues) represented by an “-” in the consensus sequence disclosed in FIGS. 2A-2G.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide comprises a sequence in which:


the sequence corresponding to the fixed sequence of the consensus sequence disclosed in FIGS. 2A-2G differs at no more than 1, 2, 3, 4, 5, 10, 15, or 20% of the fixed residues in the consensus sequence disclosed in FIGS. 2A-2G;


the sequence corresponding to the residues identified by “*” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, or 40% of the “*” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. mutans Cas9 molecule; and,


the sequence corresponding to the residues identified by “-” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 5, 10, 15, 20, 25, 30, 35, 40, 45, 55, or 60% of the “-” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an S. mutans Cas9 molecule.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide is an eaCas9 molecule or eaCas9 polypeptide comprising the fixed amino acid residues of L. innocula shown in the consensus sequence disclosed in FIGS. 2A-2G, and has one or more amino acids that differ from the amino acid sequence of L. innocula (e.g., has a substitution) at one or more residue (e.g., 2, 3, 5, 10, 15, 20, 30, 50, 70, 80, 90, 100, 200 amino acid residues) represented by an “-” in the consensus sequence disclosed in FIGS. 2A-2G.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide comprises a sequence in which:


the sequence corresponding to the fixed sequence of the consensus sequence disclosed in FIGS. 2A-2G differs at no more than 1, 2, 3, 4, 5, 10, 15, or 20% of the fixed residues in the consensus sequence disclosed in FIGS. 2A-2G;


the sequence corresponding to the residues identified by “*” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, or 40% of the “*” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an L. innocula Cas9 molecule; and,


the sequence corresponding to the residues identified by “-” in the consensus sequence disclosed in FIGS. 2A-2G differ at no more than 5, 10, 15, 20, 25, 30, 35, 40, 45, 55, or 60% of the “-” residues from the corresponding sequence of naturally occurring Cas9 molecule, e.g., an L. innocula Cas9 molecule.


In an embodiment, the altered Cas9 molecule or Cas9 polypeptide, e.g., an eaCas9 molecule or eaCas9 polypeptide, can be a fusion, e.g., of two of more different Cas9 molecules, e.g., of two or more naturally occurring Cas9 molecules of different species. For example, a fragment of a naturally occurring Cas9 molecule of one species can be fused to a fragment of a Cas9 molecule of a second species. As an example, a fragment of a Cas9 molecule of S. pyogenes comprising an N-terminal RuvC-like domain can be fused to a fragment of Cas9 molecule of a species other than S. pyogenes (e.g., S. thermophilus) comprising an HNH-like domain.


Cas9 Molecules and Cas9 Polypeptides with Altered PAM Recognition or No PAM Recognition


Naturally occurring Cas9 molecules can recognize specific PAM sequences, for example, the PAM recognition sequences described above for S. pyogenes, S. thermophiles, S. mutans, S. aureus and N. meningitides.


In an embodiment, a Cas9 molecule or Cas9 polypeptide has the same PAM specificities as a naturally occurring Cas9 molecule. In other embodiments, a Cas9 molecule or Cas9 polypeptide has a PAM specificity not associated with a naturally occurring Cas9 molecule, or a PAM specificity not associated with the naturally occurring Cas9 molecule to which it has the closest sequence homology. For example, a naturally occurring Cas9 molecule can be altered, e.g., to alter PAM recognition, e.g., to alter the PAM sequence that the Cas9 molecule recognizes to decrease off target sites and/or improve specificity; or eliminate a PAM recognition requirement. In an embodiment, a Cas9 molecule or Cas9 polypeptide can be altered, e.g., to increase length of PAM recognition sequence and/or improve Cas9 specificity to high level of identity (e.g., 98%, 99% or 100% match between gRNA and a PAM sequence), e.g., to decrease off target sites and increase specificity. In an embodiment, the length of the PAM recognition sequence is at least 4, 5, 6, 7, 8, 9, 10 or 15 amino acids in length. In an embodiment, the Cas9 specificity requires at least 90%, 95%, 96%, 97%, 98%, 99% or more homology between the gRNA and the PAM sequence. Cas9 molecules or Cas9 polypeptides that recognize different PAM sequences and/or have reduced off-target activity can be generated using directed evolution. Exemplary methods and systems that can be used for directed evolution of Cas9 molecules are described, e.g., in Esvelt et al. NATURE 2011, 472(7344): 499-503. Candidate Cas9 molecules can be evaluated, e.g., by methods described in Section IV.


Alterations of the PI domain, which mediates PAM recognition, are discussed below.


Synthetic Cas9 Molecules and Cas9 Polypeptides with Altered PI Domains


Current genome-editing methods are limited in the diversity of target sequences that can be targeted by the PAM sequence that is recognized by the Cas9 molecule utilized. A synthetic Cas9 molecule (or Syn-Cas9 molecule), or synthetic Cas9 polypeptide (or Syn-Cas9 polypeptide), as that term is used herein, refers to a Cas9 molecule or Cas9 polypeptide that comprises a Cas9 core domain from one bacterial species and a functional altered PI domain, i.e., a PI domain other than that naturally associated with the Cas9 core domain, e.g., from a different bacterial species.


In an embodiment, the altered PI domain recognizes a PAM sequence that is different from the PAM sequence recognized by the naturally-occurring Cas9 from which the Cas9 core domain is derived. In an embodiment, the altered PI domain recognizes the same PAM sequence recognized by the naturally-occurring Cas9 from which the Cas9 core domain is derived, but with different affinity or specificity. A Syn-Cas9 molecule or Syn-Cas9 polypeptide can be, respectively, a Syn-eaCas9 molecule or Syn-eaCas9 polypeptide or a Syn-eiCas9 molecule Syn-eiCas9 polypeptide.


An exemplary Syn-Cas9 molecule or Syn-Cas9 polypeptide comprises:


a) a Cas9 core domain, e.g., a Cas9 core domain from Table 8 or 9, e.g., a S. aureus, S. pyogenes, or C. jejuni Cas9 core domain; and


b) an altered PI domain from a species X Cas9 sequence selected from Tables 11 and 12.


In an embodiment, the RKR motif (the PAM binding motif) of said altered PI domain comprises: differences at 1, 2, or 3 amino acid residues; a difference in amino acid sequence at the first, second, or third position; differences in amino acid sequence at the first and second positions, the first and third positions, or the second and third positions; as compared with the sequence of the RKR motif of the native or endogenous PI domain associated with the Cas9 core domain.


In an embodiment, the Cas9 core domain comprises the Cas9 core domain from a species X Cas9 from Table 8 and said altered PI domain comprises a PI domain from a species Y Cas9 from Table 8.


In an embodiment, the RKR motif of the species X Cas9 is other than the RKR motif of the species Y Cas9.


In an embodiment, the RKR motif of the altered PI domain is selected from XXY, XNG, and XNQ.


In an embodiment, the altered PI domain has at least 60, 70, 80, 90, 95, or 100% homology with the amino acid sequence of a naturally occurring PI domain of said species Y from Table 8.


In an embodiment, the altered PI domain differs by no more than 50, 40, 30, 25, 20, 15, 10, 5, 4, 3, 2, or 1 amino acid residue from the amino acid sequence of a naturally occurring PI domain of said second species from Table 8.


In an embodiment, the Cas9 core domain comprises a S. aureus core domain and altered PI domain comprises: an A. denitrificans PI domain; a C. jejuni PI domain; a H. mustelae PI domain; or an altered PI domain of species X PI domain, wherein species X is selected from Table 12.


In an embodiment, the Cas9 core domain comprises a S. pyogenes core domain and the altered PI domain comprises: an A. denitrificans PI domain; a C. jejuni PI domain; a H. mustelae PI domain; or an altered PI domain of species X PI domain, wherein species X is selected from Table 12.


In an embodiment, the Cas9 core domain comprises a C. jejuni core domain and the altered PI domain comprises: an A. denitrificans PI domain; a H. mustelae PI domain; or an altered PI domain of species X PI domain, wherein species X is selected from Table 12.


In an embodiment, the Cas9 molecule or Cas9 polypeptide further comprises a linker disposed between said Cas9 core domain and said altered PI domain.


In an embodiment, the linker comprises: a linker described elsewhere herein disposed between the Cas9 core domain and the heterologous PI domain. Suitable linkers are further described in Section V.


Exemplary altered PI domains for use in Syn-Cas9 molecules are described in Tables 11 and 12. The sequences for the 83 Cas9 orthologs referenced in Tables 11 and 12 are provided in Table 8. Table 10 provides the Cas9 orthologs with known PAM sequences and the corresponding RKR motif.


In an embodiment, a Syn-Cas9 molecule or Syn-Cas9 polypeptide may also be size-optimized, e.g., the Syn-Cas9 molecule or Syn-Cas9 polypeptide comprises one or more deletions, and optionally one or more linkers disposed between the amino acid residues flanking the deletions. In an embodiment, a Syn-Cas9 molecule or Syn-Cas9 polypeptide comprises a REC deletion.


Size-Optimized Cas9 Molecules and Cas9 Polypeptides


Engineered Cas9 molecules and engineered Cas9 polypeptides described herein include a Cas9 molecule or Cas9 polypeptide comprising a deletion that reduces the size of the molecule while still retaining desired Cas9 properties, e.g., essentially native conformation, Cas9 nuclease activity, and/or target nucleic acid molecule recognition. Provided herein are Cas9 molecules or Cas9 polypeptides comprising one or more deletions and optionally one or more linkers, wherein a linker is disposed between the amino acid residues that flank the deletion. Methods for identifying suitable deletions in a reference Cas9 molecule, methods for generating Cas9 molecules with a deletion and a linker, and methods for using such Cas9 molecules will be apparent to one of ordinary skill in the art upon review of this document.


A Cas9 molecule, e.g., a S. aureus, S. pyogenes, or C. jejuni, Cas9 molecule, having a deletion is smaller, e.g., has reduced number of amino acids, than the corresponding naturally-occurring Cas9 molecule. The smaller size of the Cas9 molecules allows increased flexibility for delivery methods, and thereby increases utility for genome-editing. A Cas9 molecule or Cas9 polypeptide can comprise one or more deletions that do not substantially affect or decrease the activity of the resultant Cas9 molecules or Cas9 polypeptides described herein. Activities that are retained in the Cas9 molecules or Cas9 polypeptides comprising a deletion as described herein include one or more of the following:


a nickase activity, i.e., the ability to cleave a single strand, e.g., the non-complementary strand or the complementary strand, of a nucleic acid molecule; a double stranded nuclease activity, i.e., the ability to cleave both strands of a double stranded nucleic acid and create a double stranded break, which in an embodiment is the presence of two nickase activities;


an endonuclease activity;


an exonuclease activity;


a helicase activity, i.e., the ability to unwind the helical structure of a double stranded nucleic acid;


and recognition activity of a nucleic acid molecule, e.g., a target nucleic acid or a gRNA.


Activity of the Cas9 molecules or Cas9 polypeptides described herein can be assessed using the activity assays described herein or in the art.


Identifying Regions Suitable for Deletion


Suitable regions of Cas9 molecules for deletion can be identified by a variety of methods. Naturally-occurring orthologous Cas9 molecules from various bacterial species, e.g., any one of those listed in Table 8, can be modeled onto the crystal structure of S. pyogenes Cas9 (Nishimasu et al., Cell, 156:935-949, 2014) to examine the level of conservation across the selected Cas9 orthologs with respect to the three-dimensional conformation of the protein. Less conserved or unconserved regions that are spatially located distant from regions involved in Cas9 activity, e.g., interface with the target nucleic acid molecule and/or gRNA, represent regions or domains are candidates for deletion without substantially affecting or decreasing Cas9 activity.


REC-Optimized Cas9 Molecules and Cas9 Polypeptides


A REC-optimized Cas9 molecule, or a REC-optimized Cas9 polypeptide, as that term is used herein, refers to a Cas9 molecule or Cas9 polypeptide that comprises a deletion in one or both of the REC2 domain and the RE1CT domain (collectively a REC deletion), wherein the deletion comprises at least 10% of the amino acid residues in the cognate domain. A REC-optimized Cas9 molecule or Cas9 polypeptide can be an eaCas9 molecule or eaCas9 polypeptide, or an eiCas9 molecule or eiCas9 polypeptide. An exemplary REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide comprises:


a) a deletion selected from:

    • i) a REC2 deletion;
    • ii) a REC1CT deletion; or
    • iii) a REC1SUB deletion.


Optionally, a linker is disposed between the amino acid residues that flank the deletion. In an embodiment, a Cas9 molecule or Cas9 polypeptide includes only one deletion, or only two deletions. A Cas9 molecule or Cas9 polypeptide can comprise a REC2 deletion and a REC1CT deletion. A Cas9 molecule or Cas9 polypeptide can comprise a REC2 deletion and a REC1SUB deletion.


Generally, the deletion will contain at least 10% of the amino acids in the cognate domain, e.g., a REC2 deletion will include at least 10% of the amino acids in the REC2 domain.


A deletion can comprise: at least 10, 20, 30, 40, 50, 60, 70, 80, or 90% of the amino acid residues of its cognate domain; all of the amino acid residues of its cognate domain; an amino acid residue outside its cognate domain; a plurality of amino acid residues outside its cognate domain; the amino acid residue immediately N terminal to its cognate domain; the amino acid residue immediately C terminal to its cognate domain; the amino acid residue immediately N terminal to its cognate and the amino acid residue immediately C terminal to its cognate domain; a plurality of, e.g., up to 5, 10, 15, or 20, amino acid residues N terminal to its cognate domain; a plurality of, e.g., up to 5, 10, 15, or 20, amino acid residues C terminal to its cognate domain; a plurality of, e.g., up to 5, 10, 15, or 20, amino acid residues N terminal to its cognate domain and a plurality of e.g., up to 5, 10, 15, or 20, amino acid residues C terminal to its cognate domain.


In an embodiment, a deletion does not extend beyond: its cognate domain; the N terminal amino acid residue of its cognate domain; the C terminal amino acid residue of its cognate domain.


A REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide can include a linker disposed between the amino acid residues that flank the deletion. Any linkers known in the art that maintain the conformation or native fold of the Cas9 molecule (thereby retaining Cas9 activity) can be used between the amino acid resides that flank a REC deletion in a REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide. Linkers for use in generating recombinant proteins, e.g., multi-domain proteins, are known in the art (Chen et al., Adv Drug Delivery Rev, 65:1357-69, 2013).


In an embodiment, a REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide comprises an amino acid sequence that, other than any REC deletion and associated linker, has at least 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 99, or 100% homology with the amino acid sequence of a naturally occurring Cas9, e.g., a Cas9 molecule described in Table 8, e.g., a S. aureus Cas9 molecule, a S. pyogenes Cas9 molecule, or a C. jejuni Cas9 molecule.


In an embodiment, a REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide comprises an amino acid sequence that, other than any REC deletion and associated linker, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25, amino acid residues from the amino acid sequence of a naturally occurring Cas 9, e.g., a Cas9 molecule described in Table 8, e.g., a S. aureus Cas9 molecule, a S. pyogenes Cas9 molecule, or a C. jejuni Cas9 molecule.


In an embodiment, a REC-optimized Cas9 molecule or REC-optimized Cas9 polypeptide comprises an amino acid sequence that, other than any REC deletion and associate linker, differs by no more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25% of the, amino acid residues from the amino acid sequence of a naturally occurring Cas 9, e.g., a Cas9 molecule described in Table 8, e.g., a S. aureus Cas9 molecule, a S. pyogenes Cas9 molecule, or a C. jejuni Cas9 molecule.


For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman, (1970) Adv. Appl. Math. 2:482c, by the homology alignment algorithm of Needleman and Wunsch, (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman, (1988) Proc. Nat'l. Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection (see, e.g., Brent et al., (2003) Current Protocols in Molecular Biology).


Two examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., (1977) Nuc. Acids Res. 25:3389-3402; and Altschul et al., (1990) J. Mol. Biol. 215:403-410, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information.


The percent identity between two amino acid sequences can also be determined using the algorithm of E. Meyers and W. Miller, (1988) Comput. Appl. Biosci. 4:11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences can be determined using the Needleman and Wunsch (1970) J. Mol. Biol. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG software package (available at www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.


Sequence information for exemplary REC deletions are provided for 83 naturally-occurring Cas9 orthologs in Table 8.


The amino acid sequences of exemplary Cas9 molecules from different bacterial species are shown below.









TABLE 8







Amino Acid Sequence of Cas9 Orthologs













REC2
REC1CT
Recsub


















Amino
start
stop
# AA
start
stop
# AA
start
stop
# AA



acid
(AA
(AA
deleted
(AA
(AA
deleted
(AA
(AA
deleted


Species/Composite ID
sequence
pos)
pos)
(n)
pos)
pos)
(n)
pos)
pos)
(n)





















Staphylococcus
Aureus

SEQ ID
126
166
41
296
352
57
296
352
57


tr|J7RUA5|J7RUA5_STAAU
NO: 304












Streptococcus
Pyogenes

SEQ ID
176
314
139
511
592
82
511
592
82


sp|Q99ZW2|CAS9_STRP1
NO: 305












Campylobacter
jejuni NCTC 11168

SEQ ID
137
181
45
316
360
45
316
360
45


gi|218563121|ref|YP_002344900.1
NO: 306












Bacteroides
fragilis NCTC 9343

SEQ ID
148
339
192
524
617
84
524
617
84


gi|60683389|ref|YP_213533.1|
NO: 307












Bifidobacterium
bifidum S17

SEQ ID
173
335
163
516
607
87
516
607
87


gi|310286728|ref|YP_003937986.
NO: 308












Veillonella
atypica ACS-134-V-Col7a

SEQ ID
185
339
155
574
663
79
574
663
79


gi|303229466|ref|ZP_07316256.1
NO: 309












Lactobacillus
rhamnosus GG

SEQ ID
169
320
152
559
645
78
559
645
78


gi|258509199|ref|YP_003171950.1
NO: 310












Filifactor
alocis ATCC 35896

SEQ ID
166
314
149
508
592
76
508
592
76


gi|374307738|ref|YP_005054169.1
NO: 311












Oenococcus
kitaharae DSM 17330

SEQ ID
169
317
149
555
639
80
555
639
80


gi|366983953|gb|EHN59352.1|
NO: 312












Fructobacillus
fructosus KCTC 3544

SEQ ID
168
314
147
488
571
76
488
571
76


gi|339625081|ref|ZP_08660870.1
NO: 313












Catenibacterium
mitsuokai DSM 15897

SEQ ID
173
318
146
511
594
78
511
594
78


gi|224543312|ref|ZP_03683851.1
NO: 314












Finegoldia
magna ATCC 29328

SEQ ID
168
313
146
452
534
77
452
534
77


gi|169823755|ref|YP_001691366.1
NO: 315












CoriobacteriumglomeransPW2

SEQ ID
175
318
144
511
592
82
511
592
82


gi|328956315|ref|YP_004373648.1
NO: 316












Eubacterium
yurii ATCC 43715

SEQ ID
169
310
142
552
633
76
552
633
76


gi|306821691|ref|ZP_07455288.1
NO: 317












Peptoniphilus
duerdenii ATCC BAA-1640

SEQ ID
171
311
141
535
615
76
535
615
76


gi|304438954|ref|ZP_07398877.1
NO: 318












Acidaminococcus sp. D21

SEQ ID
167
306
140
511
591
75
511
591
75


gi|227824983|ref|ZP_03989815.1
NO: 319












Lactobacillus
farciminis KCTC 3681

SEQ ID
171
310
140
542
621
85
542
621
85


gi|336394882|ref|ZP_08576281.1
NO: 320












Streptococcus
sanguinis SK49

SEQ ID
185
324
140
411
490
85
411
490
85


gi|422884106|ref|ZP_16930555.1
NO: 321












Coprococcus
catus GD-7

SEQ ID
172
310
139
556
634
76
556
634
76


gi|291520705|emb|CBK78998.1|
NO: 322












Streptococcus
mutans UA159

SEQ ID
176
314
139
392
470
84
392
470
84


gi|24379809|ref|NP_721764.1|
NO: 323












Streptococcus
pyogenes M1 GAS

SEQ ID
176
314
139
523
600
82
523
600
82


gi|13622193|gb|AAK33936.1|
NO: 324












Streptococcus
thermophilus LMD-9

SEQ ID
176
314
139
481
558
81
481
558
81


gi|116628213|ref|YP_820832.1|
NO: 325












Fusobacteriumnucleatum ATCC49256

SEQ ID
171
308
138
537
614
76
537
614
76


gi|34762592|ref|ZP_00143587.1|
NO: 326












Planococcus
antarcticus DSM 14505

SEQ ID
162
299
138
538
614
94
538
614
94


gi|389815359|ref|ZP_10206685.1
NO: 327












Treponema
denticola ATCC 35405

SEQ ID
169
305
137
524
600
81
524
600
81


gi|42525843|ref|NP_970941.1|
NO: 328












Solobacterium
moorei F0204

SEQ ID
179
314
136
544
619
77
544
619
77


gi|320528778|ref|ZP_08029929.1
NO: 329












Staphylococcus
pseudintermedius ED99

SEQ ID
164
299
136
531
606
92
531
606
92


gi|323463801|gb|ADX75954.1|
NO: 330












Flavobacterium
branchiophilum FL-15

SEQ ID
162
286
125
538
613
63
538
613
63


gi|347536497|ref|YP_004843922.1
NO: 331












Ignavibacterium
album JCM 16511

SEQ ID
223
329
107
357
432
90
357
432
90


gi|385811609|ref|YP_005848005.1
NO: 332












Bergeyella
zoohelcum ATCC 43767

SEQ ID
165
261
97
529
604
56
529
604
56


gi|423317190|ref|ZP_17295095.1
NO: 333












Nitrobacter
hamburgensis X14

SEQ ID
169
253
85
536
611
48
536
611
48


gi|92109262|ref|YP_571550.1|
NO: 334












Odoribacter
laneus YIT 12061

SEQ ID
164
242
79
535
610
63
535
610
63


gi|374384763|ref|ZP_09642280.1
NO: 335












Legionella
pneumophila str. Paris

SEQ ID
164
239
76
402
476
67
402
476
67


gi|54296138|ref|YP_122507.1|
NO: 336












Bacteroides sp. 20 3

SEQ ID
198
269
72
530
604
83
530
604
83


gi|301311869|ref|ZP_07217791.1
NO: 337












Akkermansia
muciniphila ATCC BAA-835

SEQ ID
136
202
67
348
418
62
348
418
62


gi|187736489|ref|YP_001878601
NO: 338












Prevotella sp. C561

SEQ ID
184
250
67
357
425
78
357
425
78


gi|345885718|ref|ZP_08837074.1
NO: 339












Wolinella
succinogenes DSM 1740

SEQ ID
157
218
36
401
468
60
401
468
60


gi|34557932|ref|NP_907747.1|
NO: 340












Alicyclobacillus
hesperidum URH17-3-68

SEQ ID
142
196
55
416
482
61
416
482
61


gi|403744858|ref|ZP_10953934.1
NO: 341












Caenispirillum
salinarum AK4

SEQ ID
161
214
54
330
393
68
330
393
68


gi|427429481|ref|ZP_18919511.1
NO: 342












Eubacterium
rectale ATCC 33656

SEQ ID
133
185
53
322
384
60
322
384
60


gi|238924075|ref|YP_002937591.1
NO: 343












Mycoplasma
synoviae 53

SEQ ID
187
239
53
319
381
80
319
381
80


gi|71894592|ref|YP_278700.1|
NO: 344












Porphyromonas sp. oral taxon 279 str. F0450

SEQ ID
150
202
53
309
371
60
309
371
60


gi|402847315|ref|ZP_10895610.1
NO: 345












Streptococcus
thermophilus LMD-9

SEQ ID
127
178
139
424
486
81
424
486
81


gi|116627542|ref|YP_820161.1|
NO: 346












Roseburia
inulinivorans DSM 16841

SEQ ID
154
204
51
318
380
69
318
380
69


gi|225377804|ref|ZP_03755025.1
NO: 347












Methylosinus
trichosporium OB3b

SEQ ID
144
193
50
426
488
64
426
488
64


gi|296446027|ref|ZP_06887976.1
NO: 348












Ruminococcus
albus 8

SEQ ID
139
187
49
351
412
55
351
412
55


gi|325677756|ref|ZP_08157403.1
NO: 349












Bifidobacterium
longum DJO10A

SEQ ID
183
230
48
370
431
44
370
431
44


gi|189440764|ref|YP_001955845
NO: 350












Enterococcus
faecalis TX0012

SEQ ID
123
170
48
327
387
60
327
387
60


gi|315149830|gb|EFT93846.1|
NO: 351












Mycoplasma
mobile 163K

SEQ ID
179
226
48
314
374
79
314
374
79


gi|47458868|ref|YP_015730.1|
NO: 352












Actinomyces
coleocanis DSM 15436

SEQ ID
147
193
47
358
418
40
358
418
40


gi|227494853|ref|ZP_03925169.1
NO: 353












Dinoroseobacter
shibae DFL 12

SEQ ID
138
184
47
338
398
48
338
398
48


gi|159042956|ref|YP_001531750.1
NO: 354












Actinomyces sp. oral taxon 180 str. F0310

SEQ ID
183
228
46
349
409
40
349
409
40


gi|315605738|ref|ZP_07880770.1
NO: 355












Alcanivorax sp. W11-5

SEQ ID
139
183
45
344
404
61
344
404
61


gi|407803669|ref|ZP_11150502.1
NO: 356












Aminomonas
paucivorans DSM 12260

SEQ ID
134
178
45
341
401
63
341
401
63


gi|312879015|ref|ZP_07738815.1
NO: 357












Mycoplasma
canis PG 14

SEQ ID
139
183
45
319
379
76
319
379
76


gi|384393286|gb|EIE39736.1|
NO: 358












Lactobacillus
coryniformis KCTC 3535

SEQ ID
141
184
44
328
387
61
328
387
61


gi|336393381|ref|ZP_08574780.1
NO: 359












Elusimicrobium
minutum Pei191

SEQ ID
177
219
43
322
381
47
322
381
47


gi|187250660|ref|YP_001875142.1
NO: 360












Neisseria
meningitidis Z2491

SEQ ID
147
189
43
360
419
61
360
419
61


gi|218767588|ref|YP_002342100.1
NO: 361












Pasteurella
multocida str. Pm70

SEQ ID
139
181
43
319
378
61
319
378
61


gi|15602992|ref|NP_246064.1|
NO: 362












Rhodovulum sp. PH10

SEQ ID
141
183
43
319
378
48
319
378
48


gi|402849997|ref|ZP_10898214.1
NO: 363












Eubacterium
dolichum DSM 3991

SEQ ID
131
172
42
303
361
59
303
361
59


gi|160915782|ref|ZP_02077990.1
NO: 364












Nitratifractor
salsuginis DSM 16511

SEQ ID
143
184
42
347
404
61
347
404
61


gi|319957206|ref|YP_004168469.1
NO: 365












Rhodospirillum
rubrum ATCC 11170

SEQ ID
139
180
42
314
371
55
314
371
55


gi|83591793|ref|YP_425545.1|
NO: 366












Clostridium
cellulolyticum H10

SEQ ID
137
176
40
320
376
61
320
376
61


gi|220930482|ref|YP_002507391.1
NO: 367












Helicobacter
mustelae 12198

SEQ ID
148
187
40
298
354
48
298
354
48


gi|291276265|ref|YP_003516037.1
NO: 368












Ilyobacter
polytropus DSM 2926

SEQ ID
134
173
40
462
517
63
462
517
63


gi|310780384|ref|YP_003968716.1
NO: 369












Sphaerochaeta
globus str. Buddy

SEQ ID
163
202
40
335
389
45
335
389
45


gi|325972003|ref|YP_004248194.1
NO: 370












Staphylococcus
lugdunensis M23590

SEQ ID
128
167
40
337
391
57
337
391
57


gi|315659848|ref|ZP_07912707.1
NO: 371












Treponema sp. JC4

SEQ ID
144
183
40
328
382
63
328
382
63


gi|384109266|ref|ZP_10010146.1
NO: 372











uncultured delta proteobacterium
SEQ ID
154
193
40
313
365
55
313
365
55


HF0070 07E19
NO: 373











gi|297182908|gb|ADI19058.1|













Alicycliphilus
denitrificans K601

SEQ ID
140
178
39
317
366
48
317
366
48


gi|330822845|ref|YP_004386148.1
NO: 374












Azospirillum sp. B510

SEQ ID
205
243
39
342
389
46
342
389
46


gi|288957741|ref|YP_003448082.1
NO: 375












Bradyrhizobium sp. BTAi1

SEQ ID
143
181
39
323
370
48
323
370
48


gi|148255343|ref|YP_001239928.1
NO: 376












Parvibaculum
lavamentivorans DS-1

SEQ ID
138
176
39
327
374
58
327
374
58


gi|154250555|ref|YP_001411379.1
NO: 377












Prevotella
timonensis CRIS 5C-B1

SEQ ID
170
208
39
328
375
61
328
375
61


gi|282880052|ref|ZP_06288774.1
NO: 378












Bacillus
smithii 7 3 47FAA

SEQ ID
134
171
38
401
448
63
401
448
63


gi|365156657|ref|ZP_09352959.1
NO: 379












Cand. Puniceispirillummarinum IMCC1322

SEQ ID
135
172
38
344
391
53
344
391
53


gi|294086111|ref|YP_003552871.1
NO: 380












Barnesiella
intestinihominis YIT 11860

SEQ ID
140
176
37
371
417
60
371
417
60


gi|404487228|ref|ZP_11022414.1
NO: 381












Ralstonia
syzygii R24

SEQ ID
140
176
37
395
440
50
395
440
50


gi|344171927|emb|CCA84553.1|
NO: 382












Wolinella
succinogenes DSM 1740

SEQ ID
145
180
36
348
392
60
348
392
60


gi|34557790|ref|NP_907605.1|
NO: 383












Mycoplasma
gallisepticum str. F

SEQ ID
144
177
34
373
416
71
373
416
71


gi|284931710|gb|ADC31648.1|
NO: 384












Acidothermus
cellulolyticus 11B

SEQ ID
150
182
33
341
380
58
341
380
58


gi|117929158|ref|YP_873709.1|
NO: 385












Mycoplasma
ovipneumoniae SC01

SEQ ID
156
184
29
381
420
62
381
420
62


gi|363542550|ref|ZP_09312133.1
NO: 386
















TABLE 9







Amino Acid Sequence of Cas9 Core Domains










Cas9 Start (AA pos)
Cas9 Stop (AA pos)









Start and Stop numbers refer to the


Strain Name
sequence in Table 7













Staphylococcus Aureus

1
772



Streptococcus Pyogenes

1
1099



Campulobacter Jejuni

1
741
















TABLE 10







Identified PAM sequences and


corresponding RKR motifs











RKR



PAM sequence
motif


Strain Name
(NA)
(AA)






Streptococcus pyogenes

NGG
RKR






Streptococcus mutans

NGG
RKR






Streptococcus

NGGNG
RYR



thermophilus A







Treponema denticola

NAAAAN
VAK






Streptococcus

NNAAAAW
IYK



thermophilus B







Campylobacter jejuni

NNNNACA
NLK






Pasteurella multocida

GNNNCNNA
KDG






Neisseria meningitidis

NNNNGATT or
IGK






Staphylococcus aureus

NNGRRV (R = A or G;
NDK



V = A, G or C)



NNGRRT (R = A or G)










PI domains are provided in Tables 11 and 12.









TABLE 11







Altered PI Domains











PI Start
PI Stop (AA




(AA pos)
pos)











Start and Stop numbers





refer to the sequences in
Length of PI
RKR


Strain Name
Table 100
(AA)
motif (AA)















Alicycliphilus

837
1029
193
--Y



denitrificans



K601



Campylobacter

741
984
244
-NG



jejuni NCTC



11168



Helicobacter

771
1024
254
-NQ



mustelae 12198

















TABLE 12







Other Altered PI Domains











PI Start
PI Stop (AA




(AA pos)
pos)











Start and Stop numbers





refer to the sequences in
Length of PI


Strain Name
Table 7
(AA)
RKR motif (AA)















Akkermansia muciniphila ATCC BAA-835

871
1101
231
ALK



Ralstonia syzygii R24

821
1062
242
APY



Cand. Puniceispirillum marinum IMCC1322

815
1035
221
AYK



Fructobacillus fructosus KCTC 3544

1074
1323
250
DGN



Eubacterium yurii ATCC 43715

1107
1391
285
DGY



Eubacterium dolichum DSM 3991

779
1096
318
DKK



Dinoroseobacter shibae DFL 12

851
1079
229
DPI



Clostridium cellulolyticum H10

767
1021
255
EGK



Pasteurella multocida str. Pm70

815
1056
242
ENN



Mycoplasma canis PG 14

907
1233
327
EPK



Porphyromonas sp. oral taxon 279 str. F0450

935
1197
263
EPT



Filifactor alocis ATCC 35896

1094
1365
272
EVD



Aminomonas paucivorans DSM 12260

801
1052
252
EVY



Wolinella succinogenes DSM 1740

1034
1409
376
EYK



Oenococcus kitaharae DSM 17330

1119
1389
271
GAL



Coriobacterium glomerans PW2

1126
1384
259
GDR



Peptoniphilus duerdenii ATCC BAA-1640

1091
1364
274
GDS



Bifidobacterium bifidum S17

1138
1420
283
GGL



Alicyclobacillus hesperidum URH17-3-68

876
1146
271
GGR



Roseburia inulinivorans DSM 16841

895
1152
258
GGT



Actinomyces coleocanis DSM 15436

843
1105
263
GKK



Odoribacter laneus YIT 12061

1103
1498
396
GKV



Coprococcus catus GD-7

1063
1338
276
GNQ



Enterococcus faecalis TX0012

829
1150
322
GRK



Bacillus smithii 7 3 47FAA

809
1088
280
GSK



Legionella pneumophila str. Paris

1021
1372
352
GTM



Bacteroides fragilis NCTC 9343

1140
1436
297
IPV



Mycoplasma ovipneumoniae SC01

923
1265
343
IRI



Actinomyces sp. oral taxon 180 str. F0310

895
1181
287
KEK



Treponema sp. JC4

832
1062
231
KIS



Fusobacteriumnucleatum ATCC49256

1073
1374
302
KKV



Lactobacillus farciminis KCTC 3681

1101
1356
256
KKV



Nitratifractor salsuginis DSM 16511

840
1132
293
KMR



Lactobacillus coryniformis KCTC 3535

850
1119
270
KNK



Mycoplasma mobile 163K

916
1236
321
KNY



Flavobacterium branchiophilum FL-15

1182
1473
292
KQK



Prevotella timonensis CRIS 5C-B1

957
1218
262
KQQ



Methylosinus trichosporium OB3b

830
1082
253
KRP



Prevotella sp. C561

1099
1424
326
KRY



Mycoplasma gallisepticum str. F

911
1269
359
KTA



Lactobacillus rhamnosus GG

1077
1363
287
KYG



Wolinella succinogenes DSM 1740

811
1059
249
LPN



Streptococcus thermophilus LMD-9

1099
1388
290
MLA



Treponema denticola ATCC 35405

1092
1395
304
NDS



Bergeyella zoohelcum ATCC 43767

1098
1415
318
NEK



Veillonella atypica ACS-134-V-Col7a

1107
1398
292
NGF



Neisseria meningitidis Z2491

835
1082
248
NHN



Ignavibacterium album JCM 16511

1296
1688
393
NKK



Ruminococcus albus 8

853
1156
304
NNF



Streptococcus thermophilus LMD-9

811
1121
311
NNK



Barnesiella intestinihominis YIT 11860

871
1153
283
NPV



Azospirillum sp. B510

911
1168
258
PFH



Rhodospirillum rubrum ATCC 11170

863
1173
311
PRG



Planococcus antarcticus DSM 14505

1087
1333
247
PYY



Staphylococcus pseudintermedius ED99

1073
1334
262
QIV



Alcanivorax sp. W11-5

843
1113
271
RIE



Bradyrhizobium sp. BTAi1

811
1064
254
RIY



Streptococcus pyogenes M1 GAS

1099
1368
270
RKR



Streptococcus mutans UA159

1078
1345
268
RKR



Streptococcus Pyogenes

1099
1368
270
RKR



Bacteroides sp. 20 3

1147
1517
371
RNI



S. aureus

772
1053
282
RNK



Solobacterium moorei F0204

1062
1327
266
RSG



Finegoldia magna ATCC 29328

1081
1348
268
RTE


uncultured delta proteobacterium HF0070 07E19
770
1011
242
SGG



Acidaminococcus sp. D21

1064
1358
295
SIG



Eubacterium rectale ATCC 33656

824
1114
291
SKK



Caenispirillum salinarum AK4

1048
1442
395
SLV



Acidothermus cellulolyticus 11B

830
1138
309
SPS



Catenibacterium mitsuokai DSM 15897

1068
1329
262
SPT



Parvibaculum lavamentivorans DS-1

827
1037
211
TGN



Staphylococcus lugdunensis M23590

772
1054
283
TKK



Streptococcus sanguinis SK49

1123
1421
299
TRM



Elusimicrobium minutum Pei191

910
1195
286
TTG



Nitrobacter hamburgensis X14

914
1166
253
VAY



Mycoplasma synoviae 53

991
1314
324
VGF



Sphaerochaeta globus str. Buddy

877
1179
303
VKG



Ilyobacter polytropus DSM 2926

837
1092
256
VNG



Rhodovulum sp. PH10

821
1059
239
VPY



Bifidobacterium longum DJO10A

904
1187
284
VRK









Amino Acid Sequences Described in Table 8:










SEQ ID NO: 304









MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRRRHRI






QRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDT





GNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQ





LDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLY





NALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGK





PEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQIS





NLKGYTGTHNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSP





VVKRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTT





GKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVK





QEENSKKGNRTPFQYLSSSDSKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKD





FINRNLVDTRYATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAED





ALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKD





YKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLKKLINKSPEKLLMYHH





DPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDD





YPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQA





EFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIASKT





QSIKKYSTDILGNLYEVKSKKHPQIIKKG











SEQ ID NO: 305









MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRL






KRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAY





HEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF





DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS





MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMD





GTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRI





PYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHS





LLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD





SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA





HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTF





KEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQ





TTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINR





LSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK





FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKS





KLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAK





SEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLS





MPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKG





KSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS





AGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRV





ILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLD





ATLIHQSITGLYETRIDLSQLGGD











SEQ ID NO: 306









MARILAFDIGISSIGWAFSENDELKDCGVRIFTKVENPKTGESLALPRRLARSARKRLARRKAR






LNHLKHLIANEFKLNYEDYQSFDESLAKAYKGSLISPYELRFRALNELLSKQDFARVILHIAKR





RGYDDIKNSDDKEKGAILKAIKQNEEKLANYQSVGEYLYKEYFQKFKENSKEFTNVRNKKESYE





RCIAQSFLKDELKLIFKKQREFGFSFSKKFEEEVLSVAFYKRALKDFSHLVGNCSFFTDEKRAP





KNSPLAFMFVALTRIINLLNNLKNTEGILYTKDDLNALLNEVLKNGTLTYKQTKKLLGLSDDYE





FKGEKGTYFIEFKKYKEFIKALGEHNLSQDDLNEIAKDITLIKDEIKLKKALAKYDLNQNQIDS





LSKLEFKDHLNISFKALKLVTPLMLEGKKYDEACNELNLKVAINEDKKDFLPAFNETYYKDEVT





NPVVLRAIKEYRKVLNALLKKYGKVHKINIELAREVGKNHSQRAKIEKEQNENYKAKKDAELEC





EKLGLKINSKNILKLRLFKEQKEFCAYSGEKIKISDLQDEKMLEIDHIYPYSRSFDDSYMNKVL





VFTKQNQEKLNQTPFEAFGNDSAKWQKIEVLAKNLPTKKQKRILDKNYKDKEQKNFKDRNLNDT





RYIARLVLNYTKDYLDFLPLSDDENTKLNDTQKGSKVHVEAKSGMLTSALRHTWGFSAKDRNNH





LHHAIDAVIIAYANNSIVKAFSDFKKEQESNSAELYAKKISELDYKNKRKFFEPFSGFRQKVLD





KIDEIFVSKPERKKPSGALHEETFRKEEEFYQSYGGKEGVLKALELGKIRKVNGKIVKNGDMFR





VDIFKHKKTNKFYAVPIYTMDFALKVLPNKAVARSKKGEIKDWILMDENYEFCFSLYKDSLILI





QTKDMQEPEFVYYNAFTSSTVSLIVSKHDNKFETLSKNQKILFKNANEKEVIAKSIGIQNLKVF





EKYIVSALGEVTKAEFRQREDFKK











SEQ ID NO: 307









MKRILGLDLGTNSIGWALVNEAENKDERSSIVKLGVRVNPLTVDELTNFEKGKSITTNADRTLK






RGMRRNLQRYKLRRETLTEVLKEHKLITEDTILSENGNRTTFETYRLRAKAVTEEISLEEFARV





LLMINKKRGYKSSRKAKGVEEGTLIDGMDIARELYNNNLTPGELCLQLLDAGKKFLPDFYRSDL





QNELDRIWEKQKEYYPEILTDVLKEELRGKKRDAVWAICAKYFVWKENYTEWNKEKGKTEQQER





EHKLEGIYSKRKRDEAKRENLQWRVNGLKEKLSLEQLVIVFQEMNTQINNSSGYLGAISDRSKE





LYFNKQTVGQYQMEMLDKNPNASLRNMVFYRQDYLDEFNMLWEKQAVYHKELTEELKKEIRDII





IFYQRRLKSQKGLIGFCEFESRQIEVDIDGKKKIKTVGNRVISRSSPLFQEFKIWQILNNIEVT





VVGKKRKRRKLKENYSALFEELNDAEQLELNGSRRLCQEEKELLAQELFIRDKMTKSEVLKLLF





DNPQELDLNFKTIDGNKTGYALFQAYSKMIEMSGHEPVDFKKPVEKVVEYIKAVFDLLNWNTDI





LGFNSNEELDNQPYYKLWHLLYSFEGDNTPTGNGRLIQKMTELYGFEKEYATILANVSFQDDYG





SLSAKAIHKILPHLKEGNRYDVACVYAGYRHSESSLTREEIANKVLKDRLMLLPKNSLHNPVVE





KILNQMVNVINVIIDIYGKPDEIRVELARELKKNAKEREELTKSIAQTTKAHEEYKTLLQTEFG





LTNVSRTDILRYKLYKELESCGYKTLYSNTYISREKLFSKEFDIEHIIPQARLFDDSFSNKTLE





ARSVNIEKGNKTAYDFVKEKFGESGADNSLEHYLNNIEDLFKSGKISKTKYNKLKMAEQDIPDG





FIERDLRNTQYIAKKALSMLNEISHRVVATSGSVTDKLREDWQLIDVMKELNWEKYKALGLVEY





FEDRDGRQIGRIKDWTKRNDHRHHAMDALTVAFTKDVFIQYFNNKNASLDPNANEHAIKNKYFQ





NGRAIAPMPLREFRAEAKKHLENTLISIKAKNKVITGNINKTRKKGGVNKNMQQTPRGQLHLET





IYGSGKQYLTKEEKVNASFDMRKIGTVSKSAYRDALLKRLYENDNDPKKAFAGKNSLDKQPIWL





DKEQMRKVPEKVKIVTLEAIYTIRKEISPDLKVDKVIDVGVRKILIDRLNEYGNDAKKAFSNLD





KNPIWLNKEKGISIKRVTISGISNAQSLHVKKDKDGKPILDENGRNIPVDFVNTGNNHHVAVYY





RPVIDKRGQLVVDEAGNPKYELEEVVVSFFEAVTRANLGLPIIDKDYKTTEGWQFLFSMKQNEY





FVFPNEKTGFNPKEIDLLDVENYGLISPNLFRVQKFSLKNYVFRHHLETTIKDTSSILRGITWI





DFRSSKGLDTIVKVRVNHIGQIVSVGEY











SEQ ID NO: 308









MSRKNYVDDYAISLDIGNASVGWSAFTPNYRLVRAKGHELIGVRLFDPADTAESRRMARTTRRR






YSRRRWRLRLLDALFDQALSEIDPSFLARRKYSWVHPDDENNADCWYGSVLFDSNEQDKRFYEK





YPTIYHLRKALMEDDSQHDIREIYLAIHHMVKYRGNFLVEGTLESSNAFKEDELLKLLGRITRY





EMSEGEQNSDIEQDDENKLVAPANGQLADALCATRGSRSMRVDNALEALSAVNDLSREQRAIVK





AIFAGLEGNKLDLAKIFVSKEFSSENKKILGIYFNKSDYEEKCVQIVDSGLLDDEEREFLDRMQ





GQYNAIALKQLLGRSTSVSDSKCASYDAHRANWNLIKLQLRTKENEKDINENYGILVGWKIDSG





QRKSVRGESAYENMRKKANVFFKKMIETSDLSETDKNRLIHDIEEDKLFPIQRDSDNGVIPHQL





HQNELKQIIKKQGKYYPFLLDAFEKDGKQINKIEGLLTFRVPYFVGPLVVPEDLQKSDNSENHW





MVRKKKGEITPWNFDEMVDKDASGRKFIERLVGTDSYLLGEPTLPKNSLLYQEYEVLNELNNVR





LSVRTGNHWNDKRRMRLGREEKTLLCQRLFMKGQTVTKRTAENLLRKEYGRTYELSGLSDESKF





TSSLSTYGKMCRIFGEKYVNEHRDLMEKIVELQTVFEDKETLLHQLRQLEGISEADCALLVNTH





YTGWGRLSRKLLTTKAGECKISDDFAPRKHSIIEIMRAEDRNLMEIITDKQLGFSDWIEQENLG





AENGSSLMEVVDDLRVSPKVKRGIIQSIRLIDDISKAVGKRPSRIFLELADDIQPSGRTISRKS





RLQDLYRNANLGKEFKGIADELNACSDKDLQDDRLFLYYTQLGKDMYTGEELDLDRLSSAYDID





HIIPQAVTQNDSIDNRVLVARAENARKTDSFTYMPQIADRMRNFWQILLDNGLISRVKFERLTR





QNEFSEREKERFVQRSLVETRQIMKNVATLMRQRYGNSAAVIGLNAELTKEMHRYLGFSHKNRD





INDYHHAQDALCVGIAGQFAANRGFFADGEVSDGAQNSYNQYLRDYLRGYREKLSAEDRKQGRA





FGFIVGSMRSQDEQKRVNPRTGEVVWSEEDKDYLRKVMNYRKMLVTQKVGDDFGALYDETRYAA





TDPKGIKGIPFDGAKQDTSLYGGFSSAKPAYAVLIESKGKTRLVNVTMQEYSLLGDRPSDDELR





KVLAKKKSEYAKANILLRHVPKMQLIRYGGGLMVIKSAGELNNAQQLWLPYEEYCYFDDLSQGK





GSLEKDDLKKLLDSILGSVQCLYPWHRFTEEELADLHVAFDKLPEDEKKNVITGIVSALHADAK





TANLSIVGMTGSWRRMNNKSGYTFSDEDEFIFQSPSGLFEKRVTVGELKRKAKKEVNSKYRTNE





KRLPTLSGASQP











SEQ ID NO: 309









METQTSNQLITSHLKDYPKQDYFVGLDIGTNSVGWAVTNTSYELLKFHSHKMWGSRLFEEGESA






VTRRGFRSMRRRLERRKLRLKLLEELFADAMAQVDSTFFIRLHESKYHYEDKTTGHSSKHILFI





DEDYTDQDYFTEYPTIYHLRKDLMENGTDDIRKLFLAVHHILKYRGNFLYEGATFNSNAFTFED





VLKQALVNITFNCFDTNSAISSISNILMESGKTKSDKAKAIERLVDTYTVFDEVNTPDKPQKEQ





VKEDKKTLKAFANLVLGLSANLIDLFGSVEDIDDDLKKLQIVGDTYDEKRDELAKVWGDEIHII





DDCKSVYDAIILMSIKEPGLTISQSKVKAFDKHKEDLVILKSLLKLDRNVYNEMFKSDKKGLHN





YVHYIKQGRTEETSCSREDFYKYTKKIVEGLADSKDKEYILNEIELQTLLPLQRIKDNGVIPYQ





LHLEELKVILDKCGPKFPFLHTVSDGFSVTEKLIKMLEFRIPYYVGPLNTHHNIDNGGFSWAVR





KQAGRVTPWNFEEKIDREKSAAAFIKNLTNKCTYLFGEDVLPKSSLLYSEFMLLNELNNVRIDG





KALAQGVKQHLIDSIFKQDHKKMTKNRIELFLKDNNYITKKHKPEITGLDGEIKNDLTSYRDMV





RILGNNFDVSMAEDIITDITIFGESKKMLRQTLRNKFGSQLNDETIKKLSKLRYRDWGRLSKKL





LKGIDGCDKAGNGAPKTIIELMRNDSYNLMEILGDKFSFMECIEEENAKLAQGQVVNPHDIIDE





LALSPAVKRAVWQALRIVDEVAHIKKALPSRIFVEVARTNKSEKKKKDSRQKRLSDLYSAIKKD





DVLQSGLQDKEFGALKSGLANYDDAALRSKKLYLYYTQMGRCAYTGNIIDLNQLNTDNYDIDHI





YPRSLTKDDSFDNLVLCERTANAKKSDIYPIDNRIQTKQKPFWAFLKHQGLISERKYERLTRIA





PLTADDLSGFIARQLVETNQSVKATTTLLRRLYPDIDVVFVKAENVSDFRHNNNFIKVRSLNHH





HHAKDAYLNIVVGNVYHEKFTRNFRLFFKKNGANRTYNLAKMFNYDVICTNAQDGKAWDVKTSM





NTVKKMMASNDVRVTRRLLEQSGALADATIYKASVAAKAKDGAYIGMKTKYSVFADVTKYGGMT





KIKNAYSIIVQYTGKKGEEIKEIVPLPIYLINRNATDIELIDYVKSVIPKAKDISIKYRKLCIN





QLVKVNGFYYYLGGKTNDKIYIDNAIELVVPHDIATYIKLLDKYDLLRKENKTLKASSITTSIY





NINTSTVVSLNKVGIDVFDYFMSKLRTPLYMKMKGNKVDELSSTGRSKFIKMTLEEQSIYLLEV





LNLLTNSKTTFDVKPLGITGSRSTIGVKIHNLDEFKIINESITGLYSNEVTIV











SEQ ID NO: 310









MTKLNQPYGIGLDIGSNSIGFAVVDANSHLLRLKGETAIGARLFREGQSAADRRGSRTTRRRLS






RTRWRLSFLRDFFAPHITKIDPDFFLRQKYSEISPKDKDRFKYEKRLFNDRTDAEFYEDYPSMY





HLRLHLMTHTHKADPREIFLAIHHILKSRGHFLTPGAAKDFNTDKVDLEDIFPALTEAYAQVYP





DLELTFDLAKADDFKAKLLDEQATPSDTQKALVNLLLSSDGEKEIVKKRKQVLTEFAKAITGLK





TKFNLALGTEVDEADASNWQFSMGQLDDKWSNIETSMTDQGTEIFEQIQELYRARLLNGIVPAG





MSLSQAKVADYGQHKEDLELFKTYLKKLNDHELAKTIRGLYDRYINGDDAKPFLREDFVKALTK





EVTAHPNEVSEQLLNRMGQANFMLKQRTKANGAIPIQLQQRELDQIIANQSKYYDWLAAPNPVE





AHRWKMPYQLDELLNFHIPYYVGPLITPKQQAESGENVFAWMVRKDPSGNITPYNFDEKVDREA





SANTFIQRMKTTDTYLIGEDVLPKQSLLYQKYEVLNELNNVRINNECLGTDQKQRLIREVFERH





SSVTIKQVADNLVAHGDFARRPEIRGLADEKRFLSSLSTYHQLKEILHEAIDDPTKLLDIENII





TWSTVFEDHTIFETKLAEIEWLDPKKINELSGIRYRGWGQFSRKLLDGLKLGNGHTVIQELMLS





NHNLMQILADETLKETMTELNQDKLKTDDIEDVINDAYTSPSNKKALRQVLRVVEDIKHAANGQ





DPSWLFIETADGTGTAGKRTQSRQKQIQTVYANAAQELIDSAVRGELEDKIADKASFTDRLVLY





FMQGGRDIYTGAPLNIDQLSHYDIDHILPQSLIKDDSLDNRVLVNATINREKNNVFASTLFAGK





MKATWRKWHEAGLISGRKLRNLMLRPDEIDKFAKGFVARQLVETRQIIKLTEQIAAAQYPNTKI





IAVKAGLSHQLREELDFPKNRDVNHYHHAFDAFLAARIGTYLLKRYPKLAPFFTYGEFAKVDVK





KFREFNFIGALTHAKKNIIAKDTGEIVWDKERDIRELDRIYNFKRMLITHEVYFETADLFKQTI





YAAKDSKERGGSKQLIPKKQGYPTQVYGGYTQESGSYNALVRVAEADTTAYQVIKISAQNASKI





ASANLKSREKGKQLLNEIVVKQLAKRRKNWKPSANSFKIVIPRFGMGTLFQNAKYGLFMVNSDT





YYRNYQELWLSRENQKLLKKLFSIKYEKTQMNHDALQVYKAIIDQVEKFFKLYDINQFRAKLSD





AIERFEKLPINTDGNKIGKTETLRQILIGLQANGTRSNVKNLGIKTDLGLLQVGSGIKLDKDTQ





IVYQSPSGLFKRRIPLADL











SEQ ID NO: 311









MTKEYYLGLDVGTNSVGWAVTDSQYNLCKFKKKDMWGIRLFESANTAKDRRLQRGNRRRLERKK






QRIDLLQEIFSPEICKIDPTFFIRLNESRLHLEDKSNDFKYPLFIEKDYSDIEYYKEFPTIFHL





RKHLIESEEKQDIRLIYLALHNIIKTRGHFLIDGDLQSAKQLRPILDTFLLSLQEEQNLSVSLS





ENQKDEYEEILKNRSIAKSEKVKKLKNLFEISDELEKEEKKAQSAVIENFCKFIVGNKGDVCKF





LRVSKEELEIDSFSFSEGKYEDDIVKNLEEKVPEKVYLFEQMKAMYDWNILVDILETEEYISFA





KVKQYEKHKTNLRLLRDIILKYCTKDEYNRMFNDEKEAGSYTAYVGKLKKNNKKYWIEKKRNPE





EFYKSLGKLLDKIEPLKEDLEVLTMMIEECKNHTLLPIQKNKDNGVIPHQVHEVELKKILENAK





KYYSFLTETDKDGYSVVQKIESIFRFRIPYYVGPLSTRHQEKGSNVWMVRKPGREDRIYPWNME





EIIDFEKSNENFITRMTNKCTYLIGEDVLPKHSLLYSKYMVLNELNNVKVRGKKLPTSLKQKVF





EDLFENKSKVTGKNLLEYLQIQDKDIQIDDLSGFDKDFKTSLKSYLDFKKQIFGEEIEKESIQN





MIEDIIKWITIYGNDKEMLKRVIRANYSNQLTEEQMKKITGFQYSGWGNFSKMFLKGISGSDVS





TGETFDIITAMWETDNNLMQILSKKFTFMDNVEDFNSGKVGKIDKITYDSTVKEMFLSPENKRA





VWQTIQVAEEIKKVMGCEPKKIFIEMARGGEKVKKRTKSRKAQLLELYAACEEDCRELIKEIED





RDERDFNSMKLFLYYTQFGKCMYSGDDIDINELIRGNSKWDRDHIYPQSKIKDDSIDNLVLVNK





TYNAKKSNELLSEDIQKKMHSFWLSLLNKKLITKSKYDRLTRKGDFTDEELSGFIARQLVETRQ





STKAIADIFKQIYSSEVVYVKSSLVSDFRKKPLNYLKSRRVNDYHHAKDAYLNIVVGNVYNKKF





TSNPIQWMKKNRDTNYSLNKVFEHDVVINGEVIWEKCTYHEDTNTYDGGTLDRIRKIVERDNIL





YTEYAYCEKGELFNATIQNKNGNSTVSLKKGLDVKKYGGYFSANTSYFSLIEFEDKKGDRARHI





IGVPIYIANMLEHSPSAFLEYCEQKGYQNVRILVEKIKKNSLLIINGYPLRIRGENEVDTSFKR





AIQLKLDQKNYELVRNIEKFLEKYVEKKGNYPIDENRDHITHEKMNQLYEVLLSKMKKFNKKGM





ADPSDRIEKSKPKFIKLEDLIDKINVINKMLNLLRCDNDTKADLSLIELPKNAGSFVVKKNTIG





KSKIILVNQSVTGLYENRREL











SEQ ID NO: 312









MARDYSVGLDIGTSSVGWAAIDNKYHLIRAKSKNLIGVRLFDSAVTAEKRRGYRTTRRRLSRRH






WRLRLLNDIFAGPLTDFGDENFLARLKYSWVHPQDQSNQAHFAAGLLFDSKEQDKDFYRKYPTI





YHLRLALMNDDQKHDLREVYLAIHHLVKYRGHFLIEGDVKADSAFDVHTFADAIQRYAESNNSD





ENLLGKIDEKKLSAALTDKHGSKSQRAETAETAFDILDLQSKKQIQAILKSVVGNQANLMAIFG





LDSSAISKDEQKNYKFSFDDADIDEKIADSEALLSDTEFEFLCDLKAAFDGLTLKMLLGDDKTV





SAAMVRRFNEHQKDWEYIKSHIRNAKNAGNGLYEKSKKFDGINAAYLALQSDNEDDRKKAKKIF





QDEISSADIPDDVKADFLKKIDDDQFLPIQRTKNNGTIPHQLHRNELEQIIEKQGIYYPFLKDT





YQENSHELNKITALINFRVPYYVGPLVEEEQKIADDGKNIPDPTNHWMVRKSNDTITPWNLSQV





VDLDKSGRRFIERLTGTDTYLIGEPTLPKNSLLYQKFDVLQELNNIRVSGRRLDIRAKQDAFEH





LFKVQKTVSATNLKDFLVQAGYISEDTQIEGLADVNGKNFNNALTTYNYLVSVLGREFVENPSN





EELLEEITELQTVFEDKKVLRRQLDQLDGLSDHNREKLSRKHYTGWGRISKKLLTTKIVQNADK





IDNQTFDVPRMNQSIIDTLYNTKMNLMEIINNAEDDFGVRAWIDKQNTTDGDEQDVYSLIDELA





GPKEIKRGIVQSFRILDDITKAVGYAPKRVYLEFARKTQESHLTNSRKNQLSTLLKNAGLSELV





TQVSQYDAAALQNDRLYLYFLQQGKDMYSGEKLNLDNLSNYDIDHIIPQAYTKDNSLDNRVLVS





NITNRRKSDSSNYLPALIDKMRPFWSVLSKQGLLSKHKFANLTRTRDFDDMEKERFIARSLVET





RQIIKNVASLIDSHFGGETKAVAIRSSLTADMRRYVDIPKNRDINDYHHAFDALLFSTVGQYTE





NSGLMKKGQLSDSAGNQYNRYIKEWIHAARLNAQSQRVNPFGFVVGSMRNAAPGKLNPETGEIT





PEENADWSIADLDYLHKVMNFRKITVTRRLKDQKGQLYDESRYPSVLHDAKSKASINFDKHKPV





DLYGGFSSAKPAYAALIKFKNKFRLVNVLRQWTYSDKNSEDYILEQIRGKYPKAEMVLSHIPYG





QLVKKDGALVTISSATELHNFEQLWLPLADYKLINTLLKTKEDNLVDILHNRLDLPEMTIESAF





YKAFDSILSFAFNRYALHQNALVKLQAHRDDFNALNYEDKQQTLERILDALHASPASSDLKKIN





LSSGFGRLFSPSHFTLADTDEFIFQSVTGLFSTQKTVAQLYQETK











SEQ ID NO: 313









MVYDVGLDIGTGSVGWVALDENGKLARAKGKNLVGVRLFDTAQTAADRRGFRTTRRRLSRRKWR






LRLLDELFSAEINEIDSSFFQRLKYSYVHPKDEENKAHYYGGYLFPTEEETKKFHRSYPTIYHL





RQELMAQPNKRFDIREIYLAIHHLVKYRGHFLSSQEKITIGSTYNPEDLANAIEVYADEKGLSW





ELNNPEQLTEIISGEAGYGLNKSMKADEALKLFEFDNNQDKVAIKTLLAGLTGNQIDFAKLFGK





DISDKDEAKLWKLKLDDEALEEKSQTILSQLTDEEIELFHAVVQAYDGFVLIGLLNGADSVSAA





MVQLYDQHREDRKLLKSLAQKAGLKHKRFSEIYEQLALATDEATIKNGISTARELVEESNLSKE





VKEDTLRRLDENEFLPKQRTKANSVIPHQLHLAELQKILQNQGQYYPFLLDTFEKEDGQDNKIE





ELLRFRIPYYVGPLVTKKDVEHAGGDADNHWVERNEGFEKSRVTPWNFDKVFNRDKAARDFIER





LTGNDTYLIGEKTLPQNSLRYQLFTVLNELNNVRVNGKKFDSKTKADLINDLFKARKTVSLSAL





KDYLKAQGKGDVTITGLADESKFNSSLSSYNDLKKTFDAEYLENEDNQETLEKIIEIQTVFEDS





KIASRELSKLPLDDDQVKKLSQTHYTGWGRLSEKLLDSKIIDERGQKVSILDKLKSTSQNFMSI





INNDKYGVQAWITEQNTGSSKLTFDEKVNELTTSPANKRGIKQSFAVLNDIKKAMKEEPRRVYL





EFAREDQTSVRSVPRYNQLKEKYQSKSLSEEAKVLKKTLDGNKNKMSDDRYFLYFQQQGKDMYT





GRPINFERLSQDYDIDHIIPQAFTKDDSLDNRVLVSRPENARKSDSFAYTDEVQKQDGSLWTSL





LKSGFINRKKYERLTKAGKYLDGQKTGFIARQLVETRQIIKNVASLIEGEYENSKAVAIRSEIT





ADMRLLVGIKKHREINSFHHAFDALLITAAGQYMQNRYPDRDSTNVYNEFDRYTNDYLKNLRQL





SSRDEVRRLKSFGFVVGTMRKGNEDWSEENTSYLRKVMMFKNILTTKKTEKDRGPLNKETIFSP





KSGKKLIPLNSKRSDTALYGGYSNVYSAYMTLVRANGKNLLIKIPISIANQIEVGNLKINDYIV





NNPAIKKFEKILISKLPLGQLVNEDGNLIYLASNEYRHNAKQLWLSTTDADKIASISENSSDEE





LLEAYDILTSENVKNRFPFFKKDIDKLSQVRDEFLDSDKRIAVIQTILRGLQIDAAYQAPVKII





SKKVSDWHKLQQSGGIKLSDNSEMIYQSATGIFETRVKISDLL











SEQ ID NO: 314









IVDYCIGLDLGTGSVGWAVVDMNHRLMKRNGKHLWGSRLFSNAETAANRRASRSIRRRYNKRRE






RIRLLRAILQDMVLEKDPTFFIRLEHTSFLDEEDKAKYLGTDYKDNYNLFIDEDFNDYTYYHKY





PTIYHLRKALCESTEKADPRLIYLALHHIVKYRGNFLYEGQKFNMDASNIEDKLSDIFTQFTSF





NNIPYEDDEKKNLEILEILKKPLSKKAKVDEVMTLIAPEKDYKSAFKELVTGIAGNKMNVTKMI





LCEPIKQGDSEIKLKFSDSNYDDQFSEVEKDLGEYVEFVDALHNVYSWVELQTIMGATHTDNAS





ISEAMVSRYNKHHDDLKLLKDCIKNNVPNKYFDMFRNDSEKSKGYYNYINRPSKAPVDEFYKYV





KKCIEKVDTPEAKQILNDIELENFLLKQNSRTNGSVPYQMQLDEMIKIIDNQAEYYPILKEKRE





QLLSILTFRIPYYFGPLNETSEHAWIKRLEGKENQRILPWNYQDIVDVDATAEGFIKRMRSYCT





YFPDEEVLPKNSLIVSKYEVYNELNKIRVDDKLLEVDVKNDIYNELFMKNKTVTEKKLKNWLVN





NQCCSKDAEIKGFQKENQFSTSLTPWIDFTNIFGKIDQSNFDLIENIIYDLTVFEDKKIMKRRL





KKKYALPDDKVKQILKLKYKDWSRLSKKLLDGIVADNRFGSSVTVLDVLEMSRLNLMEIINDKD





LGYAQMIEEATSCPEDGKFTYEEVERLAGSPALKRGIWQSLQIVEEITKVMKCRPKYIYIEFER





SEEAKERTESKIKKLENVYKDLDEQTKKEYKSVLEELKGFDNTKKISSDSLFLYFTQLGKCMYS





GKKLDIDSLDKYQIDHIVPQSLVKDDSFDNRVLVVPSENQRKLDDLVVPFDIRDKMYRFWKLLF





DHELISPKKFYSLIKTEYTERDEERFINRQLVETRQITKNVTQIIEDHYSTTKVAAIRANLSHE





FRVKNHIYKNRDINDYHHAHDAYIVALIGGFMRDRYPNMHDSKAVYSEYMKMFRKNKNDQKRWK





DGFVINSMNYPYEVDGKLIWNPDLINEIKKCFYYKDCYCTTKLDQKSGQLFNLTVLSNDAHADK





GVTKAVVPVNKNRSDVHKYGGFSGLQYTIVAIEGQKKKGKKTELVKKISGVPLHLKAASINEKI





NYIEEKEGLSDVRIIKDNIPVNQMIEMDGGEYLLTSPTEYVNARQLVLNEKQCALIADIYNAIY





KQDYDNLDDILMIQLYIELTNKMKVLYPAYRGIAEKFESMNENYVVISKEEKANIIKQMLIVMH





RGPQNGNIVYDDFKISDRIGRLKTKNHNLNNIVFISQSPTGIYTKKYKL











SEQ ID NO: 315









MKSEKKYYIGLDVGTNSVGWAVTDEFYNILRAKGKDLWGVRLFEKADTAANTRIFRSGRRRNDR






KGMRLQILREIFEDEIKKVDKDFYDRLDESKFWAEDKKVSGKYSLFNDKNFSDKQYFEKFPTIF





HLRKYLMEEHGKVDIRYYFLAINQMMKRRGHFLIDGQISHVTDDKPLKEQLILLINDLLKIELE





EELMDSIFEILADVNEKRTDKKNNLKELIKGQDFNKQEGNILNSIFESIVTGKAKIKNIISDED





ILEKIKEDNKEDFVLTGDSYEENLQYFEEVLQENITLFNTLKSTYDFLILQSILKGKSTLSDAQ





VERYDEHKKDLEILKKVIKKYDEDGKLFKQVFKEDNGNGYVSYIGYYLNKNKKITAKKKISNIE





FTKYVKGILEKQCDCEDEDVKYLLGKIEQENFLLKQISSINSVIPHQIHLFELDKILENLAKNY





PSFNNKKEEFTKIEKIRKTFTFRIPYYVGPLNDYHKNNGGNAWIFRNKGEKIRPWNFEKIVDLH





KSEEEFIKRMLNQCTYLPEETVLPKSSILYSEYMVLNELNNLRINGKPLDTDVKLKLIEELFKK





KTKVTLKSIRDYMVRNNFADKEDFDNSEKNLEIASNMKSYIDFNNILEDKFDVEMVEDLIEKIT





IHTGNKKLLKKYIEETYPDLSSSQIQKIINLKYKDWGRLSRKLLDGIKGTKKETEKTDTVINFL





RNSSDNLMQIIGSQNYSFNEYIDKLRKKYIPQEISYEVVENLYVSPSVKKMIWQVIRVTEEITK





VMGYDPDKIFIEMAKSEEEKKTTISRKNKLLDLYKAIKKDERDSQYEKLLTGLNKLDDSDLRSR





KLYLYYTQMGRDMYTGEKIDLDKLFDSTHYDKDHIIPQSMKKDDSIINNLVLVNKNANQTTKGN





IYPVPSSIRNNPKIYNYWKYLMEKEFISKEKYNRLIRNTPLTNEELGGFINRQLVETRQSTKAI





KELFEKFYQKSKIIPVKASLASDLRKDMNTLKSREVNDLHHAHDAFLNIVAGDVWNREFTSNPI





NYVKENREGDKVKYSLSKDFTRPRKSKGKVIWTPEKGRKLIVDTLNKPSVLISNESHVKKGELF





NATIAGKKDYKKGKIYLPLKKDDRLQDVSKYGGYKAINGAFFFLVEHTKSKKRIRSIELFPLHL





LSKFYEDKNTVLDYAINVLQLQDPKIIIDKINYRTEIIIDNFSYLISTKSNDGSITVKPNEQMY





WRVDEISNLKKIENKYKKDAILTEEDRKIMESYIDKIYQQFKAGKYKNRRTTDTIIEKYEIIDL





DTLDNKQLYQLLVAFISLSYKTSNNAVDFTVIGLGTECGKPRITNLPDNTYLVYKSITGIYEKR





IRIK











SEQ ID NO: 316









MKLRGIEDDYSIGLDMGTSSVGWAVTDERGTLAHFKRKPTWGSRLFREAQTAAVARMPRGQRRR






YVRRRWRLDLLQKLFEQQMEQADPDFFIRLRQSRLLRDDRAEEHADYRWPLFNDCKFTERDYYQ





RFPTIYHVRSWLMETDEQADIRLIYLALHNIVKHRGNFLREGQSLSAKSARPDEALNHLRETLR





VWSSERGFECSIADNGSILAMLTHPDLSPSDRRKKIAPLFDVKSDDAAADKKLGIALAGAVIGL





KTEFKNIFGDFPCEDSSIYLSNDEAVDAVRSACPDDCAELFDRLCEVYSAYVLQGLLSYAPGQT





ISANMVEKYRRYGEDLALLKKLVKIYAPDQYRMFFSGATYPGTGIYDAAQARGYTKYNLGPKKS





EYKPSESMQYDDFRKAVEKLFAKTDARADERYRMMMDRFDKQQFLRRLKTSDNGSIYHQLHLEE





LKAIVENQGRFYPFLKRDADKLVSLVSFRIPYYVGPLSTRNARTDQHGENRFAWSERKPGMQDE





PIFPWNWESIIDRSKSAEKFILRMTGMCTYLQQEPVLPKSSLLYEEFCVLNELNGAHWSIDGDD





EHRFDAADREGIIEELFRRKRTVSYGDVAGWMERERNQIGAHVCGGQGEKGFESKLGSYIFFCK





DVFKVERLEQSDYPMIERIILWNTLFEDRKILSQRLKEEYGSRLSAEQIKTICKKRFTGWGRLS





EKFLTGITVQVDEDSVSIMDVLREGCPVSGKRGRAMVMMEILRDEELGFQKKVDDFNRAFFAEN





AQALGVNELPGSPAVRRSLNQSIRIVDEIASIAGKAPANIFIEVTRDEDPKKKGRRTKRRYNDL





KDALEAFKKEDPELWRELCETAPNDMDERLSLYFMQRGKCLYSGRAIDIHQLSNAGIYEVDHII





PRTYVKDDSLENKALVYREENQRKTDMLLIDPEIRRRMSGYWRMLHEAKLIGDKKFRNLLRSRI





DDKALKGFIARQLVETGQMVKLVRSLLEARYPETNIISVKASISHDLRTAAELVKCREANDFHH





AHDAFLACRVGLFIQKRHPCVYENPIGLSQVVRNYVRQQADIFKRCRTIPGSSGFIVNSFMTSG





FDKETGEIFKDDWDAEAEVEGIRRSLNFRQCFISRMPFEDHGVFWDATIYSPRAKKTAALPLKQ





GLNPSRYGSFSREQFAYFFIYKARNPRKEQTLFEFAQVPVRLSAQIRQDENALERYARELAKDQ





GLEFIRIERSKILKNQLIEIDGDRLCITGKEEVRNACELAFAQDEMRVIRMLVSEKPVSRECVI





SLFNRILLHGDQASRRLSKQLKLALLSEAFSEASDNVQRNVVLGLIAIFNGSTNMVNLSDIGGS





KFAGNVRIKYKKELASPKVNVHLIDQSVTGMFERRTKIGL











SEQ ID NO: 317









MENKQYYIGLDVGTNSVGWAVTDTSYNLLRAKGKDMWGARLFEKANTAAERRTKRTSRRRSERE






KARKAMLKELFADEINRVDPSFFIRLEESKFFLDDRSENNRQRYTLFNDATFTDKDYYEKYKTI





FHLRSALINSDEKFDVRLVFLAILNLFSHRGHFLNASLKGDGDIQGMDVFYNDLVESCEYFEIE





LPRITNIDNFEKILSQKGKSRTKILEELSEELSISKKDKSKYNLIKLISGLEASVVELYNIEDI





QDENKKIKIGFRESDYEESSLKVKEIIGDEYFDLVERAKSVHDMGLLSNIIGNSKYLCEARVEA





YENHHKDLLKIKELLKKYDKKAYNDMFRKMTDKNYSAYVGSVNSNIAKERRSVDKRKIEDLYKY





IEDTALKNIPDDNKDKIEILEKIKLGEFLKKQLTASNGVIPNQLQSRELRAILKKAENYLPFLK





EKGEKNLTVSEMIIQLFEFQIPYYVGPLDKNPKKDNKANSWAKIKQGGRILPWNFEDKVDVKGS





RKEFIEKMVRKCTYISDEHTLPKQSLLYEKFMVLNEINNIKIDGEKISVEAKQKIYNDLFVKGK





KVSQKDIKKELISLNIMDKDSVLSGTDTVCNAYLSSIGKFTGVFKEEINKQSIVDMIEDIIFLK





TVYGDEKRFVKEEIVEKYGDEIDKDKIKRILGFKFSNWGNLSKSFLELEGADVGTGEVRSIIQS





LWETNFNLMELLSSRFTYMDELEKRVKKLEKPLSEWTIEDLDDMYLSSPVKRMIWQSMKIVDEI





QTVIGYAPKRIFVEMTRSEGEKVRTKSRKDRLKELYNGIKEDSKQWVKELDSKDESYFRSKKMY





LYYLQKGRCMYSGEVIELDKLMDDNLYDIDHIYPRSFVKDDSLDNLVLVKKEINNRKQNDPITP





QIQASCQGFWKILHDQGFMSNEKYSRLTRKTQEFSDEEKLSFINRQIVETGQATKCMAQILQKS





MGEDVDVVFSKARLVSEFRHKFELFKSRLINDFHHANDAYLNIVVGNSYFVKFTRNPANFIKDA





RKNPDNPVYKYHMDRFFERDVKSKSEVAWIGQSEGNSGTIVIVKKTMAKNSPLITKKVEEGHGS





ITKETIVGVKEIKFGRNKVEKADKTPKKPNLQAYRPIKTSDERLCNILRYGGRTSISISGYCLV





EYVKKRKTIRSLEAIPVYLGRKDSLSEEKLLNYFRYNLNDGGKDSVSDIRLCLPFISTNSLVKI





DGYLYYLGGKNDDRIQLYNAYQLKMKKEEVEYIRKIEKAVSMSKFDEIDREKNPVLTEEKNIEL





YNKIQDKFENTVFSKRMSLVKYNKKDLSFGDFLKNKKSKFEEIDLEKQCKVLYNIIFNLSNLKE





VDLSDIGGSKSTGKCRCKKNITNYKEFKLIQQSITGLYSCEKDLMTI











SEQ ID NO: 318









MKNLKEYYIGLDIGTASVGWAVTDESYNIPKFNGKKMWGVRLFDDAKTAEERRTQRGSRRRLNR






RKERINLLQDLFATEISKVDPNFFLRLDNSDLYREDKDEKLKSKYTLFNDKDFKDRDYHKKYPT





IHHLIMDLIEDEGKKDIRLLYLACHYLLKNRGHFIFEGQKFDTKNSFDKSINDLKIHLRDEYNI





DLEFNNEDLIEIITDTTLNKTNKKKELKNIVGDTKFLKAISAIMIGSSQKLVDLFEDGEFEETT





VKSVDFSTTAFDDKYSEYEEALGDTISLLNILKSIYDSSILENLLKDADKSKDGNKYISKAFVK





KFNKHGKDLKTLKRIIKKYLPSEYANIFRNKSINDNYVAYTKSNITSNKRTKASKFTKQEDFYK





FIKKHLDTIKETKLNSSENEDLKLIDEMLTDIEFKTFIPKLKSSDNGVIPYQLKLMELKKILDN





QSKYYDFLNESDEYGTVKDKVESIMEFRIPYYVGPLNPDSKYAWIKRENTKITPWNFKDIVDLD





SSREEFIDRLIGRCTYLKEEKVLPKASLIYNEFMVLNELNNLKLNEFLITEEMKKAIFEELFKT





KKKVTLKAVSNLLKKEFNLTGDILLSGTDGDFKQGLNSYIDFKNIIGDKVDRDDYRIKIEEIIK





LIVLYEDDKTYLKKKIKSAYKNDFTDDEIKKIAALNYKDWGRLSKRFLTGIEGVDKTTGEKGSI





IYFMREYNLNLMELMSGHYTFTEEVEKLNPVENRELCYEMVDELYLSPSVKRMLWQSLRVVDEI





KRIIGKDPKKIFIEMARAKEAKNSRKESRKNKLLEFYKFGKKAFINEIGEERYNYLLNEINSEE





ESKFRWDNLYLYYTQLGRCMYSLEPIDLADLKSNNIYDQDHIYPKSKIYDDSLENRVLVKKNLN





HEKGNQYPIPEKVLNKNAYGFWKILFDKGLIGQKKYTRLTRRTPFEERELAEFIERQIVETRQA





TKETANLLKNICQDSEIVYSKAENASRFRQEFDIIKCRTVNDLHHMHDAYLNIVVGNVYNTKFT





KNPLNFIKDKDNVRSYNLENMFKYDVVRGSYTAWIADDSEGNVKAATIKKVKRELEGKNYRFTR





MSYIGTGGLYDQNLMRKGKGQIPQKENTNKSNIEKYGGYNKASSAYFALIESDGKAGRERTLET





IPIMVYNQEKYGNTEAVDKYLKDNLELQDPKILKDKIKINSLIKLDGFLYNIKGKTGDSLSIAG





SVQLIVNKEEQKLIKKMDKFLVKKKDNKDIKVTSFDNIKEEELIKLYKTLSDKLNNGIYSNKRN





NQAKNISEALDKFKEISIEEKIDVLNQIILLFQSYNNGCNLKSIGLSAKTGVVFIPKKLNYKEC





KLINQSITGLFENEVDLLNL











SEQ ID NO: 319









MGKMYYLGLDIGTNSVGYAVTDPSYHLLKFKGEPMWGAHVFAAGNQSAERRSFRTSRRRLDRRQ






QRVKLVQEIFAPVISPIDPRFFIRLHESALWRDDVAETDKHIFFNDPTYTDKEYYSDYPTIHHL





IVDLMESSEKHDPRLVYLAVAWLVAHRGHFLNEVDKDNIGDVLSFDAFYPEFLAFLSDNGVSPW





VCESKALQATLLSRNSVNDKYKALKSLIFGSQKPEDNFDANISEDGLIQLLAGKKVKVNKLFPQ





ESNDASFTLNDKEDAIEEILGTLTPDECEWIAHIRRLFDWAIMKHALKDGRTISESKVKLYEQH





HHDLTQLKYFVKTYLAKEYDDIFRNVDSETTKNYVAYSYHVKEVKGTLPKNKATQEEFCKYVLG





KVKNIECSEADKVDFDEMIQRLTDNSFMPKQVSGENRVIPYQLYYYELKTILNKAASYLPFLTQ





CGKDAISNQDKLLSIMTFRIPYFVGPLRKDNSEHAWLERKAGKIYPWNFNDKVDLDKSEEAFIR





RMTNTCTYYPGEDVLPLDSLIYEKFMILNEINNIRIDGYPISVDVKQQVFGLFEKKRRVTVKDI





QNLLLSLGALDKHGKLTGIDTTIHSNYNTYHHFKSLMERGVLTRDDVERIVERMTYSDDTKRVR





LWLNNNYGTLTADDVKHISRLRKHDFGRLSKMFLTGLKGVHKETGERASILDFMWNTNDNLMQL





LSECYTFSDEITKLQEAYYAKAQLSLNDFLDSMYISNAVKRPIYRTLAVVNDIRKACGTAPKRI





FIEMARDGESKKKRSVTRREQIKNLYRSIRKDFQQEVDFLEKILENKSDGQLQSDALYLYFAQL





GRDMYTGDPIKLEHIKDQSFYNIDHIYPQSMVKDDSLDNKVLVQSEINGEKSSRYPLDAAIRNK





MKPLWDAYYNHGLISLKKYQRLTRSTPFTDDEKWDFINRQLVETRQSTKALAILLKRKFPDTEI





VYSKAGLSSDFRHEFGLVKSRNINDLHHAKDAFLAIVTGNVYHERFNRRWFMVNQPYSVKTKTL





FTHSIKNGNFVAWNGEEDLGRIVKMLKQNKNTIHFTRFSFDRKEGLFDIQPLKASTGLVPRKAG





LDVVKYGGYDKSTAAYYLLVRFTLEDKKTQHKLMMIPVEGLYKARIDHDKEFLTDYAQTTISEI





LQKDKQKVINIMFPMGTRHIKLNSMISIDGFYLSIGGKSSKGKSVLCHAMVPLIVPHKIECYIK





AMESFARKFKENNKLRIVEKFDKITVEDNLNLYELFLQKLQHNPYNKFFSTQFDVLTNGRSTFT





KLSPEEQVQTLLNILSIFKTCRSSGCDLKSINGSAQAARIMISADLTGLSKKYSDIRLVEQSAS





GLFVSKSQNLLEYL











SEQ ID NO: 320









MTKKEQPYNIGLDIGTSSVGWAVTNDNYDLLNIKKKNLWGVRLFEEAQTAKETRLNRSTRRRYR






RRKNRINWLNEIFSEELAKTDPSFLIRLQNSWVSKKDPDRKRDKYNLFIDGPYTDKEYYREFPT





IFHLRKELILNKDKADIRLIYLALHNILKYRGNFTYEHQKFNISNLNNNLSKELIELNQQLIKY





DISFPDDCDWNHISDILIGRGNATQKSSNILKDFTLDKETKKLLKEVINLILGNVAHLNTIFKT





SLTKDEEKLNFSGKDIESKLDDLDSILDDDQFTVLDAANRIYSTITLNEILNGESYFSMAKVNQ





YENHAIDLCKLRDMWHTTKNEEAVEQSRQAYDDYINKPKYGTKELYTSLKKFLKVALPTNLAKE





AEEKISKGTYLVKPRNSENGVVPYQLNKIEMEKIIDNQSQYYPFLKENKEKLLSILSFRIPYYV





GPLQSAEKNPFAWMERKSNGHARPWNFDEIVDREKSSNKFIRRMTVTDSYLVGEPVLPKNSLIY





QRYEVLNELNNIRITENLKTNPIGSRLTVETKQRIYNELFKKYKKVTVKKLTKWLIAQGYYKNP





ILIGLSQKDEFNSTLTTYLDMKKIFGSSFMEDNKNYDQIEELIEWLTIFEDKQILNEKLHSSKY





SYTPDQIKKISNMRYKGWGRLSKKILMDITTETNTPQLLQLSNYSILDLMWATNNNFISIMSND





KYDFKNYIENHNLNKNEDQNISDLVNDIHVSPALKRGITQSIKIVQEIVKFMGHAPKHIFIEVT





RETKKSEITTSREKRIKRLQSKLLNKANDFKPQLREYLVPNKKIQEELKKHKNDLSSERIMLYF





LQNGKSLYSEESLNINKLSDYQVDHILPRTYIPDDSLENKALVLAKENQRKADDLLLNSNVIDR





NLERWTYMLNNNMIGLKKFKNLTRRVITDKDKLGFIHRQLVQTSQMVKGVANILDNMYKNQGTT





CIQARANLSTAFRKALSGQDDTYHFKHPELVKNRNVNDFHHAQDAYLASFLGTYRLRRFPTNEM





LLMNGEYNKFYGQVKELYSKKKKLPDSRKNGFIISPLVNGTTQYDRNTGEIIWNVGFRDKILKI





FNYHQCNVTRKTEIKTGQFYDQTIYSPKNPKYKKLIAQKKDMDPNIYGGFSGDNKSSITIVKID





NNKIKPVAIPIRLINDLKDKKTLQNWLEENVKHKKSIQIIKNNVPIGQIIYSKKVGLLSLNSDR





EVANRQQLILPPEHSALLRLLQIPDEDLDQILAFYDKNILVEILQELITKMKKFYPFYKGEREF





LIANIENFNQATTSEKVNSLEELITLLHANSTSAHLIFNNIEKKAFGRKTHGLTLNNTDFIYQS





VTGLYETRIHIE











SEQ ID NO: 321









MTKFNKNYSIGLDIGVSSVGYAVVTEDYRVPAFKFKVLGNTEKEKIKKNLIGSTTFVSAQPAKG






TRVFRVNRRRIDRRNHRITYLRDIFQKEIEKVDKNFYRRLDESFRVLGDKSEDLQIKQPFFGDK





ELETAYHKKYPTIYHLRKHLADADKNSPVADIREVYMAISHILKYRGHFLTLDKINPNNINMQN





SWIDFIESCQEVFDLEISDESKNIADIFKSSENRQEKVKKILPYFQQELLKKDKSIFKQLLQLL





FGLKTKFKDCFELEEEPDLNFSKENYDENLENFLGSLEEDFSDVFAKLKVLRDTILLSGMLTYT





GATHARFSATMVERYEEHRKDLQRFKFFIKQNLSEQDYLDIFGRKTQNGFDVDKETKGYVGYIT





NKMVLTNPQKQKTIQQNFYDYISGKITGIEGAEYFLNKISDGTFLRKLRTSDNGAIPNQIHAYE





LEKIIERQGKDYPFLLENKDKLLSILTFKIPYYVGPLAKGSNSRFAWIKRATSSDILDDNDEDT





RNGKIRPWNYQKLINMDETRDAFITNLIGNDIILLNEKVLPKRSLIYEEVMLQNELTRVKYKDK





YGKAHFFDSELRQNIINGLFKNNSKRVNAKSLIKYLSDNHKDLNAIEIVSGVEKGKSFNSTLKT





YNDLKTIFSEELLDSEIYQKELEEIIKVITVFDDKKSIKNYLTKFFGHLEILDEEKINQLSKLR





YSGWGRYSAKLLLDIRDEDTGFNLLQFLRNDEENRNLTKLISDNTLSFEPKIKDIQSKSTIEDD





IFDEIKKLAGSPAIKRGILNSIKIVDELVQIIGYPPHNIVIEMARENMTTEEGQKKAKTRKTKL





ESALKNIENSLLENGKVPHSDEQLQSEKLYLYYLQNGKDMYTLDKTGSPAPLYLDQLDQYEVDH





IIPYSFLPIDSIDNKVLTHRENNQQKLNNIPDKETVANMKPFWEKLYNAKLISQTKYQRLTTSE





RTPDGVLTESMKAGFIERQLVETRQIIKHVARILDNRFSDTKIITLKSQLITNFRNTFHIAKIR





ELNDYHHAHDAYLAVVVGQTLLKVYPKLAPELIYGHHAHFNRHEENKATLRKHLYSNIMRFFNN





PDSKVSKDIWDCNRDLPIIKDVIYNSQINFVKRTMIKKGAFYNQNPVGKFNKQLAANNRYPLKT





KALCLDTSIYGGYGPMNSALSIIIIAERFNEKKGKIETVKEFHDIFIIDYEKFNNNPFQFLNDT





SENGFLKKNNINRVLGFYRIPKYSLMQKIDGTRMLFESKSNLHKATQFKLTKTQNELFFHMKRL





LTKSNLMDLKSKSAIKESQNFILKHKEEFDNISNQLSAFSQKMLGNTTSLKNLIKGYNERKIKE





IDIRDETIKYFYDNFIKMFSFVKSGAPKDINDFFDNKCTVARMRPKPDKKLLNATLIHQSITGL





YETRIDLSKLGED











SEQ ID NO: 322









MKQEYFLGLDMGTGSLGWAVTDSTYQVMRKHGKALWGTRLFESASTAEERRMFRTARRRLDRRN






WRIQVLQEIFSEEISKVDPGFFLRMKESKYYPEDKRDAEGNCPELPYALFVDDNYTDKNYHKDY





PTIYHLRKMLMETTEIPDIRLVYLVLHHMMKHRGHFLLSGDISQIKEFKSTFEQLIQNIQDEEL





EWHISLDDAAIQFVEHVLKDRNLTRSTKKSRLIKQLNAKSACEKAILNLLSGGTVKLSDIFNNK





ELDESERPKVSFADSGYDDYIGIVEAELAEQYYIIASAKAVYDWSVLVEILGNSVSISEAKIKV





YQKHQADLKTLKKIVRQYMTKEDYKRVFVDTEEKLNNYSAYIGMTKKNGKKVDLKSKQCTQADF





YDFLKKNVIKVIDHKEITQEIESEIEKENFLPKQVTKDNGVIPYQVHDYELKKILDNLGTRMPF





IKENAEKIQQLFEFRIPYYVGPLNRVDDGKDGKFTWSVRKSDARIYPWNFTEVIDVEASAEKFI





RRMTNKCTYLVGEDVLPKDSLVYSKFMVLNELNNLRLNGEKISVELKQRIYEELFCKYRKVTRK





KLERYLVIEGIAKKGVEITGIDGDFKASLTAYHDFKERLTDVQLSQRAKEAIVLNVVLFGDDKK





LLKQRLSKMYPNLTTGQLKGICSLSYQGWGRLSKTFLEEITVPAPGTGEVWNIMTALWQTNDNL





MQLLSRNYGFTNEVEEFNTLKKETDLSYKTVDELYVSPAVKRQIWQTLKVVKEIQKVMGNAPKR





VFVEMAREKQEGKRSDSRKKQLVELYRACKNEERDWITELNAQSDQQLRSDKLFLYYIQKGRCM





YSGETIQLDELWDNTKYDIDHIYPQSKTMDDSLNNRVLVKKNYNAIKSDTYPLSLDIQKKMMSF





WKMLQQQGFITKEKYVRLVRSDELSADELAGFIERQIVETRQSTKAVATILKEALPDTEIVYVK





AGNVSNFRQTYELLKVREMNDLHHAKDAYLNIVVGNAYFVKFTKNAAWFIRNNPGRSYNLKRMF





EFDIERSGEIAWKAGNKGSIVTVKKVMQKNNILVTRKAYEVKGGLFDQQIMKKGKGQVPIKGND





ERLADIEKYGGYNKAAGTYFMLVKSLDKKGKEIRTIEFVPLYLKNQIEINHESAIQYLAQERGL





NSPEILLSKIKIDTLFKVDGFKMWLSGRTGNQLIFKGANQLILSHQEAAILKGVVKYVNRKNEN





KDAKLSERDGMTEEKLLQLYDTFLDKLSNTVYSIRLSAQIKTLTEKRAKFIGLSNEDQCIVLNE





ILHMFQCQSGSANLKLIGGPGSAGILVMNNNITACKQISVINQSPTGIYEKEIDLIKL











SEQ ID NO: 323









MKKPYSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTAEDRRL






KRTARRRYTRRRNRILYLQEIFSEEMGKVDDSFFHRLEDSFLVTEDKRGERHPIFGNLEEEVKY





HENFPTIYHLRQYLADNPEKVDLRLVYLALAHIIKFRGHFLIEGKFDTRNNDVQRLFQEFLAVY





DNTFENSSLQEQNVQVEEILTDKISKSAKKDRVLKLFPNEKSNGRFAEFLKLIVGNQADFKKHF





ELEEKAPLQFSKDTYEEELEVLLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSAS





MIQRYNEHQMDLAQLKQFIRQKLSDKYNEVFSDVSKDGYAGYIDGKTNQEAFYKYLKGLLNKIE





GSGYFLDKIEREDFLRKQRTFDNGSIPHQIHLQEMRAIIRRQAEFYPFLADNQDRIEKLLTFRI





PYYVGPLARGKSDFAWLSRKSADKITPWNFDEIVDKESSAEAFINRMTNYDLYLPNQKVLPKHS





LLYEKFTVYNELTKVKYKTEQGKTAFFDANMKQEIFDGVFKVYRKVTKDKLMDFLEKEFDEFRI





VDLTGLDKENKVFNASYGTYHDLCKILDKDFLDNSKNEKILEDIVLTLTLFEDREMIRKRLENY





SDLLTKEQVKKLERRHYTGWGRLSAELIHGIRNKESRKTILDYLIDDGNSNRNFMQLINDDALS





FKEEIAKAQVIGETDNLNQVVSDIAGSPAIKKGILQSLKIVDELVKIMGHQPENIVVEMARENQ





FTNQGRRNSQQRLKGLTDSIKEFGSQILKEHPVENSQLQNDRLFLYYLQNGRDMYTGEELDIDY





LSQYDIDHIIPQAFIKDNSIDNRVLTSSKENRGKSDDVPSKDVVRKMKSYWSKLLSAKLITQRK





FDNLTKAERGGLTDDDKAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIRQVKIVTLKS





NLVSNFRKEFELYKVREINDYHHAHDAYLNAVIGKALLGVYPQLEPEFVYGDYPHFHGHKENKA





TAKKFFYSNIMNFFKKDDVRTDKNGEIIWKKDEHISNIKKVLSYPQVNIVKKVEEQTGGFSKES





ILPKGNSDKLIPRKTKKFYWDTKKYGGFDSPIVAYSILVIADIEKGKSKKLKTVKALVGVTIME





KMTFERDPVAFLERKGYRNVQEENIIKLPKYSLFKLENGRKRLLASARELQKGNEIVLPNHLGT





LLYHAKNIHKVDEPKHLDYVDKHKDEFKELLDVVSNFSKKYTLAEGNLEKIKELYAQNNGEDLK





ELASSFINLLTFTAIGAPATFKFFDKNIDRKRYTSTTEILNATLIHQSITGLYETRIDLNKLGG





D











SEQ ID NO: 324









MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRL






KRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAY





HEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTY





NQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF





DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS





MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMD





GTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRI





PYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHS





LLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD





SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYA





HLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTF





KEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQ





TTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINR





LSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRK





FDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKS





KLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAK





SEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLS





MPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKG





KSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS





AGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRV





ILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLD





ATLIHQSITGLYETRIDLSQLGGD











SEQ ID NO: 325









MTKPYSIGLDIGTNSVGWAVTTDNYKVPSKKMKVLGNTSKKYIKKNLLGVLLFDSGITAEGRRL






KRTARRRYTRRRNRILYLQEIFSTEMATLDDAFFQRLDDSFLVPDDKRDSKYPIFGNLVEEKAY





HDEFPTIYHLRKYLADSTKKADLRLVYLALAHMIKYRGHFLIEGEFNSKNNDIQKNFQDFLDTY





NAIFESDLSLENSKQLEEIVKDKISKLEKKDRILKLFPGEKNSGIFSEFLKLIVGNQADFRKCF





NLDEKASLHFSKESYDEDLETLLGYIGDDYSDVFLKAKKLYDAILLSGFLTVTDNETEAPLSSA





MIKRYNEHKEDLALLKEYIRNISLKTYNEVFKDDTKNGYAGYIDGKTNQEDFYVYLKKLLAEFE





GADYFLEKIDREDFLRKQRTFDNGSIPYQIHLQEMRAILDKQAKFYPFLAKNKERIEKILTFRI





PYYVGPLARGNSDFAWSIRKRNEKITPWNFEDVIDKESSAEAFINRMTSFDLYLPEEKVLPKHS





LLYETFNVYNELTKVRFIAESMRDYQFLDSKQKKDIVRLYFKDKRKVTDKDIIEYLHAIYGYDG





IELKGIEKQFNSSLSTYHDLLNIINDKEFLDDSSNEAIIEEIIHTLTIFEDREMIKQRLSKFEN





IFDKSVLKKLSRRHYTGWGKLSAKLINGIRDEKSGNTILDYLIDDGISNRNFMQLIHDDALSFK





KKIQKAQIIGDEDKGNIKEVVKSLPGSPAIKKGILQSIKIVDELVKVMGGRKPESIVVEMAREN





QYTNQGKSNSQQRLKRLEKSLKELGSKILKENIPAKLSKIDNNALQNDRLYLYYLQNGKDMYTG





DDLDIDRLSNYDIDHIIPQAFLKDNSIDNKVLVSSASNRGKSDDVPSLEVVKKRKTFWYQLLKS





KLISQRKFDNLTKAERGGLSPEDKAGFIQRQLVETRQITKHVARLLDEKFNNKKDENNRAVRTV





KIITLKSTLVSQFRKDFELYKVREINDFHHAHDAYLNAVVASALLKKYPKLEPEFVYGDYPKYN





SFRERKSATEKVYFYSNIMNIFKKSISLADGRVIERPLIEVNEETGESVWNKESDLATVRRVLS





YPQVNVVKKVEEQNHGLDRGKPKGLFNANLSSKPKPNSNENLVGAKEYLDPKKYGGYAGISNSF





TVLVKGTIEKGAKKKITNVLEFQGISILDRINYRKDKLNFLLEKGYKDIELIIELPKYSLFELS





DGSRRMLASILSTNNKRGEIHKGNQIFLSQKFVKLLYHAKRISNTINENHRKYVENHKKEFEEL





FYYILEFNENYVGAKKNGKLLNSAFQSWQNHSIDELCSSFIGPTGSERKGLFELTSRGSAADFE





FLGVKIPRYRDYTPSSLLKDATLIHQSVTGLYETRIDLAKLGEG











SEQ ID NO: 326









MKKQKFSDYYLGFDIGTNSVGWCVTDLDYNVLRFNKKDMWGSRLFDEAKTAAERRVQRNSRRRL






KRRKWRLNLLEEIFSDEIMKIDSNFFRRLKESSLWLEDKNSKEKFTLFNDDNYKDYDFYKQYPT





IFHLRDELIKNPEKKDIRLIYLALHSIFKSRGHFLFEGQNLKEIKNFETLYNNLISFLEDNGIN





KSIDKDNIEKLEKIICDSGKGLKDKEKEFKGIFNSDKQLVAIFKLSVGSSVSLNDLFDTDEYKK





EEVEKEKISFREQIYEDDKPIYYSILGEKIELLDIAKSFYDFMVLNNILSDSNYISEAKVKLYE





EHKKDLKNLKYIIRKYNKENYDKLFKDKNENNYPAYIGLNKEKDKKEVVEKSRLKIDDLIKVIK





GYLPKPERIEEKDKTIFNEILNKIELKTILPKQRISDNGTLPYQIHEVELEKILENQSKYYDFL





NYEENGVSTKDKLLKTFKFRIPYYVGPLNSYHKDKGGNSWIVRKEEGKILPWNFEQKVDIEKSA





EEFIKRMTNKCTYLNGEDVIPKDSFLYSEYIILNELNKVQVNDEFLNEENKRKIIDELFKENKK





VSEKKFKEYLLVNQIANRTVELKGIKDSFNSNYVSYIKFKDIFGEKLNLDIYKEISEKSILWKC





LYGDDKKIFEKKIKNEYGDILNKDEIKKINSFKFNTWGRLSEKLLTGIEFINLETGECYSSVME





ALRRTNYNLMELLSSKFTLQESIDNENKEMNEVSYRDLIEESYVSPSLKRAILQTLKIYEEIKK





ITGRVPKKVFIEMARGGDESMKNKKIPARQEQLKKLYDSCGNDIANFSIDIKEMKNSLSSYDNN





SLRQKKLYLYYLQFGKCMYTGREIDLDRLLQNNDTYDIDHIYPRSKVIKDDSFDNLVLVLKNEN





AEKSNEYPVKKEIQEKMKSFWRFLKEKNFISDEKYKRLTGKDDFELRGFMARQLVNVRQTTKEV





GKILQQIEPEIKIVYSKAEIASSFREMFDFIKVRELNDTHHAKDAYLNIVAGNVYNTKFTEKPY





RYLQEIKENYDVKKIYNYDIKNAWDKENSLEIVKKNMEKNTVNITRFIKEEKGELFNLNPIKKG





ETSNEIISIKPKLYDGKDNKLNEKYGYYTSLKAAYFIYVEHEKKNKKVKTFERITRIDSTLIKN





EKNLIKYLVSQKKLLNPKIIKKIYKEQTLIIDSYPYTFTGVDSNKKVELKNKKQLYLEKKYEQI





LKNALKFVEDNQGETEENYKFIYLKKRNNNEKNETIDAVKERYNIEFNEMYDKFLEKLSSKDYK





NYINNKLYTNFLNSKEKFKKLKLWEKSLILREFLKIFNKNTYGKYEIKDSQTKEKLFSFPEDTG





RIRLGQSSLGNNKELLEESVTGLFVKKIKL











SEQ ID NO: 327









MKNYTIGLDIGVASVGWVCIDENYKILNYNNRHAFGVHEFESAESAAGRRLKRGMRRRYNRRKK






RLQLLQSLFDSYITDSGFFSKTDSQHFWKNNNEFENRSLTEVLSSLRISSRKYPTIYHLRSDLI





ESNKKMDLRLVYLALHNLVKYRGHFLQEGNWSEAASAEGMDDQLLELVTRYAELENLSPLDLSE





SQWKAAETLLLNRNLTKTDQSKELTAMFGKEYEPFCKLVAGLGVSLHQLFPSSEQALAYKETKT





KVQLSNENVEEVMELLLEEESALLEAVQPFYQQVVLYELLKGETYVAKAKVSAFKQYQKDMASL





KNLLDKTFGEKVYRSYFISDKNSQREYQKSHKVEVLCKLDQFNKEAKFAETFYKDLKKLLEDKS





KTSIGTTEKDEMLRIIKAIDSNQFLQKQKGIQNAAIPHQNSLYEAEKILRNQQAHYPFITTEWI





EKVKQILAFRIPYYIGPLVKDTTQSPFSWVERKGDAPITPWNFDEQIDKAASAEAFISRMRKTC





TYLKGQEVLPKSSLTYERFEVLNELNGIQLRTTGAESDFRHRLSYEMKCWIIDNVFKQYKTVST





KRLLQELKKSPYADELYDEHTGEIKEVFGTQKENAFATSLSGYISMKSILGAVVDDNPAMTEEL





IYWIAVFEDREILHLKIQEKYPSITDVQRQKLALVKLPGWGRFSRLLIDGLPLDEQGQSVLDHM





EQYSSVFMEVLKNKGFGLEKKIQKMNQHQVDGTKKIRYEDIEELAGSPALKRGIWRSVKIVEEL





VSIFGEPANIVLEVAREDGEKKRTKSRKDQWEELTKTTLKNDPDLKSFIGEIKSQGDQRFNEQR





FWLYVTQQGKCLYTGKALDIQNLSMYEVDHILPQNFVKDDSLDNLALVMPEANQRKNQVGQNKM





PLEIIEANQQYAMRTLWERLHELKLISSGKLGRLKKPSFDEVDKDKFIARQLVETRQIIKHVRD





LLDERFSKSDIHLVKAGIVSKFRRFSEIPKIRDYNNKHHAMDALFAAALIQSILGKYGKNFLAF





DLSKKDRQKQWRSVKGSNKEFFLFKNFGNLRLQSPVTGEEVSGVEYMKHVYFELPWQTTKMTQT





GDGMFYKESIFSPKVKQAKYVSPKTEKFVHDEVKNHSICLVEFTFMKKEKEVQETKFIDLKVIE





HHQFLKEPESQLAKFLAEKETNSPIIHARIIRTIPKYQKIWIEHFPYYFISTRELHNARQFEIS





YELMEKVKQLSERSSVEELKIVFGLLIDQMNDNYPIYTKSSIQDRVQKFVDTQLYDFKSFEIGF





EELKKAVAANAQRSDTFGSRISKKPKPEEVAIGYESITGLKYRKPRSVVGTKR











SEQ ID NO: 328









MKKEIKDYFLGLDVGTGSVGWAVTDTDYKLLKANRKDLWGMRCFETAETAEVRRLHRGARRRIE






RRKKRIKLLQELFSQEIAKTDEGFFQRMKESPFYAEDKTILQENTLFNDKDFADKTYHKAYPTI





NHLIKAWIENKVKPDPRLLYLACHNIIKKRGHFLFEGDFDSENQFDTSIQALFEYLREDMEVDI





DADSQKVKEILKDSSLKNSEKQSRLNKILGLKPSDKQKKAITNLISGNKINFADLYDNPDLKDA





EKNSISFSKDDFDALSDDLASILGDSFELLLKAKAVYNCSVLSKVIGDEQYLSFAKVKIYEKHK





TDLTKLKNVIKKHFPKDYKKVFGYNKNEKNNNNYSGYVGVCKTKSKKLIINNSVNQEDFYKFLK





TILSAKSEIKEVNDILTEIETGTFLPKQISKSNAEIPYQLRKMELEKILSNAEKHFSFLKQKDE





KGLSHSEKIIMLLTFKIPYYIGPINDNHKKFFPDRCWVVKKEKSPSGKTTPWNFFDHIDKEKTA





EAFITSRTNFCTYLVGESVLPKSSLLYSEYTVLNEINNLQIIIDGKNICDIKLKQKIYEDLFKK





YKKITQKQISTFIKHEGICNKTDEVIILGIDKECTSSLKSYIELKNIFGKQVDEISTKNMLEEI





IRWATIYDEGEGKTILKTKIKAEYGKYCSDEQIKKILNLKFSGWGRLSRKFLETVTSEMPGFSE





PVNIITAMRETQNNLMELLSSEFTFTENIKKINSGFEDAEKQFSYDGLVKPLFLSPSVKKMLWQ





TLKLVKEISHITQAPPKKIFIEMAKGAELEPARTKTRLKILQDLYNNCKNDADAFSSEIKDLSG





KIENEDNLRLRSDKLYLYYTQLGKCMYCGKPIEIGHVFDTSNYDIDHIYPQSKIKDDSISNRVL





VCSSCNKNKEDKYPLKSEIQSKQRGFWNFLQRNNFISLEKLNRLTRATPISDDETAKFIARQLV





ETRQATKVAAKVLEKMFPETKIVYSKAETVSMFRNKFDIVKCREINDFHHAHDAYLNIVVGNVY





NTKFTNNPWNFIKEKRDNPKIADTYNYYKVFDYDVKRNNITAWEKGKTIITVKDMLKRNTPIYT





RQAACKKGELFNQTIMKKGLGQHPLKKEGPFSNISKYGGYNKVSAAYYTLIEYEEKGNKIRSLE





TIPLYLVKDIQKDQDVLKSYLTDLLGKKEFKILVPKIKINSLLKINGFPCHITGKTNDSFLLRP





AVQFCCSNNEVLYFKKIIRFSEIRSQREKIGKTISPYEDLSFRSYIKENLWKKTKNDEIGEKEF





YDLLQKKNLEIYDMLLTKHKDTIYKKRPNSATIDILVKGKEKFKSLIIENQFEVILEILKLFSA





TRNVSDLQHIGGSKYSGVAKIGNKISSLDNCILIYQSITGIFEKRIDLLKV











SEQ ID NO: 329









MEGQMKNNGNNLQQGNYYLGLDVGTSSVGWAVTDTDYNVLKFRGKSMWGARLFDEASTAEERRT






HRGNRRRLARRKYRLLLLEQLFEKEIRKIDDNFFVRLHESNLWADDKSKPSKFLLFNDTNFTDK





DYLKKYPTIYHLRSDLIHNSTEHDIRLVFLALHHLIKYRGHFIYDNSANGDVKTLDEAVSDFEE





YLNENDIEFNIENKKEFINVLSDKHLTKKEKKISLKKLYGDITDSENINISVLIEMLSGSSISL





SNLFKDIEFDGKQNLSLDSDIEETLNDVVDILGDNIDLLIHAKEVYDIAVLTSSLGKHKYLCDA





KVELFEKNKKDLMILKKYIKKNHPEDYKKIFSSPTEKKNYAAYSQTNSKNVCSQEEFCLFIKPY





IRDMVKSENEDEVRIAKEVEDKSFLTKLKGTNNSVVPYQIHERELNQILKNIVAYLPFMNDEQE





DISVVDKIKLIFKFKIPYYVGPLNTKSTRSWVYRSDEKIYPWNFSNVIDLDKTAHEFMNRLIGR





CTYTNDPVLPMDSLLYSKYNVLNEINPIKVNGKAIPVEVKQAIYTDLFENSKKKVTRKSIYIYL





LKNGYIEKEDIVSGIDIEIKSKLKSHHDFTQIVQENKCTPEEIERIIKGILVYSDDKSMLRRWL





KNNIKGLSENDVKYLAKLNYKEWGRLSKTLLTDIYTINPEDGEACSILDIMWNTNATLMEILSN





EKYQFKQNIENYKAENYDEKQNLHEELDDMYISPAARRSIWQALRIVDEIVDIKKSAPKKIFIE





MAREKKSAMKKKRTESRKDTLLELYKSCKSQADGFYDEELFEKLSNESNSRLRRDQLYLYYTQM





GRSMYTGKRIDFDKLINDKNTYDIDHIYPRSKIKDDSITNRVLVEKDINGEKTDIYPISEDIRQ





KMQPFWKILKEKGLINEEKYKRLTRNYELTDEELSSFVARQLVETQQSTKALATLLKKEYPSAK





IVYSKAGNVSEFRNRKDKELPKFREINDLHHAKDAYLNIVVGNVYDTKFTEKFFNNIRNENYSL





KRVFDFSVPGAWDAKGSTFNTIKKYMAKNNPIIAFAPYEVKGELFDQQIVPKGKGQFPIKQGKD





IEKYGGYNKLSSAFLFAVEYKGKKARERSLETVYIKDVELYLQDPIKYCESVLGLKEPQIIKPK





ILMGSLFSINNKKLVVTGRSGKQYVCHHIYQLSINDEDSQYLKNIAKYLQEEPDGNIERQNILN





ITSVNNIKLFDVLCTKFNSNTYEIILNSLKNDVNEGREKFSELDILEQCNILLQLLKAFKCNRE





SSNLEKLNNKKQAGVIVIPHLFTKCSVFKVIHQSITGLFEKEMDLLK











SEQ ID NO: 330









MGRKPYILSLDIGTGSVGYACMDKGFNVLKYHDKDALGVYLFDGALTAQERRQFRTSRRRKNRR






IKRLGLLQELLAPLVQNPNFYQFQRQFAWKNDNMDFKNKSLSEVLSFLGYESKKYPTIYHLQEA





LLLKDEKFDPELIYMALYHLVKYRGHFLFDHLKIENLTNNDNMHDFVELIETYENLNNIKLNLD





YEKTKVIYEILKDNEMTKNDRAKRVKNMEKKLEQFSIMLLGLKFNEGKLFNHADNAEELKGANQ





SHTFADNYEENLTPFLTVEQSEFIERANKIYLSLTLQDILKGKKSMAMSKVAAYDKFRNELKQV





KDIVYKADSTRTQFKKIFVSSKKSLKQYDATPNDQTFSSLCLFDQYLIRPKKQYSLLIKELKKI





IPQDSELYFEAENDTLLKVLNTTDNASIPMQINLYEAETILRNQQKYHAEITDEMIEKVLSLIQ





FRIPYYVGPLVNDHTASKFGWMERKSNESIKPWNFDEVVDRSKSATQFIRRMTNKCSYLINEDV





LPKNSLLYQEMEVLNELNATQIRLQTDPKNRKYRMMPQIKLFAVEHIFKKYKTVSHSKFLEIML





NSNHRENFMNHGEKLSIFGTQDDKKFASKLSSYQDMTKIFGDIEGKRAQIEEIIQWITIFEDKK





ILVQKLKECYPELTSKQINQLKKLNYSGWGRLSEKLLTHAYQGHSIIELLRHSDENFMEILTND





VYGFQNFIKEENQVQSNKIQHQDIANLTTSPALKKGIWSTIKLVRELTSIFGEPEKIIMEFATE





DQQKGKKQKSRKQLWDDNIKKNKLKSVDEYKYIIDVANKLNNEQLQQEKLWLYLSQNGKCMYSG





QSIDLDALLSPNATKHYEVDHIFPRSFIKDDSIDNKVLVIKKMNQTKGDQVPLQFIQQPYERIA





YWKSLNKAGLISDSKLHKLMKPEFTAMDKEGFIQRQLVETRQISVHVRDFLKEEYPNTKVIPMK





AKMVSEFRKKFDIPKIRQMNDAHHAIDAYLNGVVYHGAQLAYPNVDLFDFNFKWEKVREKWKAL





GEFNTKQKSRELFFFKKLEKMEVSQGERLISKIKLDMNHFKINYSRKLANIPQQFYNQTAVSPK





TAELKYESNKSNEVVYKGLTPYQTYVVAIKSVNKKGKEKMEYQMIDHYVFDFYKFQNGNEKELA





LYLAQRENKDEVLDAQIVYSLNKGDLLYINNHPCYFVSRKEVINAKQFELTVEQQLSLYNVMNN





KETNVEKLLIEYDFIAEKVINEYHHYLNSKLKEKRVRTFFSESNQTHEDFIKALDELFKVVTAS





ATRSDKIGSRKNSMTHRAFLGKGKDVKIAYTSISGLKTTKPKSLFKLAESRNEL











SEQ ID NO: 331









MAKILGLDLGTNSIGWAVVERENIDFSLIDKGVRIFSEGVKSEKGIESSRAAERTGYRSARKIK






YRRKLRKYETLKVLSLNRMCPLSIEEVEEWKKSGFKDYPLNPEFLKWLSTDEESNVNPYFFRDR





ASKHKVSLFELGRAFYHIAQRRGFLSNRLDQSAEGILEEHCPKIEAIVEDLISIDEISTNITDY





FFETGILDSNEKNGYAKDLDEGDKKLVSLYKSLLAILKKNESDFENCKSEIIERLNKKDVLGKV





KGKIKDISQAMLDGNYKTLGQYFYSLYSKEKIRNQYTSREEHYLSEFITICKVQGIDQINEEEK





INEKKFDGLAKDLYKAIFFQRPLKSQKGLIGKCSFEKSKSRCAISHPDFEEYRMWTYLNTIKIG





TQSDKKLRFLTQDEKLKLVPKFYRKNDFNFDVLAKELIEKGSSFGFYKSSKKNDFFYWFNYKPT





DTVAACQVAASLKNAIGEDWKTKSFKYQTINSNKEQVSRTVDYKDLWHLLTVATSDVYLYEFAI





DKLGLDEKNAKAFSKTKLKKDFASLSLSAINKILPYLKEGLLYSHAVFVANIENIVDENIWKDE





KQRDYIKTQISEIIENYTLEKSRFEIINGLLKEYKSENEDGKRVYYSKEAEQSFENDLKKKLVL





FYKSNEIENKEQQETIFNELLPIFIQQLKDYEFIKIQRLDQKVLIFLKGKNETGQIFCTEEKGT





AEEKEKKIKNRLKKLYHPSDIEKFKKKIIKDEFGNEKIVLGSPLTPSIKNPMAMRALHQLRKVL





NALILEGQIDEKTIIHIEMARELNDANKRKGIQDYQNDNKKFREDAIKEIKKLYFEDCKKEVEP





TEDDILRYQLWMEQNRSEIYEEGKNISICDIIGSNPAYDIEHTIPRSRSQDNSQMNKTLCSQRF





NREVKKQSMPIELNNHLEILPRIAHWKEEADNLTREIEIISRSIKAAATKEIKDKKIRRRHYLT





LKRDYLQGKYDRFIWEEPKVGFKNSQIPDTGIITKYAQAYLKSYFKKVESVKGGMVAEFRKIWG





IQESFIDENGMKHYKVKDRSKHTHHTIDAITIACMTKEKYDVLAHAWTLEDQQNKKEARSIIEA





SKPWKTFKEDLLKIEEEILVSHYTPDNVKKQAKKIVRVRGKKQFVAEVERDVNGKAVPKKAASG





KTIYKLDGEGKKLPRLQQGDTIRGSLHQDSIYGAIKNPLNTDEIKYVIRKDLESIKGSDVESIV





DEVVKEKIKEAIANKVLLLSSNAQQKNKLVGTVWMNEEKRIAINKVRIYANSVKNPLHIKEHSL





LSKSKHVHKQKVYGQNDENYAMAIYELDGKRDFELINIFNLAKLIKQGQGFYPLHKKKEIKGKI





VFVPIEKRNKRDVVLKRGQQVVFYDKEVENPKDISEIVDFKGRIYIIEGLSIQRIVRPSGKVDE





YGVIMLRYFKEARKADDIKQDNFKPDGVFKLGENKPTRKMNHQFTAFVEGIDFKVLPSGKFEKI











SEQ ID NO: 332









MEFKKVLGLDIGTNSIGCALLSLPKSIQDYGKGGRLEWLTSRVIPLDADYMKAFIDGKNGLPQV






ITPAGKRRQKRGSRRLKHRYKLRRSRLIRVFKTLNWLPEDFPLDNPKRIKETISTEGKFSFRIS





DYVPISDESYREFYREFGYPENEIEQVIEEINFRRKTKGKNKNPMIKLLPEDWVVYYLRKKALI





KPTTKEELIRIIYLFNQRRGFKSSRKDLTETAILDYDEFAKRLAEKEKYSAENYETKFVSITKV





KEVVELKTDGRKGKKRFKVILEDSRIEPYEIERKEKPDWEGKEYTFLVTQKLEKGKFKQNKPDL





PKEEDWALCTTALDNRMGSKHPGEFFFDELLKAFKEKRGYKIRQYPVNRWRYKKELEFIWTKQC





QLNPELNNLNINKEILRKLATVLYPSQSKFFGPKIKEFENSDVLHIISEDIIYYQRDLKSQKSL





ISECRYEKRKGIDGEIYGLKCIPKSSPLYQEFRIWQDIHNIKVIRKESEVNGKKKINIDETQLY





INENIKEKLFELFNSKDSLSEKDILELISLNIINSGIKISKKEEETTHRINLFANRKELKGNET





KSRYRKVFKKLGFDGEYILNHPSKLNRLWHSDYSNDYADKEKTEKSILSSLGWKNRNGKWEKSK





NYDVFNLPLEVAKAIANLPPLKKEYGSYSALAIRKMLVVMRDGKYWQHPDQIAKDQENTSLMLF





DKNLIQLTNNQRKVLNKYLLTLAEVQKRSTLIKQKLNEIEHNPYKLELVSDQDLEKQVLKSFLE





KKNESDYLKGLKTYQAGYLIYGKHSEKDVPIVNSPDELGEYIRKKLPNNSLRNPIVEQVIRETI





FIVRDVWKSFGIIDEIHIELGRELKNNSEERKKTSESQEKNFQEKERARKLLKELLNSSNFEHY





DENGNKIFSSFTVNPNPDSPLDIEKFRIWKNQSGLTDEELNKKLKDEKIPTEIEVKKYILWLTQ





KCRSPYTGKIIPLSKLFDSNVYEIEHIIPRSKMKNDSTNNLVICELGVNKAKGDRLAANFISES





NGKCKFGEVEYTLLKYGDYLQYCKDTFKYQKAKYKNLLATEPPEDFIERQINDTRYIGRKLAEL





LTPVVKDSKNIIFTIGSITSELKITWGLNGVWKDILRPRFKRLESIINKKLIFQDEDDPNKYHF





DLSINPQLDKEGLKRLDHRHHALDATIIAATTREHVRYLNSLNAADNDEEKREYFLSLCNHKIR





DFKLPWENFTSEVKSKLLSCVVSYKESKPILSDPFNKYLKWEYKNGKWQKVFAIQIKNDRWKAV





RRSMFKEPIGTVWIKKIKEVSLKEAIKIQAIWEEVKNDPVRKKKEKYIYDDYAQKVIAKIVQEL





GLSSSMRKQDDEKLNKFINEAKVSAGVNKNLNTTNKTIYNLEGRFYEKIKVAEYVLYKAKRMPL





NKKEYIEKLSLQKMFNDLPNFILEKSILDNYPEILKELESDNKYIIEPHKKNNPVNRLLLEHIL





EYHNNPKEAFSTEGLEKLNKKAINKIGKPIKYITRLDGDINEEEIFRGAVFETDKGSNVYFVMY





ENNQTKDREFLKPNPSISVLKAIEHKNKIDFFAPNRLGFSRIILSPGDLVYVPTNDQYVLIKDN





SSNETIINWDDNEFISNRIYQVKKFTGNSCYFLKNDIASLILSYSASNGVGEFGSQNISEYSVD





DPPIRIKDVCIKIRVDRLGNVRPL











SEQ ID NO: 333









MKHILGLDLGTNSIGWALIERNIEEKYGKIIGMGSRIVPMGAELSKFEQGQAQTKNADRRTNRG






ARRLNKRYKQRRNKLIYILQKLDMLPSQIKLKEDFSDPNKIDKITILPISKKQEQLTAFDLVSL





RVKALTEKVGLEDLGKIIYKYNQLRGYAGGSLEPEKEDIFDEEQSKDKKNKSFIAFSKIVFLGE





PQEEIFKNKKLNRRAIIVETEEGNFEGSTFLENIKVGDSLELLINISASKSGDTITIKLPNKTN





WRKKMENIENQLKEKSKEMGREFYISEFLLELLKENRWAKIRNNTILRARYESEFEAIWNEQVK





HYPFLENLDKKTLIEIVSFIFPGEKESQKKYRELGLEKGLKYIIKNQVVFYQRELKDQSHLISD





CRYEPNEKAIAKSHPVFQEYKVWEQINKLIVNTKIEAGTNRKGEKKYKYIDRPIPTALKEWIFE





ELQNKKEITFSAIFKKLKAEFDLREGIDFLNGMSPKDKLKGNETKLQLQKSLGELWDVLGLDSI





NRQIELWNILYNEKGNEYDLTSDRTSKVLEFINKYGNNIVDDNAEETAIRISKIKFARAYSSLS





LKAVERILPLVRAGKYFNNDFSQQLQSKILKLLNENVEDPFAKAAQTYLDNNQSVLSEGGVGNS





IATILVYDKHTAKEYSHDELYKSYKEINLLKQGDLRNPLVEQIINEALVLIRDIWKNYGIKPNE





IRVELARDLKNSAKERATIHKRNKDNQTINNKIKETLVKNKKELSLANIEKVKLWEAQRHLSPY





TGQPIPLSDLFDKEKYDVDHIIPISRYFDDSFTNKVISEKSVNQEKANRTAMEYFEVGSLKYSI





FTKEQFIAHVNEYFSGVKRKNLLATSIPEDPVQRQIKDTQYIAIRVKEELNKIVGNENVKTTTG





SITDYLRNHWGLTDKFKLLLKERYEALLESEKFLEAEYDNYKKDFDSRKKEYEEKEVLFEEQEL





TREEFIKEYKENYIRYKKNKLIIKGWSKRIDHRHHAIDALIVACTEPAHIKRLNDLNKVLQDWL





VEHKSEFMPNFEGSNSELLEEILSLPENERTEIFTQIEKFRAIEMPWKGFPEQVEQKLKEIIIS





HKPKDKLLLQYNKAGDRQIKLRGQLHEGTLYGISQGKEAYRIPLTKFGGSKFATEKNIQKIVSP





FLSGFIANHLKEYNNKKEEAFSAEGIMDLNNKLAQYRNEKGELKPHTPISTVKIYYKDPSKNKK





KKDEEDLSLQKLDREKAFNEKLYVKTGDNYLFAVLEGEIKTKKTSQIKRLYDIISFFDATNFLK





EEFRNAPDKKTFDKDLLFRQYFEERNKAKLLFTLKQGDFVYLPNENEEVILDKESPLYNQYWGD





LKERGKNIYVVQKFSKKQIYFIKHTIADIIKKDVEFGSQNCYETVEGRSIKENCFKLEIDRLGN





IVKVIKR











SEQ ID NO: 334









MHVEIDFPHFSRGDSHLAMNKNEILRGSSVLYRLGLDLGSNSLGWFVTHLEKRGDRHEPVALGP






GGVRIFPDGRDPQSGTSNAVDRRMARGARKRRDRFVERRKELIAALIKYNLLPDDARERRALEV





LDPYALRKTALTDTLPAHHVGRALFHLNQRRGFQSNRKTDSKQSEDGAIKQAASRLATDKGNET





LGVFFADMHLRKSYEDRQTAIRAELVRLGKDHLTGNARKKIWAKVRKRLFGDEVLPRADAPHGV





RARATITGTKASYDYYPTRDMLRDEFNAIWAGQSAHHATITDEARTEIEHIIFYQRPLKPAIVG





KCTLDPATRPFKEDPEGYRAPWSHPLAQRFRILSEARNLEIRDTGKGSRRLTKEQSDLVVAALL





ANREVKFDKLRTLLKLPAEARFNLESDRRAALDGDQTAARLSDKKGFNKAWRGFPPERQIAIVA





RLEETEDENELIAWLEKECALDGAAAARVANTTLPDGHCRLGLRAIKKIVPIMQDGLDEDGVAG





AGYHIAAKRAGYDHAKLPTGEQLGRLPYYGQWLQDAVVGSGDARDQKEKQYGQFPNPTVHIGLG





QLRRVVNDLIDKYGPPTEISIEFTRALKLSEQQKAERQREQRRNQDKNKARAEELAKFGRPANP





RNLLKMRLWEELAHDPLDRKCVYTGEQISIERLLSDEVDIDHILPVAMTLDDSPANKIICMRYA





NRHKRKQTPSEAFGSSPTLQGHRYNWDDIAARATGLPRNKRWRFDANAREEFDKRGGFLARQLN





ETGWLARLAKQYLGAVTDPNQIWVVPGRLTSMLRGKWGLNGLLPSDNYAGVQDKAEEFLASTDD





MEFSGVKNRADHRHHAIDGLVTALTDRSLLWKMANAYDEEHEKFVIEPPWPTMRDDLKAALEKM





VVSHKPDHGIEGKLHEDSAYGFVKPLDATGLKEEEAGNLVYRKAIESLNENEVDRIRDIQLRTI





VRDHVNVEKTKGVALADALRQLQAPSDDYPQFKHGLRHVRILKKEKGDYLVPIANRASGVAYKA





YSAGENFCVEVFETAGGKWDGEAVRRFDANKKNAGPKIAHAPQWRDANEGAKLVMRIHKGDLIR





LDHEGRARIMVVHRLDAAAGRFKLADHNETGNLDKRHATNNDIDPFRWLMASYNTLKKLAAVPV





RVDELGRVWRVMPN











SEQ ID NO: 335









METTLGIDLGTNSIGLALVDQEEHQILYSGVRIFPEGINKDTIGLGEKEESRNATRRAKRQMRR






QYFRKKLRKAKLLELLIAYDMCPLKPEDVRRWKNWDKQQKSTVRQFPDTPAFREWLKQNPYELR





KQAVTEDVTRPELGRILYQMIQRRGFLSSRKGKEEGKIFTGKDRMVGIDETRKNLQKQTLGAYL





YDIAPKNGEKYRFRTERVRARYTLRDMYIREFEIIWQRQAGHLGLAHEQATRKKNIFLEGSATN





VRNSKLITHLQAKYGRGHVLIEDTRITVTFQLPLKEVLGGKIEIEEEQLKFKSNESVLFWQRPL





RSQKSLLSKCVFEGRNFYDPVHQKWIIAGPTPAPLSHPEFEEFRAYQFINNIIYGKNEHLTAIQ





REAVFELMCTESKDFNFEKIPKHLKLFEKFNFDDTTKVPACTTISQLRKLFPHPVWEEKREEIW





HCFYFYDDNTLLFEKLQKDYALQTNDLEKIKKIRLSESYGNVSLKAIRRINPYLKKGYAYSTAV





LLGGIRNSFGKRFEYFKEYEPEIEKAVCRILKEKNAEGEVIRKIKDYLVHNRFGFAKNDRAFQK





LYHHSQAITTQAQKERLPETGNLRNPIVQQGLNELRRTVNKLLATCREKYGPSFKFDHIHVEMG





RELRSSKTEREKQSRQIRENEKKNEAAKVKLAEYGLKAYRDNIQKYLLYKEIEEKGGTVCCPYT





GKTLNISHTLGSDNSVQIEHIIPYSISLDDSLANKTLCDATFNREKGELTPYDFYQKDPSPEKW





GASSWEEIEDRAFRLLPYAKAQRFIRRKPQESNEFISRQLNDTRYISKKAVEYLSAICSDVKAF





PGQLTAELRHLWGLNNILQSAPDITFPLPVSATENHREYYVITNEQNEVIRLFPKQGETPRTEK





GELLLTGEVERKVFRCKGMQEFQTDVSDGKYWRRIKLSSSVTWSPLFAPKPISADGQIVLKGRI





EKGVFVCNQLKQKLKTGLPDGSYWISLPVISQTFKEGESVNNSKLTSQQVQLFGRVREGIFRCH





NYQCPASGADGNFWCTLDTDTAQPAFTPIKNAPPGVGGGQIILTGDVDDKGIFHADDDLHYELP





ASLPKGKYYGIFTVESCDPTLIPIELSAPKTSKGENLIEGNIWVDEHTGEVRFDPKKNREDQRH





HAIDAIVIALSSQSLFQRLSTYNARRENKKRGLDSTEHFPSPWPGFAQDVRQSVVPLLVSYKQN





PKTLCKISKTLYKDGKKIHSCGNAVRGQLHKETVYGQRTAPGATEKSYHIRKDIRELKTSKHIG





KVVDITIRQMLLKHLQENYHIDITQEFNIPSNAFFKEGVYRIFLPNKHGEPVPIKKIRMKEELG





NAERLKDNINQYVNPRNNHHVMIYQDADGNLKEEIVSFWSVIERQNQGQPIYQLPREGRNIVSI





LQINDTFLIGLKEEEPEVYRNDLSTLSKHLYRVQKLSGMYYTFRHHLASTLNNEREEFRIQSLE





AWKRANPVKVQIDEIGRITFLNGPLC











SEQ ID NO: 336









MESSQILSPIGIDLGGKFTGVCLSHLEAFAELPNHANTKYSVILIDHNNFQLSQAQRRATRHRV






RNKKRNQFVKRVALQLFQHILSRDLNAKEETALCHYLNNRGYTYVDTDLDEYIKDETTINLLKE





LLPSESEHNFIDWFLQKMQSSEFRKILVSKVEEKKDDKELKNAVKNIKNFITGFEKNSVEGHRH





RKVYFENIKSDITKDNQLDSIKKKIPSVCLSNLLGHLSNLQWKNLHRYLAKNPKQFDEQTFGNE





FLRMLKNFRHLKGSQESLAVRNLIQQLEQSQDYISILEKTPPEITIPPYEARTNTGMEKDQSLL





LNPEKLNNLYPNWRNLIPGIIDAHPFLEKDLEHTKLRDRKRIISPSKQDEKRDSYILQRYLDLN





KKIDKFKIKKQLSFLGQGKQLPANLIETQKEMETHFNSSLVSVLIQIASAYNKEREDAAQGIWF





DNAFSLCELSNINPPRKQKILPLLVGAILSEDFINNKDKWAKFKIFWNTHKIGRTSLKSKCKEI





EEARKNSGNAFKIDYEEALNHPEHSNNKALIKIIQTIPDIIQAIQSHLGHNDSQALIYHNPFSL





SQLYTILETKRDGFHKNCVAVTCENYWRSQKTEIDPEISYASRLPADSVRPFDGVLARMMQRLA





YEIAMAKWEQIKHIPDNSSLLIPIYLEQNRFEFEESFKKIKGSSSDKTLEQAIEKQNIQWEEKF





QRIINASMNICPYKGASIGGQGEIDHIYPRSLSKKHFGVIFNSEVNLIYCSSQGNREKKEEHYL





LEHLSPLYLKHQFGTDNVSDIKNFISQNVANIKKYISFHLLTPEQQKAARHALFLDYDDEAFKT





ITKFLMSQQKARVNGTQKFLGKQIMEFLSTLADSKQLQLEFSIKQITAEEVHDHRELLSKQEPK





LVKSRQQSFPSHAIDATLTMSIGLKEFPQFSQELDNSWFINHLMPDEVHLNPVRSKEKYNKPNI





SSTPLFKDSLYAERFIPVWVKGETFAIGFSEKDLFEIKPSNKEKLFTLLKTYSTKNPGESLQEL





QAKSKAKWLYFPINKTLALEFLHHYFHKEIVTPDDTTVCHFINSLRYYTKKESITVKILKEPMP





VLSVKFESSKKNVLGSFKHTIALPATKDWERLFNHPNFLALKANPAPNPKEFNEFIRKYFLSDN





NPNSDIPNNGHNIKPQKHKAVRKVFSLPVIPGNAGTMMRIRRKDNKGQPLYQLQTIDDTPSMGI





QINEDRLVKQEVLMDAYKTRNLSTIDGINNSEGQAYATFDNWLTLPVSTFKPEIIKLEMKPHSK





TRRYIRITQSLADFIKTIDEALMIKPSDSIDDPLNMPNEIVCKNKLFGNELKPRDGKMKIVSTG





KIVTYEFESDSTPQWIQTLYVTQLKKQP











SEQ ID NO: 337









MKKIVGLDLGTNSIGWALINAYINKEHLYGIEACGSRIIPMDAAILGNFDKGNSISQTADRTSY






RGIRRLRERHLLRRERLHRILDLLGFLPKHYSDSLNRYGKFLNDIECKLPWVKDETGSYKFIFQ





ESFKEMLANFTEHHPILIANNKKVPYDWTIYYLRKKALTQKISKEELAWILLNFNQKRGYYQLR





GEEEETPNKLVEYYSLKVEKVEDSGERKGKDTWYNVHLENGMIYRRTSNIPLDWEGKTKEFIVT





TDLEADGSPKKDKEGNIKRSFRAPKDDDWTLIKKKTEADIDKIKMTVGAYIYDTLLQKPDQKIR





GKLVRTIERKYYKNELYQILKTQSEFHEELRDKQLYIACLNELYPNNEPRRNSISTRDFCHLFI





EDIIFYQRPLKSKKSLIDNCPYEENRYIDKESGEIKHASIKCIAKSHPLYQEFRLWQFIVNLRI





YRKETDVDVTQELLPTEADYVTLFEWLNEKKEIDQKAFFKYPPFGFKKTTSNYRWNYVEDKPYP





CNETHAQIIARLGKAHIPKAFLSKEKEETLWHILYSIEDKQEIEKALHSFANKNNLSEEFIEQF





KNFPPFKKEYGSYSAKAIKKLLPLMRMGKYWSIENIDNGTRIRINKIIDGEYDENIRERVRQKA





INLTDITHFRALPLWLACYLVYDRHSEVKDIVKWKTPKDIDLYLKSFKQHSLRNPIVEQVITET





LRTVRDIWQQVGHIDEIHIELGREMKNPADKRARMSQQMIKNENTNLRIKALLTEFLNPEFGIE





NVRPYSPSQQDLLRIYEEGVLNSILELPEDIGIILGKFNQTDTLKRPTRSEILRYKLWLEQKYR





SPYTGEMIPLSKLFTPAYEIEHIIPQSRYFDDSLSNKVICESEINKLKDRSLGYEFIKNHHGEK





VELAFDKPVEVLSVEAYEKLVHESYSHNRSKMKKLLMEDIPDQFIERQLNDSRYISKVVKSLLS





NIVREENEQEAISKNVIPCTGGITDRLKKDWGINDVWNKIVLPRFIRLNELTESTRFTSINTNN





TMIPSMPLELQKGFNKKRIDHRHHAMDAIIIACANRNIVNYLNNVSASKNTKITRRDLQTLLCH





KDKTDNNGNYKWVIDKPWETFTQDTLTALQKITVSFKQNLRVINKTTNHYQHYENGKKIVSNQS





KGDSWAIRKSMHKETVHGEVNLRMIKTVSFNEALKKPQAIVEMDLKKKILAMLELGYDTKRIKN





YFEENKDTWQDINPSKIKVYYFTKETKDRYFAVRKPIDTSFDKKKIKESITDTGIQQIMLRHLE





TKDNDPTLAFSPDGIDEMNRNILILNKGKKHQPIYKVRVYEKAEKFTVGQKGNKRTKFVEAAKG





TNLFFAIYETEEIDKDTKKVIRKRSYSTIPLNVVIERQKQGLSSAPEDENGNLPKYILSPNDLV





YVPTQEEINKGEVVMPIDRDRIYKMVDSSGITANFIPASTANLIFALPKATAEIYCNGENCIQN





EYGIGSPQSKNQKAITGEMVKEICFPIKVDRLGNIIQVGSCILTN











SEQ ID NO: 338









MSRSLTFSFDIGYASIGWAVIASASHDDADPSVCGCGTVLFPKDDCQAFKRREYRRLRRNIRSR






RVRIERIGRLLVQAQIITPEMKETSGHPAPFYLASEALKGHRTLAPIELWHVLRWYAHNRGYDN





NASWSNSLSEDGGNGEDTERVKHAQDLMDKHGTATMAETICRELKLEEGKADAPMEVSTPAYKN





LNTAFPRLIVEKEVRRILELSAPLIPGLTAEIIELIAQHHPLTTEQRGVLLQHGIKLARRYRGS





LLFGQLIPRFDNRIISRCPVTWAQVYEAELKKGNSEQSARERAEKLSKVPTANCPEFYEYRMAR





ILCNIRADGEPLSAEIRRELMNQARQEGKLTKASLEKAISSRLGKETETNVSNYFTLHPDSEEA





LYLNPAVEVLQRSGIGQILSPSVYRIAANRLRRGKSVTPNYLLNLLKSRGESGEALEKKIEKES





KKKEADYADTPLKPKYATGRAPYARTVLKKVVEEILDGEDPTRPARGEAHPDGELKAHDGCLYC





LLDTDSSVNQHQKERRLDTMTNNHLVRHRMLILDRLLKDLIQDFADGQKDRISRVCVEVGKELT





TFSAMDSKKIQRELTLRQKSHTDAVNRLKRKLPGKALSANLIRKCRIAMDMNWTCPFTGATYGD





HELENLELEHIVPHSFRQSNALSSLVLTWPGVNRMKGQRTGYDFVEQEQENPVPDKPNLHICSL





NNYRELVEKLDDKKGHEDDRRRKKKRKALLMVRGLSHKHQSQNHEAMKEIGMTEGMMTQSSHLM





KLACKSIKTSLPDAHIDMIPGAVTAEVRKAWDVFGVFKELCPEAADPDSGKILKENLRSLTHLH





HALDACVLGLIPYIIPAHHNGLLRRVLAMRRIPEKLIPQVRPVANQRHYVLNDDGRMMLRDLSA





SLKENIREQLMEQRVIQHVPADMGGALLKETMQRVLSVDGSGEDAMVSLSKKKDGKKEKNQVKA





SKLVGVFPEGPSKLKALKAAIEIDGNYGVALDPKPVVIRHIKVFKRIMALKEQNGGKPVRILKK





GMLIHLTSSKDPKHAGVWRIESIQDSKGGVKLDLQRAHCAVPKNKTHECNWREVDLISLLKKYQ





MKRYPTSYTGTPR











SEQ ID NO: 339









MTQKVLGLDLGTNSIGSAVRNLDLSDDLQWQLEFFSSDIFRSSVNKESNGREYSLAAQRSAHRR






SRGLNEVRRRRLWATLNLLIKHGFCPMSSESLMRWCTYDKRKGLFREYPIDDKDFNAWILLDFN





GDGRPDYSSPYQLRRELVTRQFDFEQPIERYKLGRALYHIAQHRGFKSSKGETLSQQETNSKPS





STDEIPDVAGAMKASEEKLSKGLSTYMKEHNLLTVGAAFAQLEDEGVRVRNNNDYRAIRSQFQH





EIETIFKFQQGLSVESELYERLISEKKNVGTIFYKRPLRSQRGNVGKCTLERSKPRCAIGHPLF





EKFRAWTLINNIKVRMSVDTLDEQLPMKLRLDLYNECFLAFVRTEFKFEDIRKYLEKRLGIHFS





YNDKTINYKDSTSVAGCPITARFRKMLGEEWESFRVEGQKERQAHSKNNISFHRVSYSIEDIWH





FCYDAEEPEAVLAFAQETLRLERKKAEELVRIWSAMPQGYAMLSQKAIRNINKILMLGLKYSDA





VILAKVPELVDVSDEELLSIAKDYYLVEAQVNYDKRINSIVNGLIAKYKSVSEEYRFADHNYEY





LLDESDEKDIIRQIENSLGARRWSLMDANEQTDILQKVRDRYQDFFRSHERKFVESPKLGESFE





NYLTKKFPMVEREQWKKLYHPSQITIYRPVSVGKDRSVLRLGNPDIGAIKNPTVLRVLNTLRRR





VNQLLDDGVISPDETRVVVETARELNDANRKWALDTYNRIRHDENEKIKKILEEFYPKRDGIST





DDIDKARYVIDQREVDYFTGSKTYNKDIKKYKFWLEQGGQCMYTGRTINLSNLFDPNAFDIEHT





IPESLSFDSSDMNLTLCDAHYNRFIKKNHIPTDMPNYDKAITIDGKEYPAITSQLQRWVERVER





LNRNVEYWKGQARRAQNKDRKDQCMREMHLWKMELEYWKKKLERFTVTEVTDGFKNSQLVDTRV





ITRHAVLYLKSIFPHVDVQRGDVTAKFRKILGIQSVDEKKDRSLHSHHAIDATTLTIIPVSAKR





DRMLELFAKIEEINKMLSFSGSEDRTGLIQELEGLKNKLQMEVKVCRIGHNVSEIGTFINDNII





VNHHIKNQALTPVRRRLRKKGYIVGGVDNPRWQTGDALRGEIHKASYYGAITQFAKDDEGKVLM





KEGRPQVNPTIKFVIRRELKYKKSAADSGFASWDDLGKAIVDKELFALMKGQFPAETSFKDACE





QGIYMIKKGKNGMPDIKLHHIRHVRCEAPQSGLKIKEQTYKSEKEYKRYFYAAVGDLYAMCCYT





NGKIREFRIYSLYDVSCHRKSDIEDIPEFITDKKGNRLMLDYKLRTGDMILLYKDNPAELYDLD





NVNLSRRLYKINRFESQSNLVLMTHHLSTSKERGRSLGKTVDYQNLPESIRSSVKSLNFLIMGE





NRDFVIKNGKIIFNHR











SEQ ID NO: 340









MLVSPISVDLGGKNTGFFSFTDSLDNSQSGTVIYDESFVLSQVGRRSKRHSKRNNLRNKLVKRL






FLLILQEHHGLSIDVLPDEIRGLFNKRGYTYAGFELDEKKKDALESDTLKEFLSEKLQSIDRDS





DVEDFLNQIASNAESFKDYKKGFEAVFASATHSPNKKLELKDELKSEYGENAKELLAGLRVTKE





ILDEFDKQENQGNLPRAKYFEELGEYIATNEKVKSFFDSNSLKLTDMTKLIGNISNYQLKELRR





YFNDKEMEKGDIWIPNKLHKITERFVRSWHPKNDADRQRRAELMKDLKSKEIMELLTTTEPVMT





IPPYDDMNNRGAVKCQTLRLNEEYLDKHLPNWRDIAKRLNHGKFNDDLADSTVKGYSEDSTLLH





RLLDTSKEIDIYELRGKKPNELLVKTLGQSDANRLYGFAQNYYELIRQKVRAGIWVPVKNKDDS





LNLEDNSNMLKRCNHNPPHKKNQIHNLVAGILGVKLDEAKFAEFEKELWSAKVGNKKLSAYCKN





IEELRKTHGNTFKIDIEELRKKDPAELSKEEKAKLRLTDDVILNEWSQKIANFFDIDDKHRQRF





NNLFSMAQLHTVIDTPRSGFSSTCKRCTAENRFRSETAFYNDETGEFHKKATATCQRLPADTQR





PFSGKIERYIDKLGYELAKIKAKELEGMEAKEIKVPIILEQNAFEYEESLRKSKTGSNDRVINS





KKDRDGKKLAKAKENAEDRLKDKDKRIKAFSSGICPYCGDTIGDDGEIDHILPRSHTLKIYGTV





FNPEGNLIYVHQKCNQAKADSIYKLSDIKAGVSAQWIEEQVANIKGYKTFSVLSAEQQKAFRYA





LFLQNDNEAYKKVVDWLRTDQSARVNGTQKYLAKKIQEKLTKMLPNKHLSFEFILADATEVSEL





RRQYARQNPLLAKAEKQAPSSHAIDAVMAFVARYQKVFKDGTPPNADEVAKLAMLDSWNPASNE





PLTKGLSTNQKIEKMIKSGDYGQKNMREVFGKSIFGENAIGERYKPIVVQEGGYYIGYPATVKK





GYELKNCKVVTSKNDIAKLEKIIKNQDLISLKENQYIKIFSINKQTISELSNRYFNMNYKNLVE





RDKEIVGLLEFIVENCRYYTKKVDVKFAPKYIHETKYPFYDDWRRFDEAWRYLQENQNKTSSKD





RFVIDKSSLNEYYQPDKNEYKLDVDTQPIWDDFCRWYFLDRYKTANDKKSIRIKARKTFSLLAE





SGVQGKVFRAKRKIPTGYAYQALPMDNNVIAGDYANILLEANSKTLSLVPKSGISIEKQLDKKL





DVIKKTDVRGLAIDNNSFFNADFDTHGIRLIVENTSVKVGNFPISAIDKSAKRMIFRALFEKEK





GKRKKKTTISFKESGPVQDYLKVFLKKIVKIQLRTDGSISNIVVRKNAADFTLSFRSEHIQKLL





K











SEQ ID NO: 341









MAYRLGLDIGITSVGWAVVALEKDESGLKPVRIQDLGVRIFDKAEDSKTGASLALPRREARSAR






RRTRRRRHRLWRVKRLLEQHGILSMEQIEALYAQRTSSPDVYALRVAGLDRCLIAEEIARVLIH





IAHRRGFQSNRKSEIKDSDAGKLLKAVQENENLMQSKGYRTVAEMLVSEATKTDAEGKLVHGKK





HGYVSNVRNKAGEYRHTVSRQAIVDEVRKIFAAQRALGNDVMSEELEDSYLKILCSQRNFDDGP





GGDSPYGHGSVSPDGVRQSIYERMVGSCTFETGEKRAPRSSYSFERFQLLTKVVNLRIYRQQED





GGRYPCELTQTERARVIDCAYEQTKITYGKLRKLLDMKDTESFAGLTYGLNRSRNKTEDTVFVE





MKFYHEVRKALQRAGVFIQDLSIETLDQIGWILSVWKSDDNRRKKLSTLGLSDNVIEELLPLNG





SKFGHLSLKAIRKILPFLEDGYSYDVACELAGYQFQGKTEYVKQRLLPPLGEGEVTNPVVRRAL





SQAIKVVNAVIRKHGSPESIHIELARELSKNLDERRKIEKAQKENQKNNEQIKDEIREILGSAH





VTGRDIVKYKLFKQQQEFCMYSGEKLDVTRLFEPGYAEVDHIIPYGISFDDSYDNKVLVKTEQN





RQKGNRTPLEYLRDKPEQKAKFIALVESIPLSQKKKNHLLMDKRAIDLEQEGFRERNLSDTRYI





TRALMNHIQAWLLFDETASTRSKRVVCVNGAVTAYMRARWGLTKDRDAGDKHHAADAVVVACIG





DSLIQRVTKYDKFKRNALADRNRYVQQVSKSEGITQYVDKETGEVFTWESFDERKFLPNEPLEP





WPFFRDELLARLSDDPSKNIRAIGLLTYSETEQIDPIFVSRMPTRKVTGAAHKETIRSPRIVKV





DDNKGTEIQVVVSKVALTELKLTKDGEIKDYFRPEDDPRLYNTLRERLVQFGGDAKAAFKEPVY





KISKDGSVRTPVRKVKIQEKLTLGVPVHGGRGIAENGGMVRIDVFAKGGKYYFVPIYVADVLKR





ELPNRLATAHKPYSEWRVVDDSYQFKFSLYPNDAVMIKPSREVDITYKDRKEPVGCRIMYFVSA





NIASASISLRTHDNSGELEGLGIQGLEVFEKYVVGPLGDTHPVYKERRMPFRVERKMN











SEQ ID NO: 342









MPVLSPLSPNAAQGRRRWSLALDIGEGSIGWAVAEVDAEGRVLQLTGTGVTLFPSAWSNENGTY






VAHGAADRAVRGQQQRHDSRRRRLAGLARLCAPVLERSPEDLKDLTRTPPKADPRAIFFLRADA





ARRPLDGPELFRVLHHMAAHRGIRLAELQEVDPPPESDADDAAPAATEDEDGTRRAAADERAFR





RLMAEHMHRHGTQPTCGEIMAGRLRETPAGAQPVTRARDGLRVGGGVAVPTRALIEQEFDAIRA





IQAPRHPDLPWDSLRRLVLDQAPIAVPPATPCLFLEELRRRGETFQGRTITREAIDRGLTVDPL





IQALRIRETVGNLRLHERITEPDGRQRYVPRAMPELGLSHGELTAPERDTLVRALMHDPDGLAA





KDGRIPYTRLRKLIGYDNSPVCFAQERDTSGGGITVNPTDPLMARWIDGWVDLPLKARSLYVRD





VVARGADSAALARLLAEGAHGVPPVAAAAVPAATAAILESDIMQPGRYSVCPWAAEAILDAWAN





APTEGFYDVTRGLFGFAPGEIVLEDLRRARGALLAHLPRTMAAARTPNRAAQQRGPLPAYESVI





PSQLITSLRRAHKGRAADWSAADPEERNPFLRTWTGNAATDHILNQVRKTANEVITKYGNRRGW





DPLPSRITVELAREAKHGVIRRNEIAKENRENEGRRKKESAALDTFCQDNTVSWQAGGLPKERA





ALRLRLAQRQEFFCPYCAERPKLRATDLFSPAETEIDHVIERRMGGDGPDNLVLAHKDCNNAKG





KKTPHEHAGDLLDSPALAALWQGWRKENADRLKGKGHKARTPREDKDFMDRVGWRFEEDARAKA





EENQERRGRRMLHDTARATRLARLYLAAAVMPEDPAEIGAPPVETPPSPEDPTGYTAIYRTISR





VQPVNGSVTHMLRQRLLQRDKNRDYQTHHAEDACLLLLAGPAVVQAFNTEAAQHGADAPDDRPV





DLMPTSDAYHQQRRARALGRVPLATVDAALADIVMPESDRQDPETGRVHWRLTRAGRGLKRRID





DLTRNCVILSRPRRPSETGTPGALHNATHYGRREITVDGRTDTVVTQRMNARDLVALLDNAKIV





PAARLDAAAPGDTILKEICTEIADRHDRVVDPEGTHARRWISARLAALVPAHAEAVARDIAELA





DLDALADADRTPEQEARRSALRQSPYLGRAISAKKADGRARAREQEILTRALLDPHWGPRGLRH





LIMREARAPSLVRIRANKTDAFGRPVPDAAVWVKTDGNAVSQLWRLTSVVTDDGRRIPLPKPIE





KRIEISNLEYARLNGLDEGAGVTGNNAPPRPLRQDIDRLTPLWRDHGTAPGGYLGTAVGELEDK





ARSALRGKAMRQTLTDAGITAEAGWRLDSEGAVCDLEVAKGDTVKKDGKTYKVGVITQGIFGMP





VDAAGSAPRTPEDCEKFEEQYGIKPWKAKGIPLA











SEQ ID NO: 343









MNYTEKEKLFMKYILALDIGIASVGWAILDKESETVIEAGSNIFPEASAADNQLRRDMRGAKRN






NRRLKTRINDFIKLWENNNLSIPQFKSTEIVGLKVRAITEEITLDELYLILYSYLKHRGISYLE





DALDDTVSGSSAYANGLKLNAKELETHYPCEIQQERLNTIGKYRGQSQIINENGEVLDLSNVFT





IGAYRKEIQRVFEIQKKYHPELTDEFCDGYMLIFNRKRKYYEGPGNEKSRTDYGRFTTKLDANG





NYITEDNIFEKLIGKCSVYPDELRAAAASYTAQEYNVLNDLNNLTINGRKLEENEKHEIVERIK





SSNTINMRKIISDCMGENIDDFAGARIDKSGKEIFHKFEVYNKMRKALLEIGIDISNYSREELD





EIGYIMTINTDKEAMMEAFQKSWIDLSDDVKQCLINMRKTNGALFNKWQSFSLKIMNELIPEMY





AQPKEQMTLLTEMGVTKGTQEEFAGLKYIPVDVVSEDIFNPVVRRSVRISFKILNAVLKKYKAL





DTIVIEMPRDRNSEEQKKRINDSQKLNEKEMEYIEKKLAVTYGIKLSPSDFSSQKQLSLKLKLW





NEQDGICLYSGKTIDPNDIINNPQLFEIDHIIPRSISFDDARSNKVLVYRSENQKKGNQTPYYY





LTHSHSEWSFEQYKATVMNLSKKKEYAISRKKIQNLLYSEDITKMDVLKGFINRNINDTSYASR





LVLNTIQNFFMANEADTKVKVIKGSYTHQMRCNLKLDKNRDESYSHHAVDAMLIGYSELGYEAY





HKLQGEFIDFETGEILRKDMWDENMSDEVYADYLYGKKWANIRNEVVKAEKNVKYWHYVMRKSN





RGLCNQTIRGTREYDGKQYKINKLDIRTKEGIKVFAKLAFSKKDSDRERLLVYLNDRRTFDDLC





KIYEDYSDAANPFVQYEKETGDIIRKYSKKHNGPRIDKLKYKDGEVGACIDISHKYGFEKGSKK





VILESLVPYRMDVYYKEENHSYYLVGVKQSDIKFEKGRNVIDEEAYARILVNEKMIQPGQSRAD





LENLGFKFKLSFYKNDIIEYEKDGKIYTERLVSRTMPKQRNYIETKPIDKAKFEKQNLVGLGKT





KFIKKYRYDILGNKYSCSEEKFTSFC











SEQ ID NO: 344









MLRLYCANNLVLNNVQNLWKYLLLLIFDKKIIFLFKIKVILIRRYMENNNKEKIVIGFDLGVAS






VGWSIVNAETKEVIDLGVRLFSEPEKADYRRAKRTTRRLLRRKKFKREKFHKLILKNAEIFGLQ





SRNEILNVYKDQSSKYRNILKLKINALKEEIKPSELVWILRDYLQNRGYFYKNEKLTDEFVSNS





FPSKKLHEHYEKYGFFRGSVKLDNKLDNKKDKAKEKDEEEESDAKKESEELIFSNKQWINEIVK





VFENQSYLTESFKEEYLKLFNYVRPFNKGPGSKNSRTAYGVFSTDIDPETNKFKDYSNIWDKTI





GKCSLFEEEIRAPKNLPSALIFNLQNEICTIKNEFTEFKNWWLNAEQKSEILKFVFTELFNWKD





KKYSDKKFNKNLQDKIKKYLLNFALENFNLNEEILKNRDLENDTVLGLKGVKYYEKSNATADAA





LEFSSLKPLYVFIKFLKEKKLDLNYLLGLENTEILYFLDSIYLAISYSSDLKERNEWFKKLLKE





LYPKIKNNNLEIIENVEDIFEITDQEKFESFSKTHSLSREAFNHIIPLLLSNNEGKNYESLKHS





NEELKKRTEKAELKAQQNQKYLKDNFLKEALVPLSVKTSVLQAIKIFNQIIKNFGKKYEISQVV





IEMARELTKPNLEKLLNNATNSNIKILKEKLDQTEKFDDFTKKKFIDKIENSVVFRNKLFLWFE





QDRKDPYTQLDIKINEIEDETEIDHVIPYSKSADDSWFNKLLVKKSTNQLKKNKTVWEYYQNES





DPEAKWNKFVAWAKRIYLVQKSDKESKDNSEKNSIFKNKKPNLKFKNITKKLFDPYKDLGFLAR





NLNDTRYATKVFRDQLNNYSKHHSKDDENKLFKVVCMNGSITSFLRKSMWRKNEEQVYRFNFWK





KDRDQFFHHAVDASIIAIFSLLTKTLYNKLRVYESYDVQRREDGVYLINKETGEVKKADKDYWK





DQHNFLKIRENAIEIKNVLNNVDFQNQVRYSRKANTKLNTQLFNETLYGVKEFENNFYKLEKVN





LFSRKDLRKFILEDLNEESEKNKKNENGSRKRILTEKYIVDEILQILENEEFKDSKSDINALNK





YMDSLPSKFSEFFSQDFINKCKKENSLILTFDAIKHNDPKKVIKIKNLKFFREDATLKNKQAVH





KDSKNQIKSFYESYKCVGFIWLKNKNDLEESIFVPINSRVIHFGDKDKDIFDFDSYNKEKLLNE





INLKRPENKKFNSINEIEFVKFVKPGALLLNFENQQIYYISTLESSSLRAKIKLLNKMDKGKAV





SMKKITNPDEYKIIEHVNPLGINLNWTKKLENNN











SEQ ID NO: 345









MLMSKHVLGLDLGVGSIGWCLIALDAQGDPAEILGMGSRVVPLNNATKAIEAFNAGAAFTASQE






RTARRTMRRGFARYQLRRYRLRRELEKVGMLPDAALIQLPLLELWELRERAATAGRRLTLPELG





RVLCHINQKRGYRHVKSDAAAIVGDEGEKKKDSNSAYLAGIRANDEKLQAEHKTVGQYFAEQLR





QNQSESPTGGISYRIKDQIFSRQCYIDEYDQIMAVQRVHYPDILTDEFIRMLRDEVIFMQRPLK





SCKHLVSLCEFEKQERVMRVQQDDGKGGWQLVERRVKFGPKVAPKSSPLFQLCCIYEAVNNIRL





TRPNGSPCDITPEERAKIVAHLQSSASLSFAALKKLLKEKALIADQLTSKSGLKGNSTRVALAS





ALQPYPQYHHLLDMELETRMMTVQLTDEETGEVTEREVAVVTDSYVRKPLYRLWHILYSIEERE





AMRRALITQLGMKEEDLDGGLLDQLYRLDFVKPGYGNKSAKFICKLLPQLQQGLGYSEACAAVG





YRHSNSPTSEEITERTLLEKIPLLQRNELRQPLVEKILNQMINLVNALKAEYGIDEVRVELARE





LKMSREERERMARNNKDREERNKGVAAKIRECGLYPTKPRIQKYMLWKEAGRQCLYCGRSIEEE





QCLREGGMEVEHIIPKSVLYDDSYGNKTCACRRCNKEKGNRTALEYIRAKGREAEYMKRINDLL





KEKKISYSKHQRLRWLKEDIPSDFLERQLRLTQYISRQAMAILQQGIRRVSASEGGVTARLRSL





WGYGKILHTLNLDRYDSMGETERVSREGEATEELHITNWSKRMDHRHHAIDALVVACTRQSYIQ





RLNRLSSEFGREDKKKEDQEAQEQQATETGRLSNLERWLTQRPHFSVRTVSDKVAEILISYRPG





QRVVTRGRNIYRKKMADGREVSCVQRGVLVPRGELMEASFYGKILSQGRVRIVKRYPLHDLKGE





VVDPHLRELITTYNQELKSREKGAPIPPLCLDKDKKQEVRSVRCYAKTLSLDKAIPMCFDEKGE





PTAFVKSASNHHLALYRTPKGKLVESIVTFWDAVDRARYGIPLVITHPREVMEQVLQRGDIPEQ





VLSLLPPSDWVFVDSLQQDEMVVIGLSDEELQRALEAQNYRKISEHLYRVQKMSSSYYVFRYHL





ETSVADDKNTSGRIPKFHRVQSLKAYEERNIRKVRVDLLGRISLL











SEQ ID NO: 346









MSDLVLGLDIGIGSVGVGILNKVTGEIIHKNSRIFPAAQAENNLVRRTNRQGRRLARRKKHRRV






RLNRLFEESGLITDFTKISINLNPYQLRVKGLTDELSNEELFIALKNMVKHRGISYLDDASDDG





NSSVGDYAQIVKENSKQLETKTPGQIQLERYQTYGQLRGDFTVEKDGKKHRLINVFPTSAYRSE





ALRILQTQQEFNPQITDEFINRYLEILTGKRKYYHGPGNEKSRTDYGRYRTSGETLDNIFGILI





GKCTFYPDEFRAAKASYTAQEFNLLNDLNNLTVPTETKKLSKEQKNQIINYVKNEKAMGPAKLF





KYIAKLLSCDVADIKGYRIDKSGKAEIHTFEAYRKMKTLETLDIEQMDRETLDKLAYVLTLNTE





REGIQEALEHEFADGSFSQKQVDELVQFRKANSSIFGKGWHNFSVKLMMELIPELYETSEEQMT





ILTRLGKQKTTSSSNKTKYIDEKLLTEEIYNPVVAKSVRQAIKIVNAAIKEYGDFDNIVIEMAR





ETNEDDEKKAIQKIQKANKDEKDAAMLKAANQYNGKAELPHSVFHGHKQLATKIRLWHQQGERC





LYTGKTISIHDLINNSNQFEVDHILPLSITFDDSLANKVLVYATANQEKGQRTPYQALDSMDDA





WSFRELKAFVRESKTLSNKKKEYLLTEEDISKFDVRKKFIERNLVDTRYASRVVLNALQEHFRA





HKIDTKVSVVRGQFTSQLRRHWGIEKTRDTYHHHAVDALIIAASSQLNLWKKQKNTLVSYSEDQ





LLDIETGELISDDEYKESVFKAPYQHFVDTLKSKEFEDSILFSYQVDSKFNRKISDATIYATRQ





AKVGKDKADETYVLGKIKDIYTQDGYDAFMKIYKKDKSKFLMYRHDPQTFEKVIEPILENYPNK





QINEKGKEVPCNPFLKYKEEHGYIRKYSKKGNGPEIKSLKYYDSKLGNHIDITPKDSNNKVVLQ





SVSPWRADVYFNKTTGKYEILGLKYADLQFEKGTGTYKISQEKYNDIKKKEGVDSDSEFKFTLY





KNDLLLVKDTETKEQQLFRFLSRTMPKQKHYVELKPYDKQKFEGGEALIKVLGNVANSGQCKKG





LGKSNISIYKVRTDVLGNQHIIKNEGDKPKLDF











SEQ ID NO: 347









MNAEHGKEGLLIMEENFQYRIGLDIGITSVGWAVLQNNSQDEPVRITDLGVRIFDVAENPKNGD






ALAAPRRDARTTRRRLRRRRHRLERIKFLLQENGLIEMDSFMERYYKGNLPDVYQLRYEGLDRK





LKDEELAQVLIHIAKHRGFRSTRKAETKEKEGGAVLKATTENQKIMQEKGYRTVGEMLYLDEAF





HTECLWNEKGYVLTPRNRPDDYKHTILRSMLVEEVHAIFAAQRAHGNQKATEGLEEAYVEIMTS





QRSFDMGPGLQPDGKPSPYAMEGFGDRVGKCTFEKDEYRAPKATYTAELFVALQKINHTKLIDE





FGTGRFFSEEERKTIIGLLLSSKELKYGTIRKKLNIDPSLKFNSLNYSAKKEGETEEERVLDTE





KAKFASMFWTYEYSKCLKDRTEEMPVGEKADLFDRIGEILTAYKNDDSRSSRLKELGLSGEEID





GLLDLSPAKYQRVSLKAMRKMQPYLEDGLIYDKACEAAGYDFRALNDGNKKHLLKGEEINAIVN





DITNPVVKRSVSQTIKVINAIIQKYGSPQAVNIELAREMSKNFQDRTNLEKEMKKRQQENERAK





QQIIELGKQNPTGQDILKYRLWNDQGGYCLYSGKKIPLEELFDGGYDIDHILPYSITFDDSYRN





KVLVTAQENRQKGNRTPYEYFGADEKRWEDYEASVRLLVRDYKKQQKLLKKNFTEEERKEFKER





NLNDTKYITRVVYNMIRQNLELEPFNHPEKKKQVWAVNGAVTSYLRKRWGLMQKDRSTDRHHAM





DAVVIACCTDGMIHKISRYMQGRELAYSRNFKFPDEETGEILNRDNFTREQWDEKFGVKVPLPW





NSFRDELDIRLLNEDPKNFLLTHADVQRELDYPGWMYGEEESPIEEGRYINYIRPLFVSRMPNH





KVTGSAHDATIRSARDYETRGVVITKVPLTDLKLNKDNEIEGYYDKDSDRLLYQALVRQLLLHG





NDGKKAFAEDFHKPKADGTEGPVVRKVKIEKKQTSGVMVRGGTGIAANGEMVRIDVFRENGKYY





FVPVYTADVVRKVLPNRAATHTKPYSEWRVMDDANFVFSLYSRDLIHVKSKKDIKTNLVNGGLL





LQKEIFAYYTGADIATASIAGFANDSNFKFRGLGIQSLEIFEKCQVDILGNISVVRHENRQEFH











SEQ ID NO: 348









MRVLGLDAGIASLGWALIEIEESNRGELSQGTIIGAGTWMFDAPEEKTQAGAKLKSEQRRTFRG






QRRVVRRRRQRMNEVRRILHSHGLLPSSDRDALKQPGLDPWRIRAEALDRLLGPVELAVALGHI





ARHRGFKSNSKGAKTNDPADDTSKMKRAVNETREKLARFGSAAKMLVEDESFVLRQTPTKNGAS





EIVRRFRNREGDYSRSLLRDDLAAEMRALFTAQARFQSAIATADLQTAFTKAAFFQRPLQDSEK





LVGPCPFEVDEKRAPKRGYSFELFRFLSRLNHVTLRDGKQERTLTRDELALAAADFGAAAKVSF





TALRKKLKLPETTVFVGVKADEESKLDVVARSGKAAEGTARLRSVIVDALGELAWGALLCSPEK





LDKIAEVISFRSDIGRISEGLAQAGCNAPLVDALTAAASDGRFDPFTGAGHISSKAARNILSGL





RQGMTYDKACCAADYDHTASRERGAFDVGGHGREALKRILQEERISRELVGSPTARKALIESIK





QVKAIVERYGVPDRIHVELARDVGKSIEEREEITRGIEKRNRQKDKLRGLFEKEVGRPPQDGAR





GKEELLRFELWSEQMGRCLYTDDYISPSQLVATDDAVQVDHILPWSRFADDSYANKTLCMAKAN





QDKKGRTPYEWFKAEKTDTEWDAFIVRVEALADMKGFKKRNYKLRNAEEAAAKFRNRNLNDTRW





ACRLLAEALKQLYPKGEKDKDGKERRRVFSRPGALTDRLRRAWGLQWMKKSTKGDRIPDDRHHA





LDAIVIAATTESLLQRATREVQEIEDKGLHYDLVKNVTPPWPGFREQAVEAVEKVFVARAERRR





ARGKAHDATIRHIAVREGEQRVYERRKVAELKLADLDRVKDAERNARLIEKLRNWIEAGSPKDD





PPLSPKGDPIFKVRLVTKSKVNIALDTGNPKRPGTVDRGEMARVDVFRKASKKGKYEYYLVPIY





PHDIATMKTPPIRAVQAYKPEDEWPEMDSSYEFCWSLVPMTYLQVISSKGEIFEGYYRGMNRSV





GAIQLSAHSNSSDVVQGIGARTLTEFKKFNVDRFGRKHEVERELRTWRGETWRGKAYI











SEQ ID NO: 349









MGNYYLGLDVGIGSIGWAVINIEKKRIEDFNVRIFKSGEIQEKNRNSRASQQCRRSRGLRRLYR






RKSHRKLRLKNYLSIIGLTTSEKIDYYYETADNNVIQLRNKGLSEKLTPEEIAACLIHICNNRG





YKDFYEVNVEDIEDPDERNEYKEEHDSIVLISNLMNEGGYCTPAEMICNCREFDEPNSVYRKFH





NSAASKNHYLITRHMLVKEVDLILENQSKYYGILDDKTIAKIKDIIFAQRDFEIGPGKNERFRR





FTGYLDSIGKCQFFKDQERGSRFTVIADIYAFVNVLSQYTYTNNRGESVFDTSFANDLINSALK





NGSMDKRELKAIAKSYHIDISDKNSDTSLTKCFKYIKVVKPLFEKYGYDWDKLIENYTDTDNNV





LNRIGIVLSQAQTPKRRREKLKALNIGLDDGLINELTKLKLSGTANVSYKYMQGSIEAFCEGDL





YGKYQAKFNKEIPDIDENAKPQKLPPFKNEDDCEFFKNPVVFRSINETRKLINAIIDKYGYPAA





VNIETADELNKTFEDRAIDTKRNNDNQKENDRIVKEIIECIKCDEVHARHLIEKYKLWEAQEGK





CLYSGETITKEDMLRDKDKLFEVDHIVPYSLILDNTINNKALVYAEENQKKGQRTPLMYMNEAQ





AADYRVRVNTMFKSKKCSKKKYQYLMLPDLNDQELLGGWRSRNLNDTRYICKYLVNYLRKNLRF





DRSYESSDEDDLKIRDHYRVFPVKSRFTSMFRRWWLNEKTWGRYDKAELKKLTYLDHAADAIII





ANCRPEYVVLAGEKLKLNKMYHQAGKRITPEYEQSKKACIDNLYKLFRMDRRTAEKLLSGHGRL





TPIIPNLSEEVDKRLWDKNIYEQFWKDDKDKKSCEELYRENVASLYKGDPKFASSLSMPVISLK





PDHKYRGTITGEEAIRVKEIDGKLIKLKRKSISEITAESINSIYTDDKILIDSLKTIFEQADYK





DVGDYLKKTNQHFFTTSSGKRVNKVTVIEKVPSRWLRKEIDDNNFSLLNDSSYYCIELYKDSKG





DNNLQGIAMSDIVHDRKTKKLYLKPDFNYPDDYYTHVMYIFPGDYLRIKSTSKKSGEQLKFEGY





FISVKNVNENSFRFISDNKPCAKDKRVSITKKDIVIKLAVDLMGKVQGENNGKGISCGEPLSLL





KEKN











SEQ ID NO: 350









MLSRQLLGASHLARPVSYSYNVQDNDVHCSYGERCFMRGKRYRIGIDVGLNSVGLAAVEVSDEN






SPVRLLNAQSVIHDGGVDPQKNKEAITRKNMSGVARRTRRMRRRKRERLHKLDMLLGKFGYPVI





EPESLDKPFEEWHVRAELATRYIEDDELRRESISIALRHMARHRGWRNPYRQVDSLISDNPYSK





QYGELKEKAKAYNDDATAAEEESTPAQLVVAMLDAGYAEAPRLRWRTGSKKPDAEGYLPVRLMQ





EDNANELKQIFRVQRVPADEWKPLFRSVFYAVSPKGSAEQRVGQDPLAPEQARALKASLAFQEY





RIANVITNLRIKDASAELRKLTVDEKQSIYDQLVSPSSEDITWSDLCDFLGFKRSQLKGVGSLT





EDGEERISSRPPRLTSVQRIYESDNKIRKPLVAWWKSASDNEHEAMIRLLSNTVDIDKVREDVA





YASAIEFIDGLDDDALTKLDSVDLPSGRAAYSVETLQKLTRQMLTTDDDLHEARKTLFNVTDSW





RPPADPIGEPLGNPSVDRVLKNVNRYLMNCQQRWGNPVSVNIEHVRSSFSSVAFARKDKREYEK





NNEKRSIFRSSLSEQLRADEQMEKVRESDLRRLEAIQRQNGQCLYCGRTITFRTCEMDHIVPRK





GVGSTNTRTNFAAVCAECNRMKSNTPFAIWARSEDAQTRGVSLAEAKKRVTMFTFNPKSYAPRE





VKAFKQAVIARLQQTEDDAAIDNRSIESVAWMADELHRRIDWYFNAKQYVNSASIDDAEAETMK





TTVSVFQGRVTASARRAAGIEGKIHFIGQQSKTRLDRRHHAVDASVIAMMNTAAAQTLMERESL





RESQRLIGLMPGERSWKEYPYEGTSRYESFHLWLDNMDVLLELLNDALDNDRIAVMQSQRYVLG





NSIAHDATIHPLEKVPLGSAMSADLIRRASTPALWCALTRLPDYDEKEGLPEDSHREIRVHDTR





YSADDEMGFFASQAAQIAVQEGSADIGSAIHHARVYRCWKTNAKGVRKYFYGMIRVFQTDLLRA





CHDDLFTVPLPPQSISMRYGEPRVVQALQSGNAQYLGSLVVGDEIEMDFSSLDVDGQIGEYLQF





FSQFSGGNLAWKHWVVDGFFNQTQLRIRPRYLAAEGLAKAFSDDVVPDGVQKIVTKQGWLPPVN





TASKTAVRIVRRNAFGEPRLSSAHHMPCSWQWRHE











SEQ ID NO: 351









MYSIGLDLGISSVGWSVIDERTGNVIDLGVRLFSAKNSEKNLERRTNRGGRRLIRRKTNRLKDA






KKILAAVGFYEDKSLKNSCPYQLRVKGLTEPLSRGEIYKVTLHILKKRGISYLDEVDTEAAKES





QDYKEQVRKNAQLLTKYTPGQIQLQRLKENNRVKTGINAQGNYQLNVFKVSAYANELATILKTQ





QAFYPNELTDDWIALFVQPGIAEEAGLIYRKRPYYHGPGNEANNSPYGRWSDFQKTGEPATNIF





DKLIGKDFQGELRASGLSLSAQQYNLLNDLTNLKIDGEVPLSSEQKEYILTELMTKEFTRFGVN





DVVKLLGVKKERLSGWRLDKKGKPEIHTLKGYRNWRKIFAEAGIDLATLPTETIDCLAKVLTLN





TEREGIENTLAFELPELSESVKLLVLDRYKELSQSISTQSWHRFSLKTLHLLIPELMNATSEQN





TLLEQFQLKSDVRKRYSEYKKLPTKDVLAEIYNPTVNKTVSQAFKVIDALLVKYGKEQIRYITI





EMPRDDNEEDEKKRIKELHAKNSQRKNDSQSYFMQKSGWSQEKFQTTIQKNRRFLAKLLYYYEQ





DGICAYTGLPISPELLVSDSTEIDHIIPISISLDDSINNKVLVLSKANQVKGQQTPYDAWMDGS





FKKINGKFSNWDDYQKWVESRHFSHKKENNLLETRNIFDSEQVEKFLARNLNDTRYASRLVLNT





LQSFFTNQETKVRVVNGSFTHTLRKKWGADLDKTRETHHHHAVDATLCAVTSFVKVSRYHYAVK





EETGEKVMREIDFETGEIVNEMSYWEFKKSKKYERKTYQVKWPNFREQLKPVNLHPRIKFSHQV





DRKANRKLSDATIYSVREKTEVKTLKSGKQKITTDEYTIGKIKDIYTLDGWEAFKKKQDKLLMK





DLDEKTYERLLSIAETTPDFQEVEEKNGKVKRVKRSPFAVYCEENDIPAIQKYAKKNNGPLIRS





LKYYDGKLNKHINITKDSQGRPVEKTKNGRKVTLQSLKPYRYDIYQDLETKAYYTVQLYYSDLR





FVEGKYGITEKEYMKKVAEQTKGQVVRFCFSLQKNDGLEIEWKDSQRYDVRFYNFQSANSINFK





GLEQEMMPAENQFKQKPYNNGAINLNIAKYGKEGKKLRKFNTDILGKKHYLFYEKEPKNIIK











SEQ ID NO: 352









MYFYKNKENKLNKKVVLGLDLGIASVGWCLTDISQKEDNKFPIILHGVRLFETVDDSDDKLLNE






TRRKKRGQRRRNRRLFTRKRDFIKYLIDNNIIELEFDKNPKILVRNFIEKYINPFSKNLELKYK





SVTNLPIGFHNLRKAAINEKYKLDKSELIVLLYFYLSLRGAFFDNPEDTKSKEMNKNEIEIFDK





NESIKNAEFPIDKIIEFYKISGKIRSTINLKFGHQDYLKEIKQVFEKQNIDFMNYEKFAMEEKS





FFSRIRNYSEGPGNEKSFSKYGLYANENGNPELIINEKGQKIYTKIFKTLWESKIGKCSYDKKL





YRAPKNSFSAKVFDITNKLTDWKHKNEYISERLKRKILLSRFLNKDSKSAVEKILKEENIKFEN





LSEIAYNKDDNKINLPIINAYHSLTTIFKKHLINFENYLISNENDLSKLMSFYKQQSEKLFVPN





EKGSYEINQNNNVLHIFDAISNILNKFSTIQDRIRILEGYFEFSNLKKDVKSSEIYSEIAKLRE





FSGTSSLSFGAYYKFIPNLISEGSKNYSTISYEEKALQNQKNNFSHSNLFEKTWVEDLIASPTV





KRSLRQTMNLLKEIFKYSEKNNLEIEKIVVEVTRSSNNKHERKKIEGINKYRKEKYEELKKVYD





LPNENTTLLKKLWLLRQQQGYDAYSLRKIEANDVINKPWNYDIDHIVPRSISFDDSFSNLVIVN





KLDNAKKSNDLSAKQFIEKIYGIEKLKEAKENWGNWYLRNANGKAFNDKGKFIKLYTIDNLDEF





DNSDFINRNLSDTSYITNALVNHLTFSNSKYKYSVVSVNGKQTSNLRNQIAFVGIKNNKETERE





WKRPEGFKSINSNDFLIREEGKNDVKDDVLIKDRSFNGHHAEDAYFITIISQYFRSFKRIERLN





VNYRKETRELDDLEKNNIKFKEKASFDNFLLINALDELNEKLNQMRFSRMVITKKNTQLFNETL





YSGKYDKGKNTIKKVEKLNLLDNRTDKIKKIEEFFDEDKLKENELTKLHIFNHDKNLYETLKII





WNEVKIEIKNKNLNEKNYFKYFVNKKLQEGKISFNEWVPILDNDFKIIRKIRYIKFSSEEKETD





EIIFSQSNFLKIDQRQNFSFHNTLYWVQIWVYKNQKDQYCFISIDARNSKFEKDEIKINYEKLK





TQKEKLQIINEEPILKINKGDLFENEEKELFYIVGRDEKPQKLEIKYILGKKIKDQKQIQKPVK





KYFPNWKKVNLTYMGEIFKK











SEQ ID NO: 353









MDNKNYRIGIDVGLNSIGFCAVEVDQHDTPLGFLNLSVYRHDAGIDPNGKKTNTTRLAMSGVAR






RTRRLFRKRKRRLAALDRFIEAQGWTLPDHADYKDPYTPWLVRAELAQTPIRDENDLHEKLAIA





VRHIARHRGWRSPWVPVRSLHVEQPPSDQYLALKERVEAKTLLQMPEGATPAEMVVALDLSVDV





NLRPKNREKTDTRPENKKPGFLGGKLMQSDNANELRKIAKIQGLDDALLRELIELVFAADSPKG





ASGELVGYDVLPGQHGKRRAEKAHPAFQRYRIASIVSNLRIRHLGSGADERLDVETQKRVFEYL





LNAKPTADITWSDVAEEIGVERNLLMGTATQTADGERASAKPPVDVTNVAFATCKIKPLKEWWL





NADYEARCVMVSALSHAEKLTEGTAAEVEVAEFLQNLSDEDNEKLDSFSLPIGRAAYSVDSLER





LTKRMIENGEDLFEARVNEFGVSEDWRPPAEPIGARVGNPAVDRVLKAVNRYLMAAEAEWGAPL





SVNIEHVREGFISKRQAVEIDRENQKRYQRNQAVRSQIADHINATSGVRGSDVTRYLAIQRQNG





ECLYCGTAITFVNSEMDHIVPRAGLGSTNTRDNLVATCERCNKSKSNKPFAVWAAECGIPGVSV





AEALKRVDFWIADGFASSKEHRELQKGVKDRLKRKVSDPEIDNRSMESVAWMARELAHRVQYYF





DEKHTGTKVRVFRGSLTSAARKASGFESRVNFIGGNGKTRLDRRHHAMDAATVAMLRNSVAKTL





VLRGNIRASERAIGAAETWKSFRGENVADRQIFESWSENMRVLVEKFNLALYNDEVSIFSSLRL





QLGNGKAHDDTITKLQMHKVGDAWSLTEIDRASTPALWCALTRQPDFTWKDGLPANEDRTIIVN





GTHYGPLDKVGIFGKAAASLLVRGGSVDIGSAIHHARIYRIAGKKPTYGMVRVFAPDLLRYRNE





DLFNVELPPQSVSMRYAEPKVREAIREGKAEYLGWLVVGDELLLDLSSETSGQIAELQQDFPGT





THWTVAGFFSPSRLRLRPVYLAQEGLGEDVSEGSKSIIAGQGWRPAVNKVFGSAMPEVIRRDGL





GRKRRFSYSGLPVSWQG











SEQ ID NO: 354









MRLGLDIGTSSIGWWLYETDGAGSDARITGVVDGGVRIFSDGRDPKSGASLAVDRRAARAMRRR






RDRYLRRRATLMKVLAETGLMPADPAEAKALEALDPFALRAAGLDEPLPLPHLGRALFHLNQRR





GFKSNRKTDRGDNESGKIKDATARLDMEMMANGARTYGEFLHKRRQKATDPRHVPSVRTRLSIA





NRGGPDGKEEAGYDFYPDRRHLEEEFHKLWAAQGAHHPELTETLRDLLFEKIFFQRPLKEPEVG





LCLFSGHHGVPPKDPRLPKAHPLTQRRVLYETVNQLRVTADGREARPLTREERDQVIHALDNKK





PTKSLSSMVLKLPALAKVLKLRDGERFTLETGVRDAIACDPLRASPAHPDRFGPRWSILDADAQ





WEVISRIRRVQSDAEHAALVDWLTEAHGLDRAHAEATAHAPLPDGYGRLGLTATTRILYQLTAD





VVTYADAVKACGWHHSDGRTGECFDRLPYYGEVLERHVIPGSYHPDDDDITRFGRITNPTVHIG





LNQLRRLVNRIIETHGKPHQIVVELARDLKKSEEQKRADIKRIRDTTEAAKKRSEKLEELEIED





NGRNRMLLRLWEDLNPDDAMRRFCPYTGTRISAAMIFDGSCDVDHILPYSRTLDDSFPNRTLCL





REANRQKRNQTPWQAWGDTPHWHAIAANLKNLPENKRWRFAPDAMTRFEGENGFLDRALKDTQY





LARISRSYLDTLFTKGGHVWVVPGRFTEMLRRHWGLNSLLSDAGRGAVKAKNRTDHRHHAIDAA





VIAATDPGLLNRISRAAGQGEAAGQSAELIARDTPPPWEGFRDDLRVRLDRIIVSHRADHGRID





HAARKQGRDSTAGQLHQETAYSIVDDIHVASRTDLLSLKPAQLLDEPGRSGQVRDPQLRKALRV





ATGGKTGKDFENALRYFASKPGPYQAIRRVRIIKPLQAQARVPVPAQDPIKAYQGGSNHLFEIW





RLPDGEIEAQVITSFEAHTLEGEKRPHPAAKRLLRVHKGDMVALERDGRRVVGHVQKMDIANGL





FIVPHNEANADTRNNDKSDPFKWIQIGARPAIASGIRRVSVDEIGRLRDGGTRPI











SEQ ID NO: 355









MLHCIAVIRVPPSEEPGFFETHADSCALCHHGCMTYAANDKAIRYRVGIDVGLRSIGFCAVEVD






DEDHPIRILNSVVHVHDAGTGGPGETESLRKRSGVAARARRRGRAEKQRLKKLDVLLEELGWGV





SSNELLDSHAPWHIRKRLVSEYIEDETERRQCLSVAMAHIARHRGWRNSFSKVDTLLLEQAPSD





RMQGLKERVEDRTGLQFSEEVTQGELVATLLEHDGDVTIRGFVRKGGKATKVHGVLEGKYMQSD





LVAELRQICRTQRVSETTFEKLVLSIFHSKEPAPSAARQRERVGLDELQLALDPAAKQPRAERA





HPAFQKFKVVATLANMRIREQSAGERSLTSEELNRVARYLLNHTESESPTWDDVARKLEVPRHR





LRGSSRASLETGGGLTYPPVDDTTVRVMSAEVDWLADWWDCANDESRGHMIDAISNGCGSEPDD





VEDEEVNELISSATAEDMLKLELLAKKLPSGRVAYSLKTLREVTAAILETGDDLSQAITRLYGV





DPGWVPTPAPIEAPVGNPSVDRVLKQVARWLKFASKRWGVPQTVNIEHTREGLKSASLLEEERE





RWERFEARREIRQKEMYKRLGISGPFRRSDQVRYEILDLQDCACLYCGNEINFQTFEVDHIIPR





VDASSDSRRTNLAAVCHSCNSAKGGLAFGQWVKRGDCPSGVSLENAIKRVRSWSKDRLGLTEKA





MGKRKSEVISRLKTEMPYEEFDGRSMESVAWMAIELKKRIEGYFNSDRPEGCAAVQVNAYSGRL





TACARRAAHVDKRVRLIRLKGDDGHHKNRFDRRNHAMDALVIALMTPAIARTIAVREDRREAQQ





LTRAFESWKNFLGSEERMQDRWESWIGDVEYACDRLNELIDADKIPVTENLRLRNSGKLHADQP





ESLKKARRGSKRPRPQRYVLGDALPADVINRVTDPGLWTALVRAPGFDSQLGLPADLNRGLKLR





GKRISADFPIDYFPTDSPALAVQGGYVGLEFHHARLYRIIGPKEKVKYALLRVCAIDLCGIDCD





DLFEVELKPSSISMRTADAKLKEAMGNGSAKQIGWLVLGDEIQIDPTKFPKQSIGKFLKECGPV





SSWRVSALDTPSKITLKPRLLSNEPLLKTSRVGGHESDLVVAECVEKIMKKTGWVVEINALCQS





GLIRVIRRNALGEVRTSPKSGLPISLNLR











SEQ ID NO: 356









MRYRVGLDLGTASVGAAVFSMDEQGNPMELIWHYERLFSEPLVPDMGQLKPKKAARRLARQQRR






QIDRRASRLRRIAIVSRRLGIAPGRNDSGVHGNDVPTLRAMAVNERIELGQLRAVLLRMGKKRG





YGGTFKAVRKVGEAGEVASGASRLEEEMVALASVQNKDSVTVGEYLAARVEHGLPSKLKVAANN





EYYAPEYALFRQYLGLPAIKGRPDCLPNMYALRHQIEHEFERIWATQSQFHDVMKDHGVKEEIR





NAIFFQRPLKSPADKVGRCSLQTNLPRAPRAQIAAQNFRIEKQMADLRWGMGRRAEMLNDHQKA





VIRELLNQQKELSFRKIYKELERAGCPGPEGKGLNMDRAALGGRDDLSGNTTLAAWRKLGLEDR





WQELDEVTQIQVINFLADLGSPEQLDTDDWSCRFMGKNGRPRNFSDEFVAFMNELRMTDGFDRL





SKMGFEGGRSSYSIKALKALTEWMIAPHWRETPETHRVDEEAAIRECYPESLATPAQGGRQSKL





EPPPLTGNEVVDVALRQVRHTINMMIDDLGSVPAQIVVEMAREMKGGVTRRNDIEKQNKRFASE





RKKAAQSIEENGKTPTPARILRYQLWIEQGHQCPYCESNISLEQALSGAYTNFEHILPRTLTQI





GRKRSELVLAHRECNDEKGNRTPYQAFGHDDRRWRIVEQRANALPKKSSRKTRLLLLKDFEGEA





LTDESIDEFADRQLHESSWLAKVTTQWLSSLGSDVYVSRGSLTAELRRRWGLDTVIPQVRFESG





MPVVDEEGAEITPEEFEKFRLQWEGHRVTREMRTDRRPDKRIDHRHHLVDAIVTALTSRSLYQQ





YAKAWKVADEKQRHGRVDVKVELPMPILTIRDIALEAVRSVRISHKPDRYPDGRFFEATAYGIA





QRLDERSGEKVDWLVSRKSLTDLAPEKKSIDVDKVRANISRIVGEAIRLHISNIFEKRVSKGMT





PQQALREPIEFQGNILRKVRCFYSKADDCVRIEHSSRRGHHYKMLLNDGFAYMEVPCKEGILYG





VPNLVRPSEAVGIKRAPESGDFIRFYKGDTVKNIKTGRVYTIKQILGDGGGKLILTPVTETKPA





DLLSAKWGRLKVGGRNIHLLRLCAE











SEQ ID NO: 357









MIGEHVRGGCLFDDHWTPNWGAFRLPNTVRTFTKAENPKDGSSLAEPRRQARGLRRRLRRKTQR






LEDLRRLLAKEGVLSLSDLETLFRETPAKDPYQLRAEGLDRPLSFPEWVRVLYHITKHRGFQSN





RRNPVEDGQERSRQEEEGKLLSGVGENERLLREGGYRTAGEMLARDPKFQDHRRNRAGDYSHTL





SRSLLLEEARRLFQSQRTLGNPHASSNLEEAFLHLVAFQNPFASGEDIRNKAGHCSLEPDQIRA





PRRSASAETFMLLQKTGNLRLIHRRTGEERPLTDKEREQIHLLAWKQEKVTHKTLRRHLEIPEE





WLFTGLPYHRSGDKAEEKLFVHLAGIHEIRKALDKGPDPAVWDTLRSRRDLLDSIADTLTFYKN





EDEILPRLESLGLSPENARALAPLSFSGTAHLSLSALGKLLPHLEEGKSYTQARADAGYAAPPP





DRHPKLPPLEEADWRNPVVFRALTQTRKVVNALVRRYGPPWCIHLETARELSQPAKVRRRIETE





QQANEKKKQQAEREFLDIVGTAPGPGDLLKMRLWREQGGFCPYCEEYLNPTRLAEPGYAEMDHI





LPYSRSLDNGWHNRVLVHGKDNRDKGNRTPFEAFGGDTARWDRLVAWVQASHLSAPKKRNLLRE





DFGEEAERELKDRNLTDTRFITKTAATLLRDRLTFHPEAPKDPVMTLNGRLTAFLRKQWGLHKN





RKNGDLHHALDAAVLAVASRSFVYRLSSHNAAWGELPRGREAENGFSLPYPAFRSEVLARLCPT





REEILLRLDQGGVGYDEAFRNGLRPVFVSRAPSRRLRGKAHMETLRSPKWKDHPEGPRTASRIP





LKDLNLEKLERMVGKDRDRKLYEALRERLAAFGGNGKKAFVAPFRKPCRSGEGPLVRSLRIFDS





GYSGVELRDGGEVYAVADHESMVRVDVYAKKNRFYLVPVYVADVARGIVKNRAIVAHKSEEEWD





LVDGSFDFRFSLFPGDLVEIEKKDGAYLGYYKSCHRGDGRLLLDRHDRMPRESDCGTFYVSTRK





DVLSMSKYQVDPLGEIRLVGSEKPPFVL











SEQ ID NO: 358









MEKKRKVTLGFDLGIASVGWAIVDSETNQVYKLGSRLFDAPDTNLERRTQRGTRRLLRRRKYRN






QKFYNLVKRTEVFGLSSREAIENRFRELSIKYPNIIELKTKALSQEVCPDEIAWILHDYLKNRG





YFYDEKETKEDFDQQTVESMPSYKLNEFYKKYGYFKGALSQPTESEMKDNKDLKEAFFFDFSNK





EWLKEINYFFNVQKNILSETFIEEFKKIFSFTRDISKGPGSDNMPSPYGIFGEFGDNGQGGRYE





HIWDKNIGKCSIFTNEQRAPKYLPSALIFNFLNELANIRLYSTDKKNIQPLWKLSSVDKLNILL





NLFNLPISEKKKKLTSTNINDIVKKESIKSIMISVEDIDMIKDEWAGKEPNVYGVGLSGLNIEE





SAKENKFKFQDLKILNVLINLLDNVGIKFEFKDRNDIIKNLELLDNLYLFLIYQKESNNKDSSI





DLFIAKNESLNIENLKLKLKEFLLGAGNEFENHNSKTHSLSKKAIDEILPKLLDNNEGWNLEAI





KNYDEEIKSQIEDNSSLMAKQDKKYLNDNFLKDAILPPNVKVTFQQAILIFNKIIQKFSKDFEI





DKVVIELAREMTQDQENDALKGIAKAQKSKKSLVEERLEANNIDKSVFNDKYEKLIYKIFLWIS





QDFKDPYTGAQISVNEIVNNKVEIDHIIPYSLCFDDSSANKVLVHKQSNQEKSNSLPYEYIKQG





HSGWNWDEFTKYVKRVFVNNVDSILSKKERLKKSENLLTASYDGYDKLGFLARNLNDTRYATIL





FRDQLNNYAEHHLIDNKKMFKVIAMNGAVTSFIRKNMSYDNKLRLKDRSDFSHHAYDAAIIALF





SNKTKTLYNLIDPSLNGIISKRSEGYWVIEDRYTGEIKELKKEDWTSIKNNVQARKIAKEIEEY





LIDLDDEVFFSRKTKRKTNRQLYNETIYGIATKTDEDGITNYYKKEKFSILDDKDIYLRLLRER





EKFVINQSNPEVIDQIIEIIESYGKENNIPSRDEAINIKYTKNKINYNLYLKQYMRSLTKSLDQ





FSEEFINQMIANKTFVLYNPTKNTTRKIKFLRLVNDVKINDIRKNQVINKFNGKNNEPKAFYEN





INSLGAIVFKNSANNFKTLSINTQIAIFGDKNWDIEDFKTYNMEKIEKYKEIYGIDKTYNFHSF





IFPGTILLDKQNKEFYYISSIQTVRDIIEIKFLNKIEFKDENKNQDTSKTPKRLMFGIKSIMNN





YEQVDISPFGINKKIFE











SEQ ID NO: 359









MGYRIGLDVGITSTGYAVLKTDKNGLPYKILTLDSVIYPRAENPQTGASLAEPRRIKRGLRRRT






RRTKFRKQRTQQLFIHSGLLSKPEIEQILATPQAKYSVYELRVAGLDRRLTNSELFRVLYFFIG





HRGFKSNRKAELNPENEADKKQMGQLLNSIEEIRKAIAEKGYRTVGELYLKDPKYNDHKRNKGY





IDGYLSTPNRQMLVDEIKQILDKQRELGNEKLTDEFYATYLLGDENRAGIFQAQRDFDEGPGAG





PYAGDQIKKMVGKDIFEPTEDRAAKATYTFQYFNLLQKMTSLNYQNTTGDTWHTLNGLDRQAII





DAVFAKAEKPTKTYKPTDFGELRKLLKLPDDARFNLVNYGSLQTQKEIETVEKKTRFVDFKAYH





DLVKVLPEEMWQSRQLLDHIGTALTLYSSDKRRRRYFAEELNLPAELIEKLLPLNFSKFGHLSI





KSMQNIIPYLEMGQVYSEATTNTGYDFRKKQISKDTIREEITNPVVRRAVTKTIKIVEQIIRRY





GKPDGINIELARELGRNFKERGDIQKRQDKNRQTNDKIAAELTELGIPVNGQNIIRYKLHKEQN





GVDPYTGDQIPFERAFSEGYEVDHIIPYSISWDDSYTNKVLTSAKCNREKGNRIPMVYLANNEQ





RLNALTNIADNIIRNSRKRQKLLKQKLSDEELKDWKQRNINDTRFITRVLYNYFRQAIEFNPEL





EKKQRVLPLNGEVTSKIRSRWGFLKVREDGDLHHAIDATVIAAITPKFIQQVTKYSQHQEVKNN





QALWHDAEIKDAEYAAEAQRMDADLFNKIFNGFPLPWPEFLDELLARISDNPVEMMKSRSWNTY





TPIEIAKLKPVFVVRLANHKISGPAHLDTIRSAKLFDEKGIVLSRVSITKLKINKKGQVATGDG





IYDPENSNNGDKVVYSAIRQALEAHNGSGELAFPDGYLEYVDHGTKKLVRKVRVAKKVSLPVRL





KNKAAADNGSMVRIDVFNTGKKFVFVPIYIKDTVEQVLPNKAIARGKSLWYQITESDQFCFSLY





PGDMVHIESKTGIKPKYSNKENNTSVVPIKNFYGYFDGADIATASILVRAHDSSYTARSIGIAG





LLKFEKYQVDYFGRYHKVHEKKRQLFVKRDE











SEQ ID NO: 360









MQKNINTKQNHIYIKQAQKIKEKLGDKPYRIGLDLGVGSIGFAIVSMEENDGNVLLPKEIIMVG






SRIFKASAGAADRKLSRGQRNNHRHTRERMRYLWKVLAEQKLALPVPADLDRKENSSEGETSAK





RFLGDVLQKDIYELRVKSLDERLSLQELGYVLYHIAGHRGSSAIRTFENDSEEAQKENTENKKI





AGNIKRLMAKKNYRTYGEYLYKEFFENKEKHKREKISNAANNHKFSPTRDLVIKEAEAILKKQA





GKDGFHKELTEEYIEKLTKAIGYESEKLIPESGFCPYLKDEKRLPASHKLNEERRLWETLNNAR





YSDPIVDIVTGEITGYYEKQFTKEQKQKLFDYLLTGSELTPAQTKKLLGLKNTNFEDIILQGRD





KKAQKIKGYKLIKLESMPFWARLSEAQQDSFLYDWNSCPDEKLLTEKLSNEYHLTEEEIDNAFN





EIVLSSSYAPLGKSAMLIILEKIKNDLSYTEAVEEALKEGKLTKEKQAIKDRLPYYGAVLQEST





QKIIAKGFSPQFKDKGYKTPHTNKYELEYGRIANPVVHQTLNELRKLVNEIIDILGKKPCEIGL





ETARELKKSAEDRSKLSREQNDNESNRNRIYEIYIRPQQQVIITRRENPRNYILKFELLEEQKS





QCPFCGGQISPNDIINNQADIEHLFPIAESEDNGRNNLVISHSACNADKAKRSPWAAFASAAKD





SKYDYNRILSNVKENIPHKAWRFNQGAFEKFIENKPMAARFKTDNSYISKVAHKYLACLFEKPN





IICVKGSLTAQLRMAWGLQGLMIPFAKQLITEKESESFNKDVNSNKKIRLDNRHHALDAIVIAY





ASRGYGNLLNKMAGKDYKINYSERNWLSKILLPPNNIVWENIDADLESFESSVKTALKNAFISV





KHDHSDNGELVKGTMYKIFYSERGYTLTTYKKLSALKLTDPQKKKTPKDFLETALLKFKGRESE





MKNEKIKSAIENNKRLFDVIQDNLEKAKKLLEEENEKSKAEGKKEKNINDASIYQKAISLSGDK





YVQLSKKEPGKFFAISKPTPTTTGYGYDTGDSLCVDLYYDNKGKLCGEIIRKIDAQQKNPLKYK





EQGFTLFERIYGGDILEVDFDIHSDKNSFRNNTGSAPENRVFIKVGTFTEITNNNIQIWFGNII





KSTGGQDDSFTINSMQQYNPRKLILSSCGFIKYRSPILKNKEG











SEQ ID NO: 361









MAAFKPNPINYILGLDIGIASVGWAMVEIDEDENPICLIDLGVRVFERAEVPKTGDSLAMARRL






ARSVRRLTRRRAHRLLRARRLLKREGVLQAADFDENGLIKSLPNTPWQLRAAALDRKLTPLEWS





AVLLHLIKHRGYLSQRKNEGETADKELGALLKGVADNAHALQTGDFRTPAELALNKFEKESGHI





RNQRGDYSHTFSRKDLQAELILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDAVQKMLG





HCTFEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDTERATLMDEPYRKSKLTYAQA





RKLLGLEDTAFFKGLRYGKDNAEASTLMEMKAYHAISRALEKEGLKDKKSPLNLSPELQDEIGT





AFSLFKTDEDITGRLKDRIQPEILEALLKHISFDKFVQISLKALRRIVPLMEQGKRYDEACAEI





YGDHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVINGVVRRYGSPARIHIETAREVGKS





FKDRKEIEKRQEENRKDREKAAAKFREYFPNFVGEPKSKDILKLRLYEQQHGKCLYSGKEINLG





RLNEKGYVEIDHALPFSRTWDDSFNNKVLVLGSENQNKGNQTPYEYFNGKDNSREWQEFKARVE





TSRFPRSKKQRILLQKFDEDGFKERNLNDTRYVNRFLCQFVADRMRLTGKGKKRVFASNGQITN





LLRGFWGLRKVRAENDRHHALDAVVVACSTVAMQQKITRFVRYKEMNAFDGKTIDKETGEVLHQ





KTHFPQPWEFFAQEVMIRVFGKPDGKPEFEEADTPEKLRTLLAEKLSSRPEAVHEYVTPLFVSR





APNRKMSGQGHMETVKSAKRLDEGVSVLRVPLTQLKLKDLEKMVNREREPKLYEALKARLEAHK





DDPAKAFAEPFYKYDKAGNRTQQVKAVRVEQVQKTGVWVRNHNGIADNATMVRVDVFEKGDKYY





LVPIYSWQVAKGILPDRAVVQGKDEEDWQLIDDSFNFKFSLHPNDLVEVITKKARMFGYFASCH





RGTGNINIRIHDLDHKIGKNGILEGIGVKTALSFQKYQIDELGKEIRPCRLKKRPPVR











SEQ ID NO: 362









MQTTNLSYILGLDLGIASVGWAVVEINENEDPIGLIDVGVRIFERAEVPKTGESLALSRRLARS






TRRLIRRRAHRLLLAKRFLKREGILSTIDLEKGLPNQAWELRVAGLERRLSAIEWGAVLLHLIK





HRGYLSKRKNESQTNNKELGALLSGVAQNHQLLQSDDYRTPAELALKKFAKEEGHIRNQRGAYT





HTFNRLDLLAELNLLFAQQHQFGNPHCKEHIQQYMTELLMWQKPALSGEAILKMLGKCTHEKNE





FKAAKHTYSAERFVWLTKLNNLRILEDGAERALNEEERQLLINHPYEKSKLTYAQVRKLLGLSE





QAIFKHLRYSKENAESATFMELKAWHAIRKALENQGLKDTWQDLAKKPDLLDEIGTAFSLYKTD





EDIQQYLTNKVPNSVINALLVSLNFDKFIELSLKSLRKILPLMEQGKRYDQACREIYGHHYGEA





NQKTSQLLPAIPAQEIRNPVVLRTLSQARKVINAIIRQYGSPARVHIETGRELGKSFKERREIQ





KQQEDNRTKRESAVQKFKELFSDFSSEPKSKDILKFRLYEQQHGKCLYSGKEINIHRLNEKGYV





EIDHALPFSRTWDDSFNNKVLVLASENQNKGNQTPYEWLQGKINSERWKNFVALVLGSQCSAAK





KQRLLTQVIDDNKFIDRNLNDTRYIARFLSNYIQENLLLVGKNKKNVFTPNGQITALLRSRWGL





IKARENNNRHHALDAIVVACATPSMQQKITRFIRFKEVHPYKIENRYEMVDQESGEIISPHFPE





PWAYFRQEVNIRVFDNHPDTVLKEMLPDRPQANHQFVQPLFVSRAPTRKMSGQGHMETIKSAKR





LAEGISVLRIPLTQLKPNLLENMVNKEREPALYAGLKARLAEFNQDPAKAFATPFYKQGGQQVK





AIRVEQVQKSGVLVRENNGVADNASIVRTDVFIKNNKFFLVPIYTWQVAKGILPNKAIVAHKNE





DEWEEMDEGAKFKFSLFPNDLVELKTKKEYFFGYYIGLDRATGNISLKEHDGEISKGKDGVYRV





GVKLALSFEKYQVDELGKNRQICRPQQRQPVR











SEQ ID NO: 363









MGIRFAFDLGTNSIGWAVWRTGPGVFGEDTAASLDGSGVLIFKDGRNPKDGQSLATMRRVPRQS






RKRRDRFVLRRRDLLAALRKAGLFPVDVEEGRRLAATDPYHLRAKALDESLTPHEMGRVIFHLN





QRRGFRSNRKADRQDREKGKIAEGSKRLAETLAATNCRTLGEFLWSRHRGTPRTRSPTRIRMEG





EGAKALYAFYPTREMVRAEFERLWTAQSRFAPDLLTPERHEEIAGILFRQRDLAPPKIGCCTFE





PSERRLPRALPSVEARGIYERLAHLRITTGPVSDRGLTRPERDVLASALLAGKSLTFKAVRKTL





KILPHALVNFEEAGEKGLDGALTAKLLSKPDHYGAAWHGLSFAEKDTFVGKLLDEADEERLIRR





LVTENRLSEDAARRCASIPLADGYGRLGRTANTEILAALVEETDETGTVVTYAEAVRRAGERTG





RNWHHSDERDGVILDRLPYYGEILQRHVVPGSGEPEEKNEAARWGRLANPTVHIGLNQLRKVVN





RLIAAHGRPDQIVVELARELKLNREQKERLDRENRKNREENERRTAILAEHGQRDTAENKIRLR





LFEEQARANAGIALCPYTGRAIGIAELFTSEVEIDHILPVSLTLDDSLANRVLCRREANREKRR





QTPFQAFGATPAWNDIVARAAKLPPNKRWRFDPAALERFEREGGFLGRQLNETKYLSRLAKIYL





GKICDPDRVYVTPGTLTGLLRARWGLNSILSDSNFKNRSDHRHHAVDAVVIGVLTRGMIQRIAH





DAARAEDQDLDRVFRDVPVPFEDFRDHVRERVSTITVAVKPEHGKGGALHEDTSYGLVPDTDPN





AALGNLVVRKPIRSLTAGEVDRVRDRALRARLGALAAPFRDESGRVRDAKGLAQALEAFGAENG





IRRVRILKPDASVVTIADRRTGVPYRAVAPGENHHVDIVQMRDGSWRGFAASVFEVNRPGWRPE





WEVKKLGGKLVMRLHKGDMVELSDKDGQRRVKVVQQIEISANRVRLSPHNDGGKLQDRHADADD





PFRWDLATIPLLKDRGCVAVRVDPIGVVTLRRSNV











SEQ ID NO: 364









MMEVFMGRLVLGLDIGITSVGFGIIDLDESEIVDYGVRLFKEGTAAENETRRTKRGGRRLKRRR






VTRREDMLHLLKQAGIISTSFHPLNNPYDVRVKGLNERLNGEELATALLHLCKHRGSSVETIED





DEAKAKEAGETKKVLSMNDQLLKSGKYVCEIQKERLRTNGHIRGHENNFKTRAYVDEAFQILSH





QDLSNELKSAIITIISRKRMYYDGPGGPLSPTPYGRYTYFGQKEPIDLIEKMRGKCSLFPNEPR





APKLAYSAELFNLLNDLNNLSIEGEKLTSEQKAMILKIVHEKGKITPKQLAKEVGVSLEQIRGF





RIDTKGSPLLSELTGYKMIREVLEKSNDEHLEDHVFYDEIAEILTKTKDIEGRKKQISELSSDL





NEESVHQLAGLTKFTAYHSLSFKALRLINEEMLKTELNQMQSITLFGLKQNNELSVKGMKNIQA





DDTAILSPVAKRAQRETFKVVNRLREIYGEFDSIVVEMAREKNSEEQRKAIRERQKFFEMRNKQ





VADIIGDDRKINAKLREKLVLYQEQDGKTAYSLEPIDLKLLIDDPNAYEVDHIIPISISLDDSI





TNKVLVTHRENQEKGNLTPISAFVKGRFTKGSLAQYKAYCLKLKEKNIKTNKGYRKKVEQYLLN





ENDIYKYDIQKEFINRNLVDTSYASRVVLNTLTTYFKQNEIPTKVFTVKGSLTNAFRRKINLKK





DRDEDYGHHAIDALIIASMPKMRLLSTIFSRYKIEDIYDESTGEVFSSGDDSMYYDDRYFAFIA





SLKAIKVRKFSHKIDTKPNRSVADETIYSTRVIDGKEKVVKKYKDIYDPKFTALAEDILNNAYQ





EKYLMALHDPQTFDQIVKVVNYYFEEMSKSEKYFTKDKKGRIKISGMNPLSLYRDEHGMLKKYS





KKGDGPAITQMKYFDGVLGNHIDISAHYQVRDKKVVLQQISPYRTDFYYSKENGYKFVTIRYKD





VRWSEKKKKYVIDQQDYAMKKAEKKIDDTYEFQFSMHRDELIGITKAEGEALIYPDETWHNFNF





FFHAGETPEILKFTATNNDKSNKIEVKPIHCYCKMRLMPTISKKIVRIDKYATDVVGNLYKVKK





NTLKFEFD











SEQ ID NO: 365









MKKILGVDLGITSFGYAILQETGKDLYRCLDNSVVMRNNPYDEKSGESSQSIRSTQKSMRRLIE






KRKKRIRCVAQTMERYGILDYSETMKINDPKNNPIKNRWQLRAVDAWKRPLSPQELFAIFAHMA





KHRGYKSIATEDLIYELELELGLNDPEKESEKKADERRQVYNALRHLEELRKKYGGETIAQTIH





RAVEAGDLRSYRNHDDYEKMIRREDIEEEIEKVLLRQAELGALGLPEEQVSELIDELKACITDQ





EMPTIDESLFGKCTFYKDELAAPAYSYLYDLYRLYKKLADLNIDGYEVTQEDREKVIEWVEKKI





AQGKNLKKITHKDLRKILGLAPEQKIFGVEDERIVKGKKEPRTFVPFFFLADIAKFKELFASIQ





KHPDALQIFRELAEILQRSKTPQEALDRLRALMAGKGIDTDDRELLELFKNKRSGTRELSHRYI





LEALPLFLEGYDEKEVQRILGFDDREDYSRYPKSLRHLHLREGNLFEKEENPINNHAVKSLASW





ALGLIADLSWRYGPFDEIILETTRDALPEKIRKEIDKAMREREKALDKIIGKYKKEFPSIDKRL





ARKIQLWERQKGLDLYSGKVINLSQLLDGSADIEHIVPQSLGGLSTDYNTIVTLKSVNAAKGNR





LPGDWLAGNPDYRERIGMLSEKGLIDWKKRKNLLAQSLDEIYTENTHSKGIRATSYLEALVAQV





LKRYYPFPDPELRKNGIGVRMIPGKVTSKTRSLLGIKSKSRETNFHHAEDALILSTLTRGWQNR





LHRMLRDNYGKSEAELKELWKKYMPHIEGLTLADYIDEAFRRFMSKGEESLFYRDMFDTIRSIS





YWVDKKPLSASSHKETVYSSRHEVPTLRKNILEAFDSLNVIKDRHKLTTEEFMKRYDKEIRQKL





WLHRIGNTNDESYRAVEERATQIAQILTRYQLMDAQNDKEIDEKFQQALKELITSPIEVTGKLL





RKMRFVYDKLNAMQIDRGLVETDKNMLGIHISKGPNEKLIFRRMDVNNAHELQKERSGILCYLN





EMLFIFNKKGLIHYGCLRSYLEKGQGSKYIALFNPRFPANPKAQPSKFTSDSKIKQVGIGSATG





IIKAHLDLDGHVRSYEVFGTLPEGSIEWFKEESGYGRVEDDPHH











SEQ ID NO: 366









MRPIEPWILGLDIGTDSLGWAVFSCEEKGPPTAKELLGGGVRLFDSGRDAKDHTSRQAERGAFR






RARRQTRTWPWRRDRLIALFQAAGLTPPAAETRQIALALRREAVSRPLAPDALWAALLHLAHHR





GFRSNRIDKRERAAAKALAKAKPAKATAKATAPAKEADDEAGFWEGAEAALRQRMAASGAPTVG





ALLADDLDRGQPVRMRYNQSDRDGVVAPTRALIAEELAEIVARQSSAYPGLDWPAVTRLVLDQR





PLRSKGAGPCAFLPGEDRALRALPTVQDFIIRQTLANLRLPSTSADEPRPLTDEEHAKALALLS





TARFVEWPALRRALGLKRGVKFTAETERNGAKQAARGTAGNLTEAILAPLIPGWSGWDLDRKDR





VFSDLWAARQDRSALLALIGDPRGPTRVTEDETAEAVADAIQIVLPTGRASLSAKAARAIAQAM





APGIGYDEAVTLALGLHHSHRPRQERLARLPYYAAALPDVGLDGDPVGPPPAEDDGAAAEAYYG





RIGNISVHIALNETRKIVNALLHRHGPILRLVMVETTRELKAGADERKRMIAEQAERERENAEI





DVELRKSDRWMANARERRQRVRLARRQNNLCPYTSTPIGHADLLGDAYDIDHVIPLARGGRDSL





DNMVLCQSDANKTKGDKTPWEAFHDKPGWIAQRDDFLARLDPQTAKALAWRFADDAGERVARKS





AEDEDQGFLPRQLTDTGYIARVALRYLSLVTNEPNAVVATNGRLTGLLRLAWDITPGPAPRDLL





PTPRDALRDDTAARRFLDGLTPPPLAKAVEGAVQARLAALGRSRVADAGLADALGLTLASLGGG





GKNRADHRHHFIDAAMIAVTTRGLINQINQASGAGRILDLRKWPRTNFEPPYPTFRAEVMKQWD





HIHPSIRPAHRDGGSLHAATVFGVRNRPDARVLVQRKPVEKLFLDANAKPLPADKIAEIIDGFA





SPRMAKRFKALLARYQAAHPEVPPALAALAVARDPAFGPRGMTANTVIAGRSDGDGEDAGLITP





FRANPKAAVRTMGNAVYEVWEIQVKGRPRWTHRVLTRFDRTQPAPPPPPENARLVMRLRRGDLV





YWPLESGDRLFLVKKMAVDGRLALWPARLATGKATALYAQLSCPNINLNGDQGYCVQSAEGIRK





EKIRTTSCTALGRLRLSKKAT











SEQ ID NO: 367









MKYTLGLDVGIASVGWAVIDKDNNKIIDLGVRCFDKAEESKTGESLATARRIARGMRRRISRRS






QRLRLVKKLFVQYEIIKDSSEFNRIFDTSRDGWKDPWELRYNALSRILKPYELVQVLTHITKRR





GFKSNRKEDLSTTKEGVVITSIKNNSEMLRTKNYRTIGEMIFMETPENSNKRNKVDEYIHTIAR





EDLLNEIKYIFSIQRKLGSPFVTEKLEHDFLNIWEFQRPFASGDSILSKVGKCTLLKEELRAPT





SCYTSEYFGLLQSINNLVLVEDNNTLTLNNDQRAKIIEYAHFKNEIKYSEIRKLLDIEPEILFK





AHNLTHKNPSGNNESKKFYEMKSYHKLKSTLPTDIWGKLHSNKESLDNLFYCLTVYKNDNEIKD





YLQANNLDYLIEYIAKLPTFNKFKHLSLVAMKRIIPFMEKGYKYSDACNMAELDFTGSSKLEKC





NKLTVEPIIENVTNPVVIRALTQARKVINAIIQKYGLPYMVNIELAREAGMTRQDRDNLKKEHE





NNRKAREKISDLIRQNGRVASGLDILKWRLWEDQGGRCAYSGKPIPVCDLLNDSLTQIDHIYPY





SRSMDDSYMNKVLVLTDENQNKRSYTPYEVWGSTEKWEDFEARIYSMHLPQSKEKRLLNRNFIT





KDLDSFISRNLNDTRYISRFLKNYIESYLQFSNDSPKSCVVCVNGQCTAQLRSRWGLNKNREES





DLHHALDAAVIACADRKIIKEITNYYNERENHNYKVKYPLPWHSFRQDLMETLAGVFISRAPRR





KITGPAHDETIRSPKHFNKGLTSVKIPLTTVTLEKLETMVKNTKGGISDKAVYNVLKNRLIEHN





NKPLKAFAEKIYKPLKNGTNGAIIRSIRVETPSYTGVFRNEGKGISDNSLMVRVDVFKKKDKYY





LVPIYVAHMIKKELPSKAIVPLKPESQWELIDSTHEFLFSLYQNDYLVIKTKKGITEGYYRSCH





RGTGSLSLMPHFANNKNVKIDIGVRTAISIEKYNVDILGNKSIVKGEPRRGMEKYNSFKSN











SEQ ID NO: 368









MIRTLGIDIGIASIGWAVIEGEYTDKGLENKEIVASGVRVFTKAENPKNKESLALPRTLARSAR






RRNARKKGRIQQVKHYLSKALGLDLECFVQGEKLATLFQTSKDFLSPWELRERALYRVLDKEEL





ARVILHIAKRRGYDDITYGVEDNDSGKIKKAIAENSKRIKEEQCKTIGEMMYKLYFQKSLNVRN





KKESYNRCVGRSELREELKTIFQIQQELKSPWVNEELIYKLLGNPDAQSKQEREGLIFYQRPLK





GFGDKIGKCSHIKKGENSPYRACKHAPSAEEFVALTKSINFLKNLTNRHGLCFSQEDMCVYLGK





ILQEAQKNEKGLTYSKLKLLLDLPSDFEFLGLDYSGKNPEKAVFLSLPSTFKLNKITQDRKTQD





KIANILGANKDWEAILKELESLQLSKEQIQTIKDAKLNFSKHINLSLEALYHLLPLMREGKRYD





EGVEILQERGIFSKPQPKNRQLLPPLSELAKEESYFDIPNPVLRRALSEFRKVVNALLEKYGGF





HYFHIELTRDVCKAKSARMQLEKINKKNKSENDAASQLLEVLGLPNTYNNRLKCKLWKQQEEYC





LYSGEKITIDHLKDQRALQIDHAFPLSRSLDDSQSNKVLCLTSSNQEKSNKTPYEWLGSDEKKW





DMYVGRVYSSNFSPSKKRKLTQKNFKERNEEDFLARNLVDTGYIGRVTKEYIKHSLSFLPLPDG





KKEHIRIISGSMTSTMRSFWGVQEKNRDHHLHHAQDAIIIACIEPSMIQKYTTYLKDKETHRLK





SHQKAQILREGDHKLSLRWPMSNFKDKIQESIQNIIPSHHVSHKVTGELHQETVRTKEFYYQAF





GGEEGVKKALKFGKIREINQGIVDNGAMVRVDIFKSKDKGKFYAVPIYTYDFAIGKLPNKAIVQ





GKKNGIIKDWLEMDENYEFCFSLFKNDCIKIQTKEMQEAVLAIYKSTNSAKATIELEHLSKYAL





KNEDEEKMFTDTDKEKNKTMTRESCGIQGLKVFQKVKLSVLGEVLEHKPRNRQNIALKTTPKHV











SEQ ID NO: 369









MKYSIGLDIGIASVGWSVINKDKERIEDMGVRIFQKAENPKDGSSLASSRREKRGSRRRNRRKK






HRLDRIKNILCESGLVKKNEIEKIYKNAYLKSPWELRAKSLEAKISNKEIAQILLHIAKRRGFK





SFRKTDRNADDTGKLLSGIQENKKIMEEKGYLTIGDMVAKDPKFNTHVRNKAGSYLFSFSRKLL





EDEVRKIQAKQKELGNTHFTDDVLEKYIEVFNSQRNFDEGPSKPSPYYSEIGQIAKMIGNCTFE





SSEKRTAKNTWSGERFVFLQKLNNFRIVGLSGKRPLTEEERDIVEKEVYLKKEVRYEKLRKILY





LKEEERFGDLNYSKDEKQDKKTEKTKFISLIGNYTIKKLNLSEKLKSEIEEDKSKLDKIIEILT





FNKSDKTIESNLKKLELSREDIEILLSEEFSGTLNLSLKAIKKILPYLEKGLSYNEACEKADYD





YKNNGIKFKRGELLPVVDKDLIANPVVLRAISQTRKVVNAIIRKYGTPHTIHVEVARDLAKSYD





DRQTIIKENKKRELENEKTKKFISEEFGIKNVKGKLLLKYRLYQEQEGRCAYSRKELSLSEVIL





DESMTDIDHIIPYSRSMDDSYSNKVLVLSGENRKKSNLLPKEYFDRQGRDWDTFVLNVKAMKIH





PRKKSNLLKEKFTREDNKDWKSRALNDTRYISRFVANYLENALEYRDDSPKKRVFMIPGQLTAQ





LRARWRLNKVRENGDLHHALDAAVVAVTDQKAINNISNISRYKELKNCKDVIPSIEYHADEETG





EVYFEEVKDTRFPMPWSGFDLELQKRLESENPREEFYNLLSDKRYLGWFNYEEGFIEKLRPVFV





SRMPNRGVKGQAHQETIRSSKKISNQIAVSKKPLNSIKLKDLEKMQGRDTDRKLYEALKNRLEE





YDDKPEKAFAEPFYKPTNSGKRGPLVRGIKVEEKQNVGVYVNGGQASNGSMVRIDVFRKNGKFY





TVPIYVHQTLLKELPNRAINGKPYKDWDLIDGSFEFLYSFYPNDLIEIEFGKSKSIKNDNKLTK





TEIPEVNLSEVLGYYRGMDTSTGAATIDTQDGKIQMRIGIKTVKNIKKYQVDVLGNVYKVKREK





RQTF











SEQ ID NO: 370









MSKKVSRRYEEQAQEICQRLGSRPYSIGLDLGVGSIGVAVAAYDPIKKQPSDLVFVSSRIFIPS






TGAAERRQKRGQRNSLRHRANRLKFLWKLLAERNLMLSYSEQDVPDPARLRFEDAVVRANPYEL





RLKGLNEQLTLSELGYALYHIANHRGSSSVRTFLDEEKSSDDKKLEEQQAMTEQLAKEKGISTF





IEVLTAFNTNGLIGYRNSESVKSKGVPVPTRDIISNEIDVLLQTQKQFYQEILSDEYCDRIVSA





ILFENEKIVPEAGCCPYFPDEKKLPRCHFLNEERRLWEAINNARIKMPMQEGAAKRYQSASFSD





EQRHILFHIARSGTDITPKLVQKEFPALKTSIIVLQGKEKAIQKIAGFRFRRLEEKSFWKRLSE





EQKDDFFSAWTNTPDDKRLSKYLMKHLLLTENEVVDALKTVSLIGDYGPIGKTATQLLMKHLED





GLTYTEALERGMETGEFQELSVWEQQSLLPYYGQILTGSTQALMGKYWHSAFKEKRDSEGFFKP





NTNSDEEKYGRIANPVVHQTLNELRKLMNELITILGAKPQEITVELARELKVGAEKREDIIKQQ





TKQEKEAVLAYSKYCEPNNLDKRYIERFRLLEDQAFVCPYCLEHISVADIAAGRADVDHIFPRD





DTADNSYGNKVVAHRQCNDIKGKRTPYAAFSNTSAWGPIMHYLDETPGMWRKRRKFETNEEEYA





KYLQSKGFVSRFESDNSYIAKAAKEYLRCLFNPNNVTAVGSLKGMETSILRKAWNLQGIDDLLG





SRHWSKDADTSPTMRKNRDDNRHHGLDAIVALYCSRSLVQMINTMSEQGKRAVEIEAMIPIPGY





ASEPNLSFEAQRELFRKKILEFMDLHAFVSMKTDNDANGALLKDTVYSILGADTQGEDLVFVVK





KKIKDIGVKIGDYEEVASAIRGRITDKQPKWYPMEMKDKIEQLQSKNEAALQKYKESLVQAAAV





LEESNRKLIESGKKPIQLSEKTISKKALELVGGYYYLISNNKRTKTFVVKEPSNEVKGFAFDTG





SNLCLDFYHDAQGKLCGEIIRKIQAMNPSYKPAYMKQGYSLYVRLYQGDVCELRASDLTEAESN





LAKTTHVRLPNAKPGRTFVIIITFTEMGSGYQIYFSNLAKSKKGQDTSFTLTTIKNYDVRKVQL





SSAGLVRYVSPLLVDKIEKDEVALCGE











SEQ ID NO: 371









MNQKFILGLDIGITSVGYGLIDYETKNIIDAGVRLFPEANVENNEGRRSKRGSRRLKRRRIHRL






ERVKKLLEDYNLLDQSQIPQSTNPYAIRVKGLSEALSKDELVIALLHIAKRRGIHKIDVIDSND





DVGNELSTKEQLNKNSKLLKDKFVCQIQLERMNEGQVRGEKNRFKTADIIKEIIQLLNVQKNFH





QLDENFINKYIELVEMRREYFEGPGKGSPYGWEGDPKAWYETLMGHCTYFPDELRSVKYAYSAD





LFNALNDLNNLVIQRDGLSKLEYHEKYHIIENVFKQKKKPTLKQIANEINVNPEDIKGYRITKS





GKPQFTEFKLYHDLKSVLFDQSILENEDVLDQIAEILTIYQDKDSIKSKLTELDILLNEEDKEN





IAQLTGYTGTHRLSLKCIRLVLEEQWYSSRNQMEIFTHLNIKPKKINLTAANKIPKAMIDEFIL





SPVVKRTFGQAINLINKIIEKYGVPEDIIIELARENNSKDKQKFINEMQKKNENTRKRINEIIG





KYGNQNAKRLVEKIRLHDEQEGKCLYSLESIPLEDLLNNPNHYEVDHIIPRSVSFDNSYHNKVL





VKQSENSKKSNLTPYQYFNSGKSKLSYNQFKQHILNLSKSQDRISKKKKEYLLEERDINKFEVQ





KEFINRNLVDTRYATRELTNYLKAYFSANNMNVKVKTINGSFTDYLRKVWKFKKERNHGYKHHA





EDALIIANADFLFKENKKLKAVNSVLEKPEIESKQLDIQVDSEDNYSEMFIIPKQVQDIKDFRN





FKYSHRVDKKPNRQLINDTLYSTRKKDNSTYIVQTIKDIYAKDNTTLKKQFDKSPEKFLMYQHD





PRTFEKLEVIMKQYANEKNPLAKYHEETGEYLTKYSKKNNGPIVKSLKYIGNKLGSHLDVTHQF





KSSTKKLVKLSIKPYRFDVYLTDKGYKFITISYLDVLKKDNYYYIPEQKYDKLKLGKAIDKNAK





FIASFYKNDLIKLDGEIYKIIGVNSDTRNMIELDLPDIRYKEYCELNNIKGEPRIKKTIGKKVN





SIEKLTTDVLGNVFTNTQYTKPQLLFKRGN











SEQ ID NO: 372









MIMKLEKWRLGLDLGTNSIGWSVFSLDKDNSVQDLIDMGVRIFSDGRDPKTKEPLAVARRTARS






QRKLIYRRKLRRKQVFKFLQEQGLFPKTKEECMTLKSLNPYELRIKALDEKLEPYELGRALFNL





AVRRGFKSNRKDGSREEVSEKKSPDEIKTQADMQTHLEKAIKENGCRTITEFLYKNQGENGGIR





FAPGRMTYYPTRKMYEEEFNLIRSKQEKYYPQVDWDDIYKAIFYQRPLKPQQRGYCIYENDKER





TFKAMPCSQKLRILQDIGNLAYYEGGSKKRVELNDNQDKVLYELLNSKDKVTFDQMRKALCLAD





SNSFNLEENRDFLIGNPTAVKMRSKNRFGKLWDEIPLEEQDLIIETIITADEDDAVYEVIKKYD





LTQEQRDFIVKNTILQSGTSMLCKEVSEKLVKRLEEIADLKYHEAVESLGYKFADQTVEKYDLL





PYYGKVLPGSTMEIDLSAPETNPEKHYGKISNPTVHVALNQTRVVVNALIKEYGKPSQIAIELS





RDLKNNVEKKAEIARKQNQRAKENIAINDTISALYHTAFPGKSFYPNRNDRMKYRLWSELGLGN





KCIYCGKGISGAELFTKEIEIEHILPFSRTLLDAESNLTVAHSSCNAFKAERSPFEAFGTNPSG





YSWQEIIQRANQLKNTSKKNKFSPNAMDSFEKDSSFIARQLSDNQYIAKAALRYLKCLVENPSD





VWTTNGSMTKLLRDKWEMDSILCRKFTEKEVALLGLKPEQIGNYKKNRFDHRHHAIDAVVIGLT





DRSMVQKLATKNSHKGNRIEIPEFPILRSDLIEKVKNIVVSFKPDHGAEGKLSKETLLGKIKLH





GKETFVCRENIVSLSEKNLDDIVDEIKSKVKDYVAKHKGQKIEAVLSDFSKENGIKKVRCVNRV





QTPIEITSGKISRYLSPEDYFAAVIWEIPGEKKTFKAQYIRRNEVEKNSKGLNVVKPAVLENGK





PHPAAKQVCLLHKDDYLEFSDKGKMYFCRIAGYAATNNKLDIRPVYAVSYCADWINSTNETMLT





GYWKPTPTQNWVSVNVLFDKQKARLVTVSPIGRVFRK











SEQ ID NO: 373









MSSKAIDSLEQLDLFKPQEYTLGLDLGIKSIGWAILSGERIANAGVYLFETAEELNSTGNKLIS






KAAERGRKRRIRRMLDRKARRGRHIRYLLEREGLPTDELEEVVVHQSNRTLWDVRAEAVERKLT





KQELAAVLFHLVRHRGYFPNTKKLPPDDESDSADEEQGKINRATSRLREELKASDCKTIGQFLA





QNRDRQRNREGDYSNLMARKLVFEEALQILAFQRKQGHELSKDFEKTYLDVLMGQRSGRSPKLG





NCSLIPSELRAPSSAPSTEWFKFLQNLGNLQISNAYREEWSIDAPRRAQIIDACSQRSTSSYWQ





IRRDFQIPDEYRFNLVNYERRDPDVDLQEYLQQQERKTLANFRNWKQLEKIIGTGHPIQTLDEA





ARLITLIKDDEKLSDQLADLLPEASDKAITQLCELDFTTAAKISLEAMYRILPHMNQGMGFFDA





CQQESLPEIGVPPAGDRVPPFDEMYNPVVNRVLSQSRKLINAVIDEYGMPAKIRVELARDLGKG





RELRERIKLDQLDKSKQNDQRAEDFRAEFQQAPRGDQSLRYRLWKEQNCTCPYSGRMIPVNSVL





SEDTQIDHILPISQSFDNSLSNKVLCFTEENAQKSNRTPFEYLDAADFQRLEAISGNWPEAKRN





KLLHKSFGKVAEEWKSRALNDTRYLTSALADHLRHHLPDSKIQTVNGRITGYLRKQWGLEKDRD





KHTHHAVDAIVVACTTPAIVQQVTLYHQDIRRYKKLGEKRPTPWPETFRQDVLDVEEEIFITRQ





PKKVSGGIQTKDTLRKHRSKPDRQRVALTKVKLADLERLVEKDASNRNLYEHLKQCLEESGDQP





TKAFKAPFYMPSGPEAKQRPILSKVTLLREKPEPPKQLTELSGGRRYDSMAQGRLDIYRYKPGG





KRKDEYRVVLQRMIDLMRGEENVHVFQKGVPYDQGPEIEQNYTFLFSLYFDDLVEFQRSADSEV





IRGYYRTFNIANGQLKISTYLEGRQDFDFFGANRLAHFAKVQVNLLGKVIK











SEQ ID NO: 374









MRSLRYRLALDLGSTSLGWALFRLDACNRPTAVIKAGVRIFSDGRNPKDGSSLAVTRRAARAMR






RRRDRLLKRKTRMQAKLVEHGFFPADAGKRKALEQLNPYALRAKGLQEALLPGEFARALFHINQ





RRGFKSNRKTDKKDNDSGVLKKAIGQLRQQMAEQGSRTVGEYLWTRLQQGQGVRARYREKPYTT





EEGKKRIDKSYDLYIDRAMIEQEFDALWAAQAAFNPTLFHEAARADLKDTLLHQRPLRPVKPGR





CTLLPEEERAPLALPSTQRFRIHQEVNHLRLLDENLREVALTLAQRDAVVTALETKAKLSFEQI





RKLLKLSGSVQFNLEDAKRTELKGNATSAALARKELFGAAWSGFDEALQDEIVWQLVTEEGEGA





LIAWLQTHTGVDEARAQAIVDVSLPEGYGNLSRKALARIVPALRAAVITYDKAVQAAGFDHHSQ





LGFEYDASEVEDLVHPETGEIRSVFKQLPYYGKALQRHVAFGSGKPEDPDEKRYGKIANPTVHI





GLNQVRMVVNALIRRYGRPTEVVIELARDLKQSREQKVEAQRRQADNQRRNARIRRSIAEVLGI





GEERVRGSDIQKWICWEELSFDAADRRCPYSGVQISAAMLLSDEVEVEHILPFSKTLDDSLNNR





TVAMRQANRIKRNRTPWDARAEFEAQGWSYEDILQRAERMPLRKRYRFAPDGYERWLGDDKDFL





ARALNDTRYLSRVAAEYLRLVCPGTRVIPGQLTALLRGKFGLNDVLGLDGEKNRNDHRHHAVDA





CVIGVTDQGLMQRFATASAQARGDGLTRLVDGMPMPWPTYRDHVERAVRHIWVSHRPDHGFEGA





MMEETSYGIRKDGSIKQRRKADGSAGREISNLIRIHEATQPLRHGVSADGQPLAYKGYVGGSNY





CIEITVNDKGKWEGEVISTFRAYGVVRAGGMGRLRNPHEGQNGRKLIMRLVIGDSVRLEVDGAE





RTMRIVKISGSNGQIFMAPIHEANVDARNTDKQDAFTYTSKYAGSLQKAKTRRVTISPIGEVRD





PGFKG











SEQ ID NO: 375









MARPAFRAPRREHVNGWTPDPHRISKPFFILVSWHLLSRVVIDSSSGCFPGTSRDHTDKFAEWE






CAVQPYRLSFDLGTNSIGWGLLNLDRQGKPREIRALGSRIFSDGRDPQDKASLAVARRLARQMR





RRRDRYLTRRTRLMGALVRFGLMPADPAARKRLEVAVDPYLARERATRERLEPFEIGRALFHLN





QRRGYKPVRTATKPDEEAGKVKEAVERLEAAIAAAGAPTLGAWFAWRKTRGETLRARLAGKGKE





AAYPFYPARRMLEAEFDTLWAEQARHHPDLLTAEAREILRHRIFHQRPLKPPPVGRCTLYPDDG





RAPRALPSAQRLRLFQELASLRVIHLDLSERPLTPAERDRIVAFVQGRPPKAGRKPGKVQKSVP





FEKLRGLLELPPGTGFSLESDKRPELLGDETGARIAPAFGPGWTALPLEEQDALVELLLTEAEP





ERAIAALTARWALDEATAAKLAGATLPDFHGRYGRRAVAELLPVLERETRGDPDGRVRPIRLDE





AVKLLRGGKDHSDFSREGALLDALPYYGAVLERHVAFGTGNPADPEEKRVGRVANPTVHIALNQ





LRHLVNAILARHGRPEEIVIELARDLKRSAEDRRREDKRQADNQKRNEERKRLILSLGERPTPR





NLLKLRLWEEQGPVENRRCPYSGETISMRMLLSEQVDIDHILPFSVSLDDSAANKVVCLREANR





IKRNRSPWEAFGHDSERWAGILARAEALPKNKRWRFAPDALEKLEGEGGLRARHLNDTRHLSRL





AVEYLRCVCPKVRVSPGRLTALLRRRWGIDAILAEADGPPPEVPAETLDPSPAEKNRADHRHHA





LDAVVIGCIDRSMVQRVQLAAASAEREAAAREDNIRRVLEGFKEEPWDGFRAELERRARTIVVS





HRPEHGIGGALHKETAYGPVDPPEEGFNLVVRKPIDGLSKDEINSVRDPRLRRALIDRLAIRRR





DANDPATALAKAAEDLAAQPASRGIRRVRVLKKESNPIRVEHGGNPSGPRSGGPFHKLLLAGEV





HHVDVALRADGRRWVGHWVTLFEAHGGRGADGAAAPPRLGDGERFLMRLHKGDCLKLEHKGRVR





VMQVVKLEPSSNSVVVVEPHQVKTDRSKHVKISCDQLRARGARRVTVDPLGRVRVHAPGARVGI





GGDAGRTAMEPAEDIS











SEQ ID NO: 376









MKRTSLRAYRLGVDLGANSLGWFVVWLDDHGQPEGLGPGGVRIFPDGRNPQSKQSNAAGRRLAR






SARRRRDRYLQRRGKLMGLLVKHGLMPADEPARKRLECLDPYGLRAKALDEVLPLHHVGRALFH





LNQRRGLFANRAIEQGDKDASAIKAAAGRLQTSMQACGARTLGEFLNRRHQLRATVRARSPVGG





DVQARYEFYPTRAMVDAEFEAIWAAQAPHHPTMTAEAHDTIREAIFSQRAMKRPSIGKCSLDPA





TSQDDVDGFRCAWSHPLAQRFRIWQDVRNLAVVETGPTSSRLGKEDQDKVARALLQTDQLSFDE





IRGLLGLPSDARFNLESDRRDHLKGDATGAILSARRHFGPAWHDRSLDRQIDIVALLESALDEA





AIIASLGTTHSLDEAAAQRALSALLPDGYCRLGLRAIKRVLPLMEAGRTYAEAASAAGYDHALL





PGGKLSPTGYLPYYGQWLQNDVVGSDDERDTNERRWGRLPNPTVHIGIGQLRRVVNELIRWHGP





PAEITVELTRDLKLSPRRLAELEREQAENQRKNDKRTSLLRKLGLPASTHNLLKLRLWDEQGDV





ASECPYTGEAIGLERLVSDDVDIDHLIPFSISWDDSAANKVVCMRYANREKGNRTPFEAFGHRQ





GRPYDWADIAERAARLPRGKRWRFGPGARAQFEELGDFQARLLNETSWLARVAKQYLAAVTHPH





RIHVLPGRLTALLRATWELNDLLPGSDDRAAKSRKDHRHHAIDALVAALTDQALLRRMANAHDD





TRRKIEVLLPWPTFRIDLETRLKAMLVSHKPDHGLQARLHEDTAYGTVEHPETEDGANLVYRKT





FVDISEKEIDRIRDRRLRDLVRAHVAGERQQGKTLKAAVLSFAQRRDIAGHPNGIRHVRLTKSI





KPDYLVPIRDKAGRIYKSYNAGENAFVDILQAESGRWIARATTVFQANQANESHDAPAAQPIMR





VFKGDMLRIDHAGAEKFVKIVRLSPSNNLLYLVEHHQAGVFQTRHDDPEDSFRWLFASFDKLRE





WNAELVRIDTLGQPWRRKRGLETGSEDATRIGWTRPKKWP











SEQ ID NO: 377









MERIFGFDIGTTSIGFSVIDYSSTQSAGNIQRLGVRIFPEARDPDGTPLNQQRRQKRMMRRQLR






RRRIRRKALNETLHEAGFLPAYGSADWPVVMADEPYELRRRGLEEGLSAYEFGRAIYHLAQHRH





FKGRELEESDTPDPDVDDEKEAANERAATLKALKNEQTTLGAWLARRPPSDRKRGIHAHRNVVA





EEFERLWEVQSKFHPALKSEEMRARISDTIFAQRPVFWRKNTLGECRFMPGEPLCPKGSWLSQQ





RRMLEKLNNLAIAGGNARPLDAEERDAILSKLQQQASMSWPGVRSALKALYKQRGEPGAEKSLK





FNLELGGESKLLGNALEAKLADMFGPDWPAHPRKQEIRHAVHERLWAADYGETPDKKRVIILSE





KDRKAHREAAANSFVADFGITGEQAAQLQALKLPTGWEPYSIPALNLFLAELEKGERFGALVNG





PDWEGWRRTNFPHRNQPTGEILDKLPSPASKEERERISQLRNPTVVRTQNELRKVVNNLIGLYG





KPDRIRIEVGRDVGKSKREREEIQSGIRRNEKQRKKATEDLIKNGIANPSRDDVEKWILWKEGQ





ERCPYTGDQIGFNALFREGRYEVEHIWPRSRSFDNSPRNKTLCRKDVNIEKGNRMPFEAFGHDE





DRWSAIQIRLQGMVSAKGGTGMSPGKVKRFLAKTMPEDFAARQLNDTRYAAKQILAQLKRLWPD





MGPEAPVKVEAVTGQVTAQLRKLWTLNNILADDGEKTRADHRHHAIDALTVACTHPGMTNKLSR





YWQLRDDPRAEKPALTPPWDTIRADAEKAVSEIVVSHRVRKKVSGPLHKETTYGDTGTDIKTKS





GTYRQFVTRKKIESLSKGELDEIRDPRIKEIVAAHVAGRGGDPKKAFPPYPCVSPGGPEIRKVR





LTSKQQLNLMAQTGNGYADLGSNHHIAIYRLPDGKADFEIVSLFDASRRLAQRNPIVQRTRADG





ASFVMSLAAGEAIMIPEGSKKGIWIVQGVWASGQVVLERDTDADHSTTTRPMPNPILKDDAKKV





SIDPIGRVRPSND











SEQ ID NO: 378









MNKRILGLDTGTNSLGWAVVDWDEHAQSYELIKYGDVIFQEGVKIEKGIESSKAAERSGYKAIR






KQYFRRRLRKIQVLKVLVKYHLCPYLSDDDLRQWHLQKQYPKSDELMLWQRTSDEEGKNPYYDR





HRCLHEKLDLTVEADRYTLGRALYHLTQRRGFLSNRLDTSADNKEDGVVKSGISQLSTEMEEAG





CEYLGDYFYKLYDAQGNKVRIRQRYTDRNKHYQHEFDAICEKQELSSELIEDLQRAIFFQLPLK





SQRHGVGRCTFERGKPRCADSHPDYEEFRMLCFVNNIQVKGPHDLELRPLTYEEREKIEPLFFR





KSKPNFDFEDIAKALAGKKNYAWIHDKEERAYKFNYRMTQGVPGCPTIAQLKSIFGDDWKTGIA





ETYTLIQKKNGSKSLQEMVDDVWNVLYSFSSVEKLKEFAHHKLQLDEESAEKFAKIKLSHSFAA





LSLKAIRKFLPFLRKGMYYTHASFFANIPTIVGKEIWNKEQNRKYIMENVGELVFNYQPKHREV





QGTIEMLIKDFLANNFELPAGATDKLYHPSMIETYPNAQRNEFGILQLGSPRTNAIRNPMAMRS





LHILRRVVNQLLKESIIDENTEVHVEYARELNDANKRRAIADRQKEQDKQHKKYGDEIRKLYKE





ETGKDIEPTQTDVLKFQLWEEQNHHCLYTGEQIGITDFIGSNPKFDIEHTIPQSVGGDSTQMNL





TLCDNRFNREVKKAKLPTELANHEEILTRIEPWKNKYEQLVKERDKQRTFAGMDKAVKDIRIQK





RHKLQMEIDYWRGKYERFTMTEVPEGFSRRQGTGIGLISRYAGLYLKSLFHQADSRNKSNVYVV





KGVATAEFRKMWGLQSEYEKKCRDNHSHHCMDAITIACIGKREYDLMAEYYRMEETFKQGRGSK





PKFSKPWATFTEDVLNIYKNLLVVHDTPNNMPKHTKKYVQTSIGKVLAQGDTARGSLHLDTYYG





AIERDGEIRYVVRRPLSSFTKPEELENIVDETVKRTIKEAIADKNFKQAIAEPIYMNEEKGILI





KKVRCFAKSVKQPINIRQHRDLSKKEYKQQYHVMNENNYLLAIYEGLVKNKVVREFEIVSYIEA





AKYYKRSQDRNIFSSIVPTHSTKYGLPLKTKLLMGQLVLMFEENPDEIQVDNTKDLVKRLYKVV





GIEKDGRIKFKYHQEARKEGLPIFSTPYKNNDDYAPIFRQSINNINILVDGIDFTIDILGKVTL





KE











SEQ ID NO: 379









MNYKMGLDIGIASVGWAVINLDLKRIEDLGVRIFDKAEHPQNGESLALPRRIARSARRRLRRRK






HRLERIRRLLVSENVLTKEEMNLLFKQKKQIDVWQLRVDALERKLNNDELARVLLHLAKRRGFK





SNRKSERNSKESSEFLKNIEENQSILAQYRSVGEMIVKDSKFAYHKRNKLDSYSNMIARDDLER





EIKLIFEKQREFNNPVCTERLEEKYLNIWSSQRPFASKEDIEKKVGFCTFEPKEKRAPKATYTF





QSFIVWEHINKLRLVSPDETRALTEIERNLLYKQAFSKNKMTYYDIRKLLNLSDDIHFKGLLYD





PKSSLKQIENIRFLELDSYHKIRKCIENVYGKDGIRMFNETDIDTFGYALTIFKDDEDIVAYLQ





NEYITKNGKRVSNLANKVYDKSLIDELLNLSFSKFAHLSMKAIRNILPYMEQGEIYSKACELAG





YNFTGPKKKEKALLLPVIPNIANPVVMRALTQSRKVVNAIIKKYGSPVSIHIELARDLSHSFDE





RKKIQKDQTENRKKNETAIKQLIEYELTKNPTGLDIVKFKLWSEQQGRCMYSLKPIELERLLEP





GYVEVDHILPYSRSLDDSYANKVLVLTKENREKGNHTPVEYLGLGSERWKKFEKFVLANKQFSK





KKKQNLLRLRYEETEEKEFKERNLNDTRYISKFFANFIKEHLKFADGDGGQKVYTINGKITAHL





RSRWDFNKNREESDLHHAVDAVIVACATQGMIKKITEFYKAREQNKESAKKKEPIFPQPWPHFA





DELKARLSKFPQESIEAFALGNYDRKKLESLRPVFVSRMPKRSVTGAAHQETLRRCVGIDEQSG





KIQTAVKTKLSDIKLDKDGHFPMYQKESDPRTYEAIRQRLLEHNNDPKKAFQEPLYKPKKNGEP





GPVIRTVKIIDTKNKVVHLDGSKTVAYNSNIVRTDVFEKDGKYYCVPVYTMDIMKGTLPNKAIE





ANKPYSEWKEMTEEYTFQFSLFPNDLVRIVLPREKTIKTSTNEEIIIKDIFAYYKTIDSATGGL





ELISHDRNFSLRGVGSKTLKRFEKYQVDVLGNIHKVKGEKRVGLAAPTNQKKGKTVDSLQSVSD











SEQ ID NO: 380









MRRLGLDLGTNSIGWCLLDLGDDGEPVSIFRTGARIFSDGRDPKSLGSLKATRREARLTRRRRD






RFIQRQKNLINALVKYGLMPADEIQRQALAYKDPYPIRKKALDEAIDPYEMGRAIFHINQRRGF





KSNRKSADNEAGVVKQSIADLEMKLGEAGARTIGEFLADRQATNDTVRARRLSGTNALYEFYPD





RYMLEQEFDTLWAKQAAFNPSLYIEAARERLKEIVFFQRKLKPQEVGRCIFLSDEDRISKALPS





FQRFRIYQELSNLAWIDHDGVAHRITASLALRDHLFDELEHKKKLTFKAMRAILRKQGVVDYPV





GFNLESDNRDHLIGNLTSCIMRDAKKMIGSAWDRLDEEEQDSFILMLQDDQKGDDEVRSILTQQ





YGLSDDVAEDCLDVRLPDGHGSLSKKAIDRILPVLRDQGLIYYDAVKEAGLGEANLYDPYAALS





DKLDYYGKALAGHVMGASGKFEDSDEKRYGTISNPTVHIALNQVRAVVNELIRLHGKPDEVVIE





IGRDLPMGADGKRELERFQKEGRAKNERARDELKKLGHIDSRESRQKFQLWEQLAKEPVDRCCP





FTGKMMSISDLFSDKVEIEHLLPFSLTLDDSMANKTVCFRQANRDKGNRAPFDAFGNSPAGYDW





QEILGRSQNLPYAKRWRFLPDAMKRFEADGGFLERQLNDTRYISRYTTEYISTIIPKNKIWVVT





GRLTSLLRGFWGLNSILRGHNTDDGTPAKKSRDDHRHHAIDAIVVGMTSRGLLQKVSKAARRSE





DLDLTRLFEGRIDPWDGFRDEVKKHIDAIIVSHRPRKKSQGALHNDTAYGIVEHAENGASTVVH





RVPITSLGKQSDIEKVRDPLIKSALLNETAGLSGKSFENAVQKWCADNSIKSLRIVETVSIIPI





TDKEGVAYKGYKGDGNAYMDIYQDPTSSKWKGEIVSRFDANQKGFIPSWQSQFPTARLIMRLRI





NDLLKLQDGEIEEIYRVQRLSGSKILMAPHTEANVDARDRDKNDTFKLTSKSPGKLQSASARKV





HISPTGLIREG











SEQ ID NO: 381









MKNILGLDLGLSSIGWSVIRENSEEQELVAMGSRVVSLTAAELSSFTQGNGVSINSQRTQKRTQ






RKGYDRYQLRRTLLRNKLDTLGMLPDDSLSYLPKLQLWGLRAKAVTQRIELNELGRVLLHLNQK





RGYKSIKSDFSGDKKITDYVKTVKTRYDELKEMRLTIGELFFRRLTENAFFRCKEQVYPRQAYV





EEFDCIMNCQRKFYPDILTDETIRCIRDEIIYYQRPLKSCKYLVSRCEFEKRFYLNAAGKKTEA





GPKVSPRTSPLFQVCRLWESINNIVVKDRRNEIVFISAEQRAALFDFLNTHEKLKGSDLLKLLG





LSKTYGYRLGEQFKTGIQGNKTRVEIERALGNYPDKKRLLQFNLQEESSSMVNTETGEIIPMIS





LSFEQEPLYRLWHVLYSIDDREQLQSVLRQKFGIDDDEVLERLSAIDLVKAGFGNKSSKAIRRI





LPFLQLGMNYAEACEAAGYNHSNNYTKAENEARALLDRLPAIKKNELRQPVVEKILNQMVNVVN





ALMEKYGRFDEIRVELARELKQSKEERSNTYKSINKNQRENEQIAKRIVEYGVPTRSRIQKYKM





WEESKHCCIYCGQPVDVGDFLRGFDVEVEHIIPKSLYFDDSFANKVCSCRSCNKEKNNRTAYDY





MKSKGEKALSDYVERVNTMYTNNQISKTKWQNLLTPVDKISIDFIDRQLRESQYIARKAKEILT





SICYNVTATSGSVTSFLRHVWGWDTVLHDLNFDRYKKVGLTEVIEVNHRGSVIRREQIKDWSKR





FDHRHHAIDALTIACTKQAYIQRLNNLRAEEGPDFNKMSLERYIQSQPHFSVAQVREAVDRILV





SFRAGKRAVTPGKRYIRKNRKRISVQSVLIPRGALSEESVYGVIHVWEKDEQGHVIQKQRAVMK





YPITSINREMLDKEKVVDKRIHRILSGRLAQYNDNPKEAFAKPVYIDKECRIPIRTVRCFAKPA





INTLVPLKKDDKGNPVAWVNPGNNHHVAIYRDEDGKYKERTVTFWEAVDRCRVGIPAIVTQPDT





IWDNILQRNDISENVLESLPDVKWQFVLSLQQNEMFILGMNEEDYRYAMDQQDYALLNKYLYRV





QKLSKSDYSFRYHTETSVEDKYDGKPNLKLSMQMGKLKRVSIKSLLGLNPHKVHISVLGEIKEI





S











SEQ ID NO: 382









MAEKQHRWGLDIGTNSIGWAVIALIEGRPAGLVATGSRIFSDGRNPKDGSSLAVERRGPRQMRR






RRDRYLRRRDRFMQALINVGLMPGDAAARKALVTENPYVLRQRGLDQALTLPEFGRALFHLNQR





RGFQSNRKTDRATAKESGKVKNAIAAFRAGMGNARTVGEALARRLEDGRPVRARMVGQGKDEHY





ELYIAREWIAQEFDALWASQQRFHAEVLADAARDRLRAILLFQRKLLPVPVGKCFLEPNQPRVA





AALPSAQRFRLMQELNHLRVMTLADKRERPLSFQERNDLLAQLVARPKCGFDMLRKIVFGANKE





AYRFTIESERRKELKGCDTAAKLAKVNALGTRWQALSLDEQDRLVCLLLDGENDAVLADALREH





YGLTDAQIDTLLGLSFEDGHMRLGRSALLRVLDALESGRDEQGLPLSYDKAVVAAGYPAHTADL





ENGERDALPYYGELLWRYTQDAPTAKNDAERKFGKIANPTVHIGLNQLRKLVNALIQRYGKPAQ





IVVELARNLKAGLEEKERIKKQQTANLERNERIRQKLQDAGVPDNRENRLRMRLFEELGQGNGL





GTPCIYSGRQISLQRLFSNDVQVDHILPFSKTLDDSFANKVLAQHDANRYKGNRGPFEAFGANR





DGYAWDDIRARAAVLPRNKRNRFAETAMQDWLHNETDFLARQLTDTAYLSRVARQYLTAICSKD





DVYVSPGRLTAMLRAKWGLNRVLDGVMEEQGRPAVKNRDDHRHHAIDAVVIGATDRAMLQQVAT





LAARAREQDAERLIGDMPTPWPNFLEDVRAAVARCVVSHKPDHGPEGGLHNDTAYGIVAGPFED





GRYRVRHRVSLFDLKPGDLSNVRCDAPLQAELEPIFEQDDARAREVALTALAERYRQRKVWLEE





LMSVLPIRPRGEDGKTLPDSAPYKAYKGDSNYCYELFINERGRWDGELISTFRANQAAYRRFRN





DPARFRRYTAGGRPLLMRLCINDYIAVGTAAERTIFRVVKMSENKITLAEHFEGGTLKQRDADK





DDPFKYLTKSPGALRDLGARRIFVDLIGRVLDPGIKGD











SEQ ID NO: 383









MIERILGVDLGISSLGWAIVEYDKDDEAANRIIDCGVRLFTAAETPKKKESPNKARREARGIRR






VLNRRRVRMNMIKKLFLRAGLIQDVDLDGEGGMFYSKANRADVWELRHDGLYRLLKGDELARVL





IHIAKHRGYKFIGDDEADEESGKVKKAGVVLRQNFEAAGCRTVGEWLWRERGANGKKRNKHGDY





EISIHRDLLVEEVEAIFVAQQEMRSTIATDALKAAYREIAFFVRPMQRIEKMVGHCTYFPEERR





APKSAPTAEKFIAISKFFSTVIIDNEGWEQKIIERKTLEELLDFAVSREKVEFRHLRKFLDLSD





NEIFKGLHYKGKPKTAKKREATLFDPNEPTELEFDKVEAEKKAWISLRGAAKLREALGNEFYGR





FVALGKHADEATKILTYYKDEGQKRRELTKLPLEAEMVERLVKIGFSDFLKLSLKAIRDILPAM





ESGARYDEAVLMLGVPHKEKSAILPPLNKTDIDILNPTVIRAFAQFRKVANALVRKYGAFDRVH





FELAREINTKGEIEDIKESQRKNEKERKEAADWIAETSFQVPLTRKNILKKRLYIQQDGRCAYT





GDVIELERLFDEGYCEIDHILPRSRSADDSFANKVLCLARANQQKTDRTPYEWFGHDAARWNAF





ETRTSAPSNRVRTGKGKIDRLLKKNFDENSEMAFKDRNLNDTRYMARAIKTYCEQYWVFKNSHT





KAPVQVRSGKLTSVLRYQWGLESKDRESHTHHAVDAIIIAFSTQGMVQKLSEYYRFKETHREKE





RPKLAVPLANFRDAVEEATRIENTETVKEGVEVKRLLISRPPRARVTGQAHEQTAKPYPRIKQV





KNKKKWRLAPIDEEKFESFKADRVASANQKNFYETSTIPRVDVYHKKGKFHLVPIYLHEMVLNE





LPNLSLGTNPEAMDENFFKFSIFKDDLISIQTQGTPKKPAKIIMGYFKNMHGANMVLSSINNSP





CEGFTCTPVSMDKKHKDKCKLCPEENRIAGRCLQGFLDYWSQEGLRPPRKEFECDQGVKFALDV





KKYQIDPLGYYYEVKQEKRLGTIPQMRSAKKLVKK











SEQ ID NO: 384









MNNSIKSKPEVTIGLDLGVGSVGWAIVDNETNIIHHLGSRLFSQAKTAEDRRSFRGVRRLIRRR






KYKLKRFVNLIWKYNSYFGFKNKEDILNNYQEQQKLHNTVLNLKSEALNAKIDPKALSWILHDY





LKNRGHFYEDNRDFNVYPTKELAKYFDKYGYYKGIIDSKEDNDNKLEEELTKYKFSNKHWLEEV





KKVLSNQTGLPEKFKEEYESLFSYVRNYSEGPGSINSVSPYGIYHLDEKEGKVVQKYNNIWDKT





IGKCNIFPDEYRAPKNSPIAMIFNEINELSTIRSYSIYLTGWFINQEFKKAYLNKLLDLLIKTN





GEKPIDARQFKKLREETIAESIGKETLKDVENEEKLEKEDHKWKLKGLKLNTNGKIQYNDLSSL





AKFVHKLKQHLKLDFLLEDQYATLDKINFLQSLFVYLGKHLRYSNRVDSANLKEFSDSNKLFER





ILQKQKDGLFKLFEQTDKDDEKILAQTHSLSTKAMLLAITRMTNLDNDEDNQKNNDKGWNFEAI





KNFDQKFIDITKKNNNLSLKQNKRYLDDRFINDAILSPGVKRILREATKVFNAILKQFSEEYDV





TKVVIELARELSEEKELENTKNYKKLIKKNGDKISEGLKALGISEDEIKDILKSPTKSYKFLLW





LQQDHIDPYSLKEIAFDDIFTKTEKFEIDHIIPYSISFDDSSSNKLLVLAESNQAKSNQTPYEF





ISSGNAGIKWEDYEAYCRKFKDGDSSLLDSTQRSKKFAKMMKTDTSSKYDIGFLARNLNDTRYA





TIVFRDALEDYANNHLVEDKPMFKVVCINGSVTSFLRKNFDDSSYAKKDRDKNIHHAVDASIIS





IFSNETKTLFNQLTQFADYKLFKNTDGSWKKIDPKTGVVTEVTDENWKQIRVRNQVSEIAKVIE





KYIQDSNIERKARYSRKIENKTNISLFNDTVYSAKKVGYEDQIKRKNLKTLDIHESAKENKNSK





VKRQFVYRKLVNVSLLNNDKLADLFAEKEDILMYRANPWVINLAEQIFNEYTENKKIKSQNVFE





KYMLDLTKEFPEKFSEFLVKSMLRNKTAIIYDDKKNIVHRIKRLKMLSSELKENKLSNVIIRSK





NQSGTKLSYQDTINSLALMIMRSIDPTAKKQYIRVPLNTLNLHLGDHDFDLHNMDAYLKKPKFV





KYLKANEIGDEYKPWRVLTSGTLLIHKKDKKLMYISSFQNLNDVIEIKNLIETEYKENDDSDSK





KKKKANRFLMTLSTILNDYILLDAKDNFDILGLSKNRIDEILNSKLGLDKIVK











SEQ ID NO: 385









MGGSEVGTVPVTWRLGVDVGERSIGLAAVSYEEDKPKEILAAVSWIHDGGVGDERSGASRLALR






GMARRARRLRRFRRARLRDLDMLLSELGWTPLPDKNVSPVDAWLARKRLAEEYVVDETERRRLL





GYAVSHMARHRGWRNPWTTIKDLKNLPQPSDSWERTRESLEARYSVSLEPGTVGQWAGYLLQRA





PGIRLNPTQQSAGRRAELSNATAFETRLRQEDVLWELRCIADVQGLPEDVVSNVIDAVFCQKRP





SVPAERIGRDPLDPSQLRASRACLEFQEYRIVAAVANLRIRDGSGSRPLSLEERNAVIEALLAQ





TERSLTWSDIALEILKLPNESDLTSVPEEDGPSSLAYSQFAPFDETSARIAEFIAKNRRKIPTF





AQWWQEQDRTSRSDLVAALADNSIAGEEEQELLVHLPDAELEALEGLALPSGRVAYSRLTLSGL





TRVMRDDGVDVHNARKTCFGVDDNWRPPLPALHEATGHPVVDRNLAILRKFLSSATMRWGPPQS





IVVELARGASESRERQAEEEAARRAHRKANDRIRAELRASGLSDPSPADLVRARLLELYDCHCM





YCGAPISWENSELDHIVPRTDGGSNRHENLAITCGACNKEKGRRPFASWAETSNRVQLRDVIDR





VQKLKYSGNMYWTRDEFSRYKKSVVARLKRRTSDPEVIQSIESTGYAAVALRDRLLSYGEKNGV





AQVAVFRGGVTAEARRWLDISIERLFSRVAIFAQSTSTKRLDRRHHAVDAVVLTTLTPGVAKTL





ADARSRRVSAEFWRRPSDVNRHSTEEPQSPAYRQWKESCSGLGDLLISTAARDSIAVAAPLRLR





PTGALHEETLRAFSEHTVGAAWKGAELRRIVEPEVYAAFLALTDPGGRFLKVSPSEDVLPADEN





RHIVLSDRVLGPRDRVKLFPDDRGSIRVRGGAAYIASFHHARVFRWGSSHSPSFALLRVSLADL





AVAGLLRDGVDVFTAELPPWTPAWRYASIALVKAVESGDAKQVGWLVPGDELDFGPEGVTTAAG





DLSMFLKYFPERHWVVTGFEDDKRINLKPAFLSAEQAEVLRTERSDRPDTLTEAGEILAQFFPR





CWRATVAKVLCHPGLTVIRRTALGQPRWRRGHLPYSWRPWSADPWSGGTP











SEQ ID NO: 386









MHNKKNITIGFDLGIASIGWAIIDSTTSKILDWGTRTFEERKTANERRAFRSTRRNIRRKAYRN






QRFINLILKYKDLFELKNISDIQRANKKDTENYEKIISFFTEIYKKCAAKHSNILEVKVKALDS





KIEKLDLIWILHDYLENRGFFYDLEEENVADKYEGIEHPSILLYDFFKKNGFFKSNSSIPKDLG





GYSFSNLQWVNEIKKLFEVQEINPEFSEKFLNLFTSVRDYAKGPGSEHSASEYGIFQKDEKGKV





FKKYDNIWDKTIGKCSFFVEENRSPVNYPSYEIFNLLNQLINLSTDLKTTNKKIWQLSSNDRNE





LLDELLKVKEKAKIISISLKKNEIKKIILKDFGFEKSDIDDQDTIEGRKIIKEEPTTKLEVTKH





LLATIYSHSSDSNWININNILEFLPYLDAICIILDREKSRGQDEVLKKLTEKNIFEVLKIDREK





QLDFVKSIFSNTKFNFKKIGNFSLKAIREFLPKMFEQNKNSEYLKWKDEEIRRKWEEQKSKLGK





TDKKTKYLNPRIFQDEIISPGTKNTFEQAVLVLNQIIKKYSKENIIDAIIIESPREKNDKKTIE





EIKKRNKKGKGKTLEKLFQILNLENKGYKLSDLETKPAKLLDRLRFYHQQDGIDLYTLDKINID





QLINGSQKYEIEHIIPYSMSYDNSQANKILTEKAENLKKGKLIASEYIKRNGDEFYNKYYEKAK





ELFINKYKKNKKLDSYVDLDEDSAKNRFRFLTLQDYDEFQVEFLARNLNDTRYSTKLFYHALVE





HFENNEFFTYIDENSSKHKVKISTIKGHVTKYFRAKPVQKNNGPNENLNNNKPEKIEKNRENNE





HHAVDAAIVAIIGNKNPQIANLLTLADNKTDKKFLLHDENYKENIETGELVKIPKFEVDKLAKV





EDLKKIIQEKYEEAKKHTAIKFSRKTRTILNGGLSDETLYGFKYDEKEDKYFKIIKKKLVTSKN





EELKKYFENPFGKKADGKSEYTVLMAQSHLSEFNKLKEIFEKYNGFSNKTGNAFVEYMNDLALK





EPTLKAEIESAKSVEKLLYYNFKPSDQFTYHDNINNKSFKRFYKNIRIIEYKSIPIKFKILSKH





DGGKSFKDTLFSLYSLVYKVYENGKESYKSIPVTSQMRNFGIDEFDFLDENLYNKEKLDIYKSD





FAKPIPVNCKPVFVLKKGSILKKKSLDIDDFKETKETEEGNYYFISTISKRFNRDTAYGLKPLK





LSVVKPVAEPSTNPIFKEYIPIHLDELGNEYPVKIKEHTDDEKLMCTIK






Nucleic Acids Encoding Cas9 Molecules


Nucleic acids encoding the Cas9 molecules or Cas9 polypeptides, e.g., an eaCas9 molecule or eaCas9 polypeptides are provided herein.


Exemplary nucleic acids encoding Cas9 molecules or Cas9 polypeptides are described in Cong et al., SCIENCE 2013, 399(6121):819-823; Wang et al., CELL 2013, 153(4):910-918; Mali et al., SCIENCE 2013, 399(6121):823-826; Jinek et al., SCIENCE 2012, 337(6096):816-821. Another exemplary nucleic acid encoding a Cas9 molecule or Cas9 polypeptide is shown in FIG. 8.


In an embodiment, a nucleic acid encoding a Cas9 molecule or Cas9 polypeptide can be a synthetic nucleic acid sequence. For example, the synthetic nucleic acid molecule can be chemically modified, e.g., as described in Section VIII. In an embodiment, the Cas9 mRNA has one or more (e.g., all of the following properties: it is capped, polyadenylated, substituted with 5-methylcytidine and/or pseudouridine.


In addition, or alternatively, the synthetic nucleic acid sequence can be codon optimized, e.g., at least one non-common codon or less-common codon has been replaced by a common codon. For example, the synthetic nucleic acid can direct the synthesis of an optimized messenger mRNA, e.g., optimized for expression in a mammalian expression system, e.g., described herein.


In addition, or alternatively, a nucleic acid encoding a Cas9 molecule or Cas9 polypeptide may comprise a nuclear localization sequence (NLS). Nuclear localization sequences are known in the art.


Provided below is an exemplary codon optimized nucleic acid sequence encoding a Cas9 molecule of S. pyogenes.









(SEQ ID NO: 22)









ATGGATAAAA AGTACAGCAT CGGGCTGGAC ATCGGTACAA







ACTCAGTGGG GTGGGCCGTG ATTACGGACG AGTACAAGGT







ACCCTCCAAA AAATTTAAAG TGCTGGGTAA CACGGACAGA







CACTCTATAA AGAAAAATCT TATTGGAGCC TTGCTGTTCG







ACTCAGGCGA GACAGCCGAA GCCACAAGGT TGAAGCGGAC







CGCCAGGAGG CGGTATACCA GGAGAAAGAA CCGCATATGC







TACCTGCAAG AAATCTTCAG TAACGAGATG GCAAAGGTTG







ACGATAGCTT TTTCCATCGC CTGGAAGAAT CCTTTCTTGT







TGAGGAAGAC AAGAAGCACG AACGGCACCC CATCTTTGGC







AATATTGTCG ACGAAGTGGC ATATCACGAA AAGTACCCGA







CTATCTACCA CCTCAGGAAG AAGCTGGTGG ACTCTACCGA







TAAGGCGGAC CTCAGACTTA TTTATTTGGC ACTCGCCCAC







ATGATTAAAT TTAGAGGACA TTTCTTGATC GAGGGCGACC







TGAACCCGGA CAACAGTGAC GTCGATAAGC TGTTCATCCA







ACTTGTGCAG ACCTACAATC AACTGTTCGA AGAAAACCCT







ATAAATGCTT CAGGAGTCGA CGCTAAAGCA ATCCTGTCCG







CGCGCCTCTC AAAATCTAGA AGACTTGAGA ATCTGATTGC







TCAGTTGCCC GGGGAAAAGA AAAATGGATT GTTTGGCAAC







CTGATCGCCC TCAGTCTCGG ACTGACCCCA AATTTCAAAA







GTAACTTCGA CCTGGCCGAA GACGCTAAGC TCCAGCTGTC







CAAGGACACA TACGATGACG ACCTCGACAA TCTGCTGGCC







CAGATTGGGG ATCAGTACGC CGATCTCTTT TTGGCAGCAA







AGAACCTGTC CGACGCCATC CTGTTGAGCG ATATCTTGAG







AGTGAACACC GAAATTACTA AAGCACCCCT TAGCGCATCT







ATGATCAAGC GGTACGACGA GCATCATCAG GATCTGACCC







TGCTGAAGGC TCTTGTGAGG CAACAGCTCC CCGAAAAATA







CAAGGAAATC TTCTTTGACC AGAGCAAAAA CGGCTACGCT







GGCTATATAG ATGGTGGGGC CAGTCAGGAG GAATTCTATA







AATTCATCAA GCCCATTCTC GAGAAAATGG ACGGCACAGA







GGAGTTGCTG GTCAAACTTA ACAGGGAGGA CCTGCTGCGG







AAGCAGCGGA CCTTTGACAA CGGGTCTATC CCCCACCAGA







TTCATCTGGG CGAACTGCAC GCAATCCTGA GGAGGCAGGA







GGATTTTTAT CCTTTTCTTA AAGATAACCG CGAGAAAATA







GAAAAGATTC TTACATTCAG GATCCCGTAC TACGTGGGAC







CTCTCGCCCG GGGCAATTCA CGGTTTGCCT GGATGACAAG







GAAGTCAGAG GAGACTATTA CACCTTGGAA CTTCGAAGAA







GTGGTGGACA AGGGTGCATC TGCCCAGTCT TTCATCGAGC







GGATGACAAA TTTTGACAAG AACCTCCCTA ATGAGAAGGT







GCTGCCCAAA CATTCTCTGC TCTACGAGTA CTTTACCGTC







TACAATGAAC TGACTAAAGT CAAGTACGTC ACCGAGGGAA







TGAGGAAGCC GGCATTCCTT AGTGGAGAAC AGAAGAAGGC







GATTGTAGAC CTGTTGTTCA AGACCAACAG GAAGGTGACT







GTGAAGCAAC TTAAAGAAGA CTACTTTAAG AAGATCGAAT







GTTTTGACAG TGTGGAAATT TCAGGGGTTG AAGACCGCTT







CAATGCGTCA TTGGGGACTT ACCATGATCT TCTCAAGATC







ATAAAGGACA AAGACTTCCT GGACAACGAA GAAAATGAGG







ATATTCTCGA AGACATCGTC CTCACCCTGA CCCTGTTCGA







AGACAGGGAA ATGATAGAAG AGCGCTTGAA AACCTATGCC







CACCTCTTCG ACGATAAAGT TATGAAGCAG CTGAAGCGCA







GGAGATACAC AGGATGGGGA AGATTGTCAA GGAAGCTGAT







CAATGGAATT AGGGATAAAC AGAGTGGCAA GACCATACTG







GATTTCCTCA AATCTGATGG CTTCGCCAAT AGGAACTTCA







TGCAACTGAT TCACGATGAC TCTCTTACCT TCAAGGAGGA







CATTCAAAAG GCTCAGGTGA GCGGGCAGGG AGACTCCCTT







CATGAACACA TCGCGAATTT GGCAGGTTCC CCCGCTATTA







AAAAGGGCAT CCTTCAAACT GTCAAGGTGG TGGATGAATT







GGTCAAGGTA ATGGGCAGAC ATAAGCCAGA AAATATTGTG







ATCGAGATGG CCCGCGAAAA CCAGACCACA CAGAAGGGCC







AGAAAAATAG TAGAGAGCGG ATGAAGAGGA TCGAGGAGGG







CATCAAAGAG CTGGGATCTC AGATTCTCAA AGAACACCCC







GTAGAAAACA CACAGCTGCA GAACGAAAAA TTGTACTTGT







ACTATCTGCA GAACGGCAGA GACATGTACG TCGACCAAGA







ACTTGATATT AATAGACTGT CCGACTATGA CGTAGACCAT







ATCGTGCCCC AGTCCTTCCT GAAGGACGAC TCCATTGATA







ACAAAGTCTT GACAAGAAGC GACAAGAACA GGGGTAAAAG







TGATAATGTG CCTAGCGAGG AGGTGGTGAA AAAAATGAAG







AACTACTGGC GACAGCTGCT TAATGCAAAG CTCATTACAC







AACGGAAGTT CGATAATCTG ACGAAAGCAG AGAGAGGTGG







CTTGTCTGAG TTGGACAAGG CAGGGTTTAT TAAGCGGCAG







CTGGTGGAAA CTAGGCAGAT CACAAAGCAC GTGGCGCAGA







TTTTGGACAG CCGGATGAAC ACAAAATACG ACGAAAATGA







TAAACTGATA CGAGAGGTCA AAGTTATCAC GCTGAAAAGC







AAGCTGGTGT CCGATTTTCG GAAAGACTTC CAGTTCTACA







AAGTTCGCGA GATTAATAAC TACCATCATG CTCACGATGC







GTACCTGAAC GCTGTTGTCG GGACCGCCTT GATAAAGAAG







TACCCAAAGC TGGAATCCGA GTTCGTATAC GGGGATTACA







AAGTGTACGA TGTGAGGAAA ATGATAGCCA AGTCCGAGCA







GGAGATTGGA AAGGCCACAG CTAAGTACTT CTTTTATTCT







AACATCATGA ATTTTTTTAA GACGGAAATT ACCCTGGCCA







ACGGAGAGAT CAGAAAGCGG CCCCTTATAG AGACAAATGG







TGAAACAGGT GAAATCGTCT GGGATAAGGG CAGGGATTTC







GCTACTGTGA GGAAGGTGCT GAGTATGCCA CAGGTAAATA







TCGTGAAAAA AACCGAAGTA CAGACCGGAG GATTTTCCAA







GGAAAGCATT TTGCCTAAAA GAAACTCAGA CAAGCTCATC







GCCCGCAAGA AAGATTGGGA CCCTAAGAAA TACGGGGGAT







TTGACTCACC CACCGTAGCC TATTCTGTGC TGGTGGTAGC







TAAGGTGGAA AAAGGAAAGT CTAAGAAGCT GAAGTCCGTG







AAGGAACTCT TGGGAATCAC TATCATGGAA AGATCATCCT







TTGAAAAGAA CCCTATCGAT TTCCTGGAGG CTAAGGGTTA







CAAGGAGGTC AAGAAAGACC TCATCATTAA ACTGCCAAAA







TACTCTCTCT TCGAGCTGGA AAATGGCAGG AAGAGAATGT







TGGCCAGCGC CGGAGAGCTG CAAAAGGGAA ACGAGCTTGC







TCTGCCCTCC AAATATGTTA ATTTTCTCTA TCTCGCTTCC







CACTATGAAA AGCTGAAAGG GTCTCCCGAA GATAACGAGC







AGAAGCAGCT GTTCGTCGAA CAGCACAAGC ACTATCTGGA







TGAAATAATC GAACAAATAA GCGAGTTCAG CAAAAGGGTT







ATCCTGGCGG ATGCTAATTT GGACAAAGTA CTGTCTGCTT







ATAACAAGCA CCGGGATAAG CCTATTAGGG AACAAGCCGA







GAATATAATT CACCTCTTTA CACTCACGAA TCTCGGAGCC







CCCGCCGCCT TCAAATACTT TGATACGACT ATCGACCGGA







AACGGTATAC CAGTACCAAA GAGGTCCTCG ATGCCACCCT







CATCCACCAG TCAATTACTG GCCTGTACGA AACACGGATC







GACCTCTCTC AACTGGGCGG CGACTAG






Provided below is the corresponding amino acid sequence of a S. pyogenes Cas9 molecule.









(SEQ ID NO: 23)







MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA





LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR





LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD





LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENP





INASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTP





NFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI





LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEI





FFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR





KQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY





YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDK





NLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVD





LLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI





IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQ





LKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDD





SLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV





MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP





VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD





SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL





TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI





REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK





YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI





TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV





QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVE





KGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK





YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE





DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK





PIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ





SITGLYETRIDLSQLGGD*






Provided below is an exemplary codon optimized nucleic acid sequence encoding a Cas9 molecule of N. meningitides.









SEQ ID NO: 24)







ATGGCCGCCTTCAAGCCCAACCCCATCAACTACATCCTGGGCCTGGACAT





CGGCATCGCCAGCGTGGGCTGGGCCATGGTGGAGATCGACGAGGACGAGA





ACCCCATCTGCCTGATCGACCTGGGTGTGCGCGTGTTCGAGCGCGCTGAG





GTGCCCAAGACTGGTGACAGTCTGGCTATGGCTCGCCGGCTTGCTCGCTC





TGTTCGGCGCCTTACTCGCCGGCGCGCTCACCGCCTTCTGCGCGCTCGCC





GCCTGCTGAAGCGCGAGGGTGTGCTGCAGGCTGCCGACTTCGACGAGAAC





GGCCTGATCAAGAGCCTGCCCAACACTCCTTGGCAGCTGCGCGCTGCCGC





TCTGGACCGCAAGCTGACTCCTCTGGAGTGGAGCGCCGTGCTGCTGCACC





TGATCAAGCACCGCGGCTACCTGAGCCAGCGCAAGAACGAGGGCGAGACC





GCCGACAAGGAGCTGGGTGCTCTGCTGAAGGGCGTGGCCGACAACGCCCA





CGCCCTGCAGACTGGTGACTTCCGCACTCCTGCTGAGCTGGCCCTGAACA





AGTTCGAGAAGGAGAGCGGCCACATCCGCAACCAGCGCGGCGACTACAGC





CACACCTTCAGCCGCAAGGACCTGCAGGCCGAGCTGATCCTGCTGTTCGA





GAAGCAGAAGGAGTTCGGCAACCCCCACGTGAGCGGCGGCCTGAAGGAGG





GCATCGAGACCCTGCTGATGACCCAGCGCCCCGCCCTGAGCGGCGACGCC





GTGCAGAAGATGCTGGGCCACTGCACCTTCGAGCCAGCCGAGCCCAAGGC





CGCCAAGAACACCTACACCGCCGAGCGCTTCATCTGGCTGACCAAGCTGA





ACAACCTGCGCATCCTGGAGCAGGGCAGCGAGCGCCCCCTGACCGACACC





GAGCGCGCCACCCTGATGGACGAGCCCTACCGCAAGAGCAAGCTGACCTA





CGCCCAGGCCCGCAAGCTGCTGGGTCTGGAGGACACCGCCTTCTTCAAGG





GCCTGCGCTACGGCAAGGACAACGCCGAGGCCAGCACCCTGATGGAGATG





AAGGCCTACCACGCCATCAGCCGCGCCCTGGAGAAGGAGGGCCTGAAGGA





CAAGAAGAGTCCTCTGAACCTGAGCCCCGAGCTGCAGGACGAGATCGGCA





CCGCCTTCAGCCTGTTCAAGACCGACGAGGACATCACCGGCCGCCTGAAG





GACCGCATCCAGCCCGAGATCCTGGAGGCCCTGCTGAAGCACATCAGCTT





CGACAAGTTCGTGCAGATCAGCCTGAAGGCCCTGCGCCGCATCGTGCCCC





TGATGGAGCAGGGCAAGCGCTACGACGAGGCCTGCGCCGAGATCTACGGC





GACCACTACGGCAAGAAGAACACCGAGGAGAAGATCTACCTGCCTCCTAT





CCCCGCCGACGAGATCCGCAACCCCGTGGTGCTGCGCGCCCTGAGCCAGG





CCCGCAAGGTGATCAACGGCGTGGTGCGCCGCTACGGCAGCCCCGCCCGC





ATCCACATCGAGACCGCCCGCGAGGTGGGCAAGAGCTTCAAGGACCGCAA





GGAGATCGAGAAGCGCCAGGAGGAGAACCGCAAGGACCGCGAGAAGGCCG





CCGCCAAGTTCCGCGAGTACTTCCCCAACTTCGTGGGCGAGCCCAAGAGC





AAGGACATCCTGAAGCTGCGCCTGTACGAGCAGCAGCACGGCAAGTGCCT





GTACAGCGGCAAGGAGATCAACCTGGGCCGCCTGAACGAGAAGGGCTACG





TGGAGATCGACCACGCCCTGCCCTTCAGCCGCACCTGGGACGACAGCTTC





AACAACAAGGTGCTGGTGCTGGGCAGCGAGAACCAGAACAAGGGCAACCA





GACCCCCTACGAGTACTTCAACGGCAAGGACAACAGCCGCGAGTGGCAGG





AGTTCAAGGCCCGCGTGGAGACCAGCCGCTTCCCCCGCAGCAAGAAGCAG





CGCATCCTGCTGCAGAAGTTCGACGAGGACGGCTTCAAGGAGCGCAACCT





GAACGACACCCGCTACGTGAACCGCTTCCTGTGCCAGTTCGTGGCCGACC





GCATGCGCCTGACCGGCAAGGGCAAGAAGCGCGTGTTCGCCAGCAACGGC





CAGATCACCAACCTGCTGCGCGGCTTCTGGGGCCTGCGCAAGGTGCGCGC





CGAGAACGACCGCCACCACGCCCTGGACGCCGTGGTGGTGGCCTGCAGCA





CCGTGGCCATGCAGCAGAAGATCACCCGCTTCGTGCGCTACAAGGAGATG





AACGCCTTCGACGGTAAAACCATCGACAAGGAGACCGGCGAGGTGCTGCA





CCAGAAGACCCACTTCCCCCAGCCCTGGGAGTTCTTCGCCCAGGAGGTGA





TGATCCGCGTGTTCGGCAAGCCCGACGGCAAGCCCGAGTTCGAGGAGGCC





GACACCCCCGAGAAGCTGCGCACCCTGCTGGCCGAGAAGCTGAGCAGCCG





CCCTGAGGCCGTGCACGAGTACGTGACTCCTCTGTTCGTGAGCCGCGCCC





CCAACCGCAAGATGAGCGGTCAGGGTCACATGGAGACCGTGAAGAGCGCC





AAGCGCCTGGACGAGGGCGTGAGCGTGCTGCGCGTGCCCCTGACCCAGCT





GAAGCTGAAGGACCTGGAGAAGATGGTGAACCGCGAGCGCGAGCCCAAGC





TGTACGAGGCCCTGAAGGCCCGCCTGGAGGCCCACAAGGACGACCCCGCC





AAGGCCTTCGCCGAGCCCTTCTACAAGTACGACAAGGCCGGCAACCGCAC





CCAGCAGGTGAAGGCCGTGCGCGTGGAGCAGGTGCAGAAGACCGGCGTGT





GGGTGCGCAACCACAACGGCATCGCCGACAACGCCACCATGGTGCGCGTG





GACGTGTTCGAGAAGGGCGACAAGTACTACCTGGTGCCCATCTACAGCTG





GCAGGTGGCCAAGGGCATCCTGCCCGACCGCGCCGTGGTGCAGGGCAAGG





ACGAGGAGGACTGGCAGCTGATCGACGACAGCTTCAACTTCAAGTTCAGC





CTGCACCCCAACGACCTGGTGGAGGTGATCACCAAGAAGGCCCGCATGTT





CGGCTACTTCGCCAGCTGCCACCGCGGCACCGGCAACATCAACATCCGCA





TCCACGACCTGGACCACAAGATCGGCAAGAACGGCATCCTGGAGGGCATC





GGCGTGAAGACCGCCCTGAGCTTCCAGAAGTACCAGATCGACGAGCTGGG





CAAGGAGATCCGCCCCTGCCGCCTGAAGAAGCGCCCTCCTGTGCGCTAA






Provided below is the corresponding amino acid sequence of a N. meningitides Cas9 molecule.









(SEQ ID NO: 25)







MAAFKPNPINYILGLDIGIASVGWAMVEIDEDENPICLIDLGVRVFERAE





VPKTGDSLAMARRLARSVRRLTRRRAHRLLRARRLLKREGVLQAADFDEN





GLIKSLPNTPWQLRAAALDRKLTPLEWSAVLLHLIKHRGYLSQRKNEGET





ADKELGALLKGVADNAHALQTGDFRTPAELALNKFEKESGHIRNQRGDYS





HTFSRKDLQAELILLFEKQKEFGNPHVSGGLKEGIETLLMTQRPALSGDA





VQKMLGHCTFEPAEPKAAKNTYTAERFIWLTKLNNLRILEQGSERPLTDT





ERATLMDEPYRKSKLTYAQARKLLGLEDTAFFKGLRYGKDNAEASTLMEM





KAYHAISRALEKEGLKDKKSPLNLSPELQDEIGTAFSLFKTDEDITGRLK





DRIQPEILEALLKHISFDKFVQISLKALRRIVPLMEQGKRYDEACAEIYG





DHYGKKNTEEKIYLPPIPADEIRNPVVLRALSQARKVINGVVRRYGSPAR





IHIETAREVGKSFKDRKEIEKRQEENRKDREKAAAKFREYFPNFVGEPKS





KDILKLRLYEQQHGKCLYSGKEINLGRLNEKGYVEIDHALPFSRTWDDSF





NNKVLVLGSENQNKGNQTPYEYFNGKDNSREWQEFKARVETSRFPRSKKQ





RILLQKFDEDGFKERNLNDTRYVNRFLCQFVADRMRLTGKGKKRVFASNG





QITNLLRGFWGLRKVRAENDRHHALDAVVVACSTVAMQQKITRFVRYKEM





NAFDGKTIDKETGEVLHQKTHFPQPWEFFAQEVMIRVFGKPDGKPEFEEA





DTPEKLRTLLAEKLSSRPEAVHEYVTPLFVSRAPNRKMSGQGHMETVKSA





KRLDEGVSVLRVPLTQLKLKDLEKMVNREREPKLYEALKARLEAHKDDPA





KAFAEPFYKYDKAGNRTQQVKAVRVEQVQKTGVWVRNHNGIADNATMVRV





DVFEKGDKYYLVPIYSWQVAKGILPDRAVVQGKDEEDWQLIDDSFNFKFS





LHPNDLVEVITKKARMFGYFASCHRGTGNINIRIHDLDHKIGKNGILEGI





GVKTALSFQKYQIDELGKEIRPCRLKKRPPVR*






Provided below is an amino acid sequence of a S. aureus Cas9 molecule.









(SEQ ID NO: 26)







MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSK





RGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKL





SEEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYV





AELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDT





YIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYA





YNADLYNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIA





KEILVNEEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQ





IAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAI





NLILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVV





KRSFIQSIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQ





TNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNP





FNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKIS





YETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTR





YATRGLMNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKH





HAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEY





KEIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTL





IVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDE





KNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNS





RNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEA





KKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDIT





YREYLENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQII





KKG*






Provided below is an exemplary codon optimized nucleic acid sequence encoding a Cas9 molecule of S. aureus Cas9.









(SEQ ID NO: 39)







ATGAAAAGGAACTACATTCTGGGGCTGGACATCGGGATTACAAGCGTGGG





GTATGGGATTATTGACTATGAAACAAGGGACGTGATCGACGCAGGCGTCA





GACTGTTCAAGGAGGCCAACGTGGAAAACAATGAGGGACGGAGAAGCAAG





AGGGGAGCCAGGCGCCTGAAACGACGGAGAAGGCACAGAATCCAGAGGGT





GAAGAAACTGCTGTTCGATTACAACCTGCTGACCGACCATTCTGAGCTGA





GTGGAATTAATCCTTATGAAGCCAGGGTGAAAGGCCTGAGTCAGAAGCTG





TCAGAGGAAGAGTTTTCCGCAGCTCTGCTGCACCTGGCTAAGCGCCGAGG





AGTGCATAACGTCAATGAGGTGGAAGAGGACACCGGCAACGAGCTGTCTA





CAAAGGAACAGATCTCACGCAATAGCAAAGCTCTGGAAGAGAAGTATGTC





GCAGAGCTGCAGCTGGAACGGCTGAAGAAAGATGGCGAGGTGAGAGGGTC





AATTAATAGGTTCAAGACAAGCGACTACGTCAAAGAAGCCAAGCAGCTGC





TGAAAGTGCAGAAGGCTTACCACCAGCTGGATCAGAGCTTCATCGATACT





TATATCGACCTGCTGGAGACTCGGAGAACCTACTATGAGGGACCAGGAGA





AGGGAGCCCCTTCGGATGGAAAGACATCAAGGAATGGTACGAGATGCTGA





TGGGACATTGCACCTATTTTCCAGAAGAGCTGAGAAGCGTCAAGTACGCT





TATAACGCAGATCTGTACAACGCCCTGAATGACCTGAACAACCTGGTCAT





CACCAGGGATGAAAACGAGAAACTGGAATACTATGAGAAGTTCCAGATCA





TCGAAAACGTGTTTAAGCAGAAGAAAAAGCCTACACTGAAACAGATTGCT





AAGGAGATCCTGGTCAACGAAGAGGACATCAAGGGCTACCGGGTGACAAG





CACTGGAAAACCAGAGTTCACCAATCTGAAAGTGTATCACGATATTAAGG





ACATCACAGCACGGAAAGAAATCATTGAGAACGCCGAACTGCTGGATCAG





ATTGCTAAGATCCTGACTATCTACCAGAGCTCCGAGGACATCCAGGAAGA





GCTGACTAACCTGAACAGCGAGCTGACCCAGGAAGAGATCGAACAGATTA





GTAATCTGAAGGGGTACACCGGAACACACAACCTGTCCCTGAAAGCTATC





AATCTGATTCTGGATGAGCTGTGGCATACAAACGACAATCAGATTGCAAT





CTTTAACCGGCTGAAGCTGGTCCCAAAAAAGGTGGACCTGAGTCAGCAGA





AAGAGATCCCAACCACACTGGTGGACGATTTCATTCTGTCACCCGTGGTC





AAGCGGAGCTTCATCCAGAGCATCAAAGTGATCAACGCCATCATCAAGAA





GTACGGCCTGCCCAATGATATCATTATCGAGCTGGCTAGGGAGAAGAACA





GCAAGGACGCACAGAAGATGATCAATGAGATGCAGAAACGAAACCGGCAG





ACCAATGAACGCATTGAAGAGATTATCCGAACTACCGGGAAAGAGAACGC





AAAGTACCTGATTGAAAAAATCAAGCTGCACGATATGCAGGAGGGAAAGT





GTCTGTATTCTCTGGAGGCCATCCCCCTGGAGGACCTGCTGAACAATCCA





TTCAACTACGAGGTCGATCATATTATCCCCAGAAGCGTGTCCTTCGACAA





TTCCTTTAACAACAAGGTGCTGGTCAAGCAGGAAGAGAACTCTAAAAAGG





GCAATAGGACTCCTTTCCAGTACCTGTCTAGTTCAGATTCCAAGATCTCT





TACGAAACCTTTAAAAAGCACATTCTGAATCTGGCCAAAGGAAAGGGCCG





CATCAGCAAGACCAAAAAGGAGTACCTGCTGGAAGAGCGGGACATCAACA





GATTCTCCGTCCAGAAGGATTTTATTAACCGGAATCTGGTGGACACAAGA





TACGCTACTCGCGGCCTGATGAATCTGCTGCGATCCTATTTCCGGGTGAA





CAATCTGGATGTGAAAGTCAAGTCCATCAACGGCGGGTTCACATCTTTTC





TGAGGCGCAAATGGAAGTTTAAAAAGGAGCGCAACAAAGGGTACAAGCAC





CATGCCGAAGATGCTCTGATTATCGCAAATGCCGACTTCATCTTTAAGGA





GTGGAAAAAGCTGGACAAAGCCAAGAAAGTGATGGAGAACCAGATGTTCG





AAGAGAAGCAGGCCGAATCTATGCCCGAAATCGAGACAGAACAGGAGTAC





AAGGAGATTTTCATCACTCCTCACCAGATCAAGCATATCAAGGATTTCAA





GGACTACAAGTACTCTCACCGGGTGGATAAAAAGCCCAACAGAGAGCTGA





TCAATGACACCCTGTATAGTACAAGAAAAGACGATAAGGGGAATACCCTG





ATTGTGAACAATCTGAACGGACTGTACGACAAAGATAATGACAAGCTGAA





AAAGCTGATCAACAAAAGTCCCGAGAAGCTGCTGATGTACCACCATGATC





CTCAGACATATCAGAAACTGAAGCTGATTATGGAGCAGTACGGCGACGAG





AAGAACCCACTGTATAAGTACTATGAAGAGACTGGGAACTACCTGACCAA





GTATAGCAAAAAGGATAATGGCCCCGTGATCAAGAAGATCAAGTACTATG





GGAACAAGCTGAATGCCCATCTGGACATCACAGACGATTACCCTAACAGT





CGCAACAAGGTGGTCAAGCTGTCACTGAAGCCATACAGATTCGATGTCTA





TCTGGACAACGGCGTGTATAAATTTGTGACTGTCAAGAATCTGGATGTCA





TCAAAAAGGAGAACTACTATGAAGTGAATAGCAAGTGCTACGAAGAGGCT





AAAAAGCTGAAAAAGATTAGCAACCAGGCAGAGTTCATCGCCTCCTTTTA





CAACAACGACCTGATTAAGATCAATGGCGAACTGTATAGGGTCATCGGGG





TGAACAATGATCTGCTGAACCGCATTGAAGTGAATATGATTGACATCACT





TACCGAGAGTATCTGGAAAACATGAATGATAAGCGCCCCCCTCGAATTAT





CAAAACAATTGCCTCTAAGACTCAGAGTATCAAAAAGTACTCAACCGACA





TTCTGGGAAACCTGTATGAGGTGAAGAGCAAAAAGCACCCTCAGATTATC





AAAAAGGGC






If any of the above Cas9 sequences are fused with a peptide or polypeptide at the C-terminus, it is understood that the stop codon will be removed.


Other Cas Molecules and Cas Polypeptides


Various types of Cas molecules or Cas polypeptides can be used to practice the inventions disclosed herein. In some embodiments, Cas molecules of Type II Cas systems are used. In other embodiments, Cas molecules of other Cas systems are used. For example, Type I or Type III Cas molecules may be used. Exemplary Cas molecules (and Cas systems) are described, e.g., in Haft et al., PLoS COMPUTATIONAL BIOLOGY 2005, 1(6): e60 and Makarova et al., NATURE REVIEW MICROBIOLOGY 2011, 9:467-477, the contents of both references are incorporated herein by reference in their entirety. Exemplary Cas molecules (and Cas systems) are also shown in Table 13.









TABLE 13







Cas Systems















Structure of
Families (and






encoded
superfamily) of


Gene
System type
Name from
protein (PDB
encoded


name
or subtype
Haft et al.§
accessions)
protein#**
Representatives





cas1
Type I
cas1
3GOD, 3LFX
COG1518
SERP2463, SPy1047



Type II

and 2YZS

and ygbT



Type III


cas2
Type I
cas2
2IVY, 2I8E and
COG1343 and
SERP2462, SPy1048,



Type II

3EXC
COG3512
SPy1723 (N-terminal



Type III



domain) and ygbF


cas3′
Type I‡‡
cas3
NA
COG1203
APE1232 and ygcB


cas3″
Subtype I-A
NA
NA
COG2254
APE1231 and



Subtype I-B



BH0336


cas4
Subtype I-A
cas4 and csa1
NA
COG1468
APE1239 and



Subtype I-B



BH0340



Subtype I-C



Subtype I-D



Subtype II-B


cas5
Subtype I-A
cas5a, cas5d,
3KG4
COG1688
APE1234, BH0337,



Subtype I-B
cas5e, cas5h,

(RAMP)
devS and ygcI



Subtype I-C
cas5p, cas5t



Subtype I-E
and cmx5


cas6
Subtype I-A
cas6 and cmx6
3I4H
COG1583 and
PF1131 and slr7014



Subtype I-B


COG5551



Subtype I-D


(RAMP)



Subtype III-



A Subtype



III-B


cas6e
Subtype I-E
cse3
1WJ9
(RAMP)
ygcH


cas6f
Subtype I-F
csy4
2XLJ
(RAMP)
y1727


cas7
Subtype I-A
csa2, csd2,
NA
COG1857 and
devR and ygcJ



Subtype I-B
cse4, csh2,

COG3649



Subtype I-C
csp1 and cst2

(RAMP)



Subtype I-E


cas8a1
Subtype I-
cmx1, cst1,
NA
BH0338-like
LA3191§§ and



A‡‡
csx8, csx13


PG2018§§




and CXXC-




CXXC


cas8a2
Subtype I-
csa4 and csx9
NA
PH0918
AF0070, AF1873,



A‡‡



MJ0385, PF0637,







PH0918 and







SSO1401


cas8b
Subtype I-
csh1 and
NA
BH0338-like
MTH1090 and



B‡‡
TM1802


TM1802


cas8c
Subtype I-
csd1 and csp2
NA
BH0338-like
BH0338



C‡‡


cas9
Type II‡‡
csn1 and csx12
NA
COG3513
FTN_0757 and







SPy1046


cas10
Type III‡‡
cmr2, csm1
NA
COG1353
MTH326, Rv2823c§§




and csx11


and TM1794§§


cas10d
Subtype I-
csc3
NA
COG1353
slr7011



D‡‡


csy1
Subtype I-
csy1
NA
y1724-like
y1724



F‡‡


csy2
Subtype I-F
csy2
NA
(RAMP)
y1725


csy3
Subtype I-F
csy3
NA
(RAMP)
y1726


cse1
Subtype I-
cse1
NA
YgcL-like
ygcL



E‡‡


cse2
Subtype I-E
cse2
2ZCA
YgcK-like
ygcK


csc1
Subtype I-D
csc1
NA
alr1563-like
alr1563






(RAMP)


csc2
Subtype I-D
csc1 and csc2
NA
COG1337
slr7012






(RAMP)


csa5
Subtype I-A
csa5
NA
AF1870
AF1870, MJ0380,







PF0643 and







SSO1398


csn2
Subtype II-A
csn2
NA
SPy1049-like
SPy1049


csm2
Subtype III-
csm2
NA
COG1421
MTH1081 and



A‡‡



SERP2460


csm3
Subtype III-A
csc2 and csm3
NA
COG1337
MTH1080 and






(RAMP)
SERP2459


csm4
Subtype III-A
csm4
NA
COG1567
MTH1079 and






(RAMP)
SERP2458


csm5
Subtype III-A
csm5
NA
COG1332
MTH1078 and






(RAMP)
SERP2457


csm6
Subtype III-A
APE2256 and
2WTE
COG1517
APE2256 and




csm6


SSO1445


cmr1
Subtype III-B
cmr1
NA
COG1367
PF1130






(RAMP)


cmr3
Subtype III-B
cmr3
NA
COG1769
PF1128






(RAMP)


cmr4
Subtype III-B
cmr4
NA
COG1336
PF1126






(RAMP)


cmr5
Subtype III-
cmr5
2ZOP and
COG3337
MTH324 and



B‡‡

2OEB

PF1125


cmr6
Subtype III-B
cmr6
NA
COG1604
PF1124






(RAMP)


csb1
Subtype I-U
GSU0053
NA
(RAMP)
Balac_1306 and







GSU0053


csb2
Subtype I-
NA
NA
(RAMP)
Balac_1305 and



U§§



GSU0054


csb3
Subtype I-U
NA
NA
(RAMP)
Balac_1303§§


csx17
Subtype I-U
NA
NA
NA
Btus_2683


csx14
Subtype I-U
NA
NA
NA
GSU0052


csx10
Subtype I-U
csx10
NA
(RAMP)
Caur_2274


csx16
Subtype III-U
VVA1548
NA
NA
VVA1548


csaX
Subtype III-U
csaX
NA
NA
SSO1438


csx3
Subtype III-U
csx3
NA
NA
AF1864


csx1
Subtype III-U
csa3, csx1,
1XMX and
COG1517 and
MJ1666, NE0113,




csx2, DXTHG,
2I71
COG4006
PF1127 and TM1812




NE0113 and




TIGR02710


csx15
Unknown
NA
NA
TTE2665
TTE2665


csf1
Type U
csf1
NA
NA
AFE_1038


csf2
Type U
csf2
NA
(RAMP)
AFE_1039


csf3
Type U
csf3
NA
(RAMP)
AFE_1040


csf4
Type U
csf4
NA
NA
AFE_1037









IV. Functional Analysis of Candidate Molecules

Candidate Cas9 molecules, candidate gRNA molecules, candidate Cas9 molecule/gRNA molecule complexes, can be evaluated by art-known methods or as described herein. For example, exemplary methods for evaluating the endonuclease activity of Cas9 molecule are described, e.g., in Jinek et al., SCIENCE 2012, 337(6096):816-821.


Binding and Cleavage Assay: Testing the Endonuclease Activity of Cas9 Molecule


The ability of a Cas9 molecule/gRNA molecule complex to bind to and cleave a target nucleic acid can be evaluated in a plasmid cleavage assay. In this assay, synthetic or in vitro-transcribed gRNA molecule is pre-annealed prior to the reaction by heating to 95° C. and slowly cooling down to room temperature. Native or restriction digest-linearized plasmid DNA (300 ng (˜8 nM)) is incubated for 60 min at 37° C. with purified Cas9 protein molecule (50-500 nM) and gRNA (50-500 nM, 1:1) in a Cas9 plasmid cleavage buffer (20 mM HEPES pH 7.5, 150 mM KCl, 0.5 mM DTT, 0.1 mM EDTA) with or without 10 mM MgCl2. The reactions are stopped with 5×DNA loading buffer (30% glycerol, 1.2% SDS, 250 mM EDTA), resolved by a 0.8 or 1% agarose gel electrophoresis and visualized by ethidium bromide staining. The resulting cleavage products indicate whether the Cas9 molecule cleaves both DNA strands, or only one of the two strands. For example, linear DNA products indicate the cleavage of both DNA strands. Nicked open circular products indicate that only one of the two strands is cleaved.


Alternatively, the ability of a Cas9 molecule/gRNA molecule complex to bind to and cleave a target nucleic acid can be evaluated in an oligonucleotide DNA cleavage assay. In this assay, DNA oligonucleotides (10 pmol) are radiolabeled by incubating with 5 units T4 polynucleotide kinase and ˜3-6 pmol (˜20-40 mCi) [γ-32P]-ATP in 1×T4 polynucleotide kinase reaction buffer at 37° C. for 30 min, in a 50 μL reaction. After heat inactivation (65° C. for 20 min), reactions are purified through a column to remove unincorporated label. Duplex substrates (100 nM) are generated by annealing labeled oligonucleotides with equimolar amounts of unlabeled complementary oligonucleotide at 95° C. for 3 min, followed by slow cooling to room temperature. For cleavage assays, gRNA molecules are annealed by heating to 95° C. for 30 s, followed by slow cooling to room temperature. Cas9 (500 nM final concentration) is pre-incubated with the annealed gRNA molecules (500 nM) in cleavage assay buffer (20 mM HEPES pH 7.5, 100 mM KCl, 5 mM MgCl2, 1 mM DTT, 5% glycerol) in a total volume of 9 μl. Reactions are initiated by the addition of 1 μl target DNA (10 nM) and incubated for 1 h at 37° C. Reactions are quenched by the addition of 20 μl of loading dye (5 mM EDTA, 0.025% SDS, 5% glycerol in formamide) and heated to 95° C. for 5 min. Cleavage products are resolved on 12% denaturing polyacrylamide gels containing 7 M urea and visualized by phosphor imaging. The resulting cleavage products indicate that whether the complementary strand, the non-complementary strand, or both, are cleaved.


One or both of these assays can be used to evaluate the suitability of a candidate gRNA molecule or candidate Cas9 molecule.


Binding Assay: Testing the Binding of Cas9 Molecule to Target DNA


Exemplary methods for evaluating the binding of Cas9 molecule to target DNA are described, e.g., in Jinek et al., SCIENCE 2012; 337(6096):816-821.


For example, in an electrophoretic mobility shift assay, target DNA duplexes are formed by mixing of each strand (10 nmol) in deionized water, heating to 95° C. for 3 min and slow cooling to room temperature. All DNAs are purified on 8% native gels containing 1×TBE. DNA bands are visualized by UV shadowing, excised, and eluted by soaking gel pieces in DEPC-treated H2O. Eluted DNA is ethanol precipitated and dissolved in DEPC-treated H2O. DNA samples are 5′ end labeled with [γ-32P]-ATP using T4 polynucleotide kinase for 30 min at 37° C. Polynucleotide kinase is heat denatured at 65° C. for 20 min, and unincorporated radiolabel is removed using a column. Binding assays are performed in buffer containing 20 mM HEPES pH 7.5, 100 mM KCl, 5 mM MgCl2, 1 mM DTT and 10% glycerol in a total volume of 10 μl. Cas9 protein molecule is programmed with equimolar amounts of pre-annealed gRNA molecule and titrated from 100 pM to 1 μM. Radiolabeled DNA is added to a final concentration of 20 pM. Samples are incubated for 1 h at 37° C. and resolved at 4° C. on an 8% native polyacrylamide gel containing 1×TBE and 5 mM MgCl2. Gels are dried and DNA visualized by phosphor imaging.


Differential Scanning Flourimetry (DSF)


The thermostability of Cas9-gRNA ribonucleoprotein (RNP) complexes can be measured via DSF. This technique measures the thermostability of a protein, which can increase under favorable conditions such as the addition of a binding RNA molecule, e.g., a gRNA.


The assay is performed using two different protocols, one to test the best stoichiometric ratio of gRNA:Cas9 protein and another to determine the best solution conditions for RNP formation.


To determine the best solution to form RNP complexes, a 2 uM solution of Cas9 in water+10× SYPRO Orange® (Life Technologies cat#S-6650) and dispensed into a 384 well plate. An equimolar amount of gRNA diluted in solutions with varied pH and salt is then added. After incubating at room temperature for 10′ and brief centrifugation to remove any bubbles, a Bio-Rad CFX384™ Real-Time System C1000 Touch™ Thermal Cycler with the Bio-Rad CFX Manager software is used to run a gradient from 20° C. to 90° C. with a 1° increase in temperature every 10 seconds.


The second assay consists of mixing various concentrations of gRNA with 2 uM Cas9 in optimal buffer from assay 1 above and incubating at RT for 10′ in a 384 well plate. An equal volume of optimal buffer+10× SYPRO Orange® (Life Technologies cat#S-6650) is added and the plate sealed with Microseal® B adhesive (MSB-1001). Following brief centrifugation to remove any bubbles, a Bio-Rad CFX384™ Real-Time System C1000 Touch™ Thermal Cycler with the Bio-Rad CFX Manager software is used to run a gradient from 20° C. to 90° C. with a 1° increase in temperature every 10 seconds.


V. Genome Editing Approaches

Described herein are methods for targeted knockout of the CCR5 gene, e.g., one or both alleles of the CCR5 gene, e.g., using one or more of the approaches or pathways described herein, e.g., using NHEJ. Described herein are also methods for targeted knockdown of the CCR5 gene.


V.1 NHEJ Approaches for Gene Targeting


As described herein, nuclease-induced non-homologous end-joining (NHEJ) can be used to target gene-specific knockouts. Nuclease-induced NHEJ can also be used to remove (e.g., delete) sequence insertions in a gene of interest.


While not wishing to be bound by theory, it is believed that, in an embodiment, the genomic alterations associated with the methods described herein rely on nuclease-induced NHEJ and the error-prone nature of the NHEJ repair pathway. NHEJ repairs a double-strand break in the DNA by joining together the two ends; however, generally, the original sequence is restored only if two compatible ends, exactly as they were formed by the double-strand break, are perfectly ligated. The DNA ends of the double-strand break are frequently the subject of enzymatic processing, resulting in the addition or removal of nucleotides, at one or both strands, prior to rejoining of the ends. This results in the presence of insertion and/or deletion (indel) mutations in the DNA sequence at the site of the NHEJ repair. Two-thirds of these mutations typically alter the reading frame and, therefore, produce a non-functional protein. Additionally, mutations that maintain the reading frame, but which insert or delete a significant amount of sequence, can destroy functionality of the protein. This is locus dependent as mutations in critical functional domains are likely less tolerable than mutations in non-critical regions of the protein.


The indel mutations generated by NHEJ are unpredictable in nature; however, at a given break site certain indel sequences are favored and are over represented in the population, likely due to small regions of microhomology. The lengths of deletions can vary widely; most commonly in the 1-50 bp range, but they can easily reach greater than 100-200 bp. Insertions tend to be shorter and often include short duplications of the sequence immediately surrounding the break site. However, it is possible to obtain large insertions, and in these cases, the inserted sequence has often been traced to other regions of the genome or to plasmid DNA present in the cells.


Because NHEJ is a mutagenic process, it can also be used to delete small sequence motifs as long as the generation of a specific final sequence is not required. If a double-strand break is targeted near to a short target sequence, the deletion mutations caused by the NHEJ repair often span, and therefore remove, the unwanted nucleotides. For the deletion of larger DNA segments, introducing two double-strand breaks, one on each side of the sequence, can result in NHEJ between the ends with removal of the entire intervening sequence. Both of these approaches can be used to delete specific DNA sequences; however, the error-prone nature of NHEJ may still produce indel mutations at the site of repair.


Both double strand cleaving eaCas9 molecules and single strand, or nickase, eaCas9 molecules can be used in the methods and compositions described herein to generate NHEJ-mediated indels. NHEJ-mediated indels targeted to the early coding region of a gene of interest can be used to knockout (i.e., eliminate expression of) a gene of interest. For example, early coding region of a gene of interest includes sequence immediately following a transcription start site, within a first exon of the coding sequence, or within 500 bp of the transcription start site (e.g., less than 500, 450, 400, 350, 300, 250, 200, 150, 100 or 50 bp).


Placement of Double Strand or Single Strand Breaks Relative to the Target Position


In an embodiment, in which a gRNA and Cas9 nuclease generate a double strand break for the purpose of inducing NHEJ-mediated indels, a gRNA, e.g., a unimolecular (or chimeric) or modular gRNA molecule, is configured to position one double-strand break in close proximity to a nucleotide of the target position. In an embodiment, the cleavage site is between 0-30 bp away from the target position (e.g., less than 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 bp from the target position).


In an embodiment, in which two gRNAs complexing with Cas9 nickases induce two single strand breaks for the purpose of inducing NHEJ-mediated indels, two gRNAs, e.g., independently, unimolecular (or chimeric) or modular gRNA, are configured to position two single-strand breaks to provide for NHEJ repair a nucleotide of the target position. In an embodiment, the gRNAs are configured to position cuts at the same position, or within a few nucleotides of one another, on different strands, essentially mimicking a double strand break. In an embodiment, the closer nick is between 0-30 bp away from the target position (e.g., less than 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 bp from the target position), and the two nicks are within 25-55 bp of each other (e.g., between 25 to 50, 25 to 45, 25 to 40, 25 to 35, 25 to 30, 50 to 55, 45 to 55, 40 to 55, 35 to 55, 30 to 55, 30 to 50, 35 to 50, 40 to 50, 45 to 50, 35 to 45, or 40 to 45 bp) and no more than 100 bp away from each other (e.g., no more than 90, 80, 70, 60, 50, 40, 30, 20 or 10 bp). In an embodiment, the gRNAs are configured to place a single strand break on either side of a nucleotide of the target position.


Both double strand cleaving eaCas9 molecules and single strand, or nickase, eaCas9 molecules can be used in the methods and compositions described herein to generate breaks both sides of a target position. Double strand or paired single strand breaks may be generated on both sides of a target position to remove the nucleic acid sequence between the two cuts (e.g., the region between the two breaks in deleted). In one embodiment, two gRNAs, e.g., independently, unimolecular (or chimeric) or modular gRNA, are configured to position a double-strand break on both sides of a target position. In an alternate embodiment, three gRNAs, e.g., independently, unimolecular (or chimeric) or modular gRNA, are configured to position a double strand break (i.e., one gRNA complexes with a cas9 nuclease) and two single strand breaks or paired single stranded breaks (i.e., two gRNAs complex with Cas9 nickases) on either side of the target position. In another embodiment, four gRNAs, e.g., independently, unimolecular (or chimeric) or modular gRNA, are configured to generate two pairs of single stranded breaks (i.e., two pairs of two gRNAs complex with Cas9 nickases) on either side of the target position. The double strand break(s) or the closer of the two single strand nicks in a pair will ideally be within 0-500 bp of the target position (e.g., no more than 450, 400, 350, 300, 250, 200, 150, 100, 50 or 25 bp from the target position). When nickases are used, the two nicks in a pair are within 25-55 bp of each other (e.g., between 25 to 50, 25 to 45, 25 to 40, 25 to 35, 25 to 30, 50 to 55, 45 to 55, 40 to 55, 35 to 55, 30 to 55, 30 to 50, 35 to 50, 40 to 50, 45 to 50, 35 to 45, or 40 to 45 bp) and no more than 100 bp away from each other (e.g., no more than 90, 80, 70, 60, 50, 40, 30, 20 or 10 bp).


V.2 Single-Strand Annealing


Single strand annealing (SSA) is another DNA repair process that repairs a double-strand break between two repeat sequences present in a target nucleic acid. Repeat sequences utilized by the SSA pathway are generally greater than 30 nucleotides in length. Resection at the break ends occurs to reveal repeat sequences on both strands of the target nucleic acid. After resection, single strand overhangs containing the repeat sequences are coated with RPA protein to prevent the repeats sequences from inappropriate annealing, e.g., to themselves. RAD52 binds to and each of the repeat sequences on the overhangs and aligns the sequences to enable the annealing of the complementary repeat sequences. After annealing, the single-strand flaps of the overhangs are cleaved. New DNA synthesis fills in any gaps, and ligation restores the DNA duplex. As a result of the processing, the DNA sequence between the two repeats is deleted. The length of the deletion can depend on many factors including the location of the two repeats utilized, and the pathway or processivity of the resection.


In contrast to HDR pathways, SSA does not require a template nucleic acid to alter or correct a target nucleic acid sequence. Instead, the complementary repeat sequence is utilized.


V.3 Other DNA Repair Pathways


SSBR (Single Strand Break Repair)


Single-stranded breaks (SSB) in the genome are repaired by the SSBR pathway, which is a distinct mechanism from the DSB repair mechanisms discussed above. The SSBR pathway has four major stages: SSB detection, DNA end processing, DNA gap filling, and DNA ligation. A more detailed explanation is given in Caldecott, Nature Reviews Genetics 9, 619-631 (August 2008), and a summary is given here.


In the first stage, when a SSB forms, PARP1 and/or PARP2 recognize the break and recruit repair machinery. The binding and activity of PARP1 at DNA breaks is transient and it seems to accelerate SSBr by promoting the focal accumulation or stability of SSBr protein complexes at the lesion. Arguably the most important of these SSBr proteins is XRCC1, which functions as a molecular scaffold that interacts with, stabilizes, and stimulates multiple enzymatic components of the SSBr process including the protein responsible for cleaning the DNA 3′ and 5′ ends. For instance, XRCC1 interacts with several proteins (DNA polymerase beta, PNK, and three nucleases, APE1, APTX, and APLF) that promote end processing. APE1 has endonuclease activity. APLF exhibits endonuclease and 3′ to 5′ exonuclease activities. APTX has endonuclease and 3′ to 5′ exonuclease activity.


This end processing is an important stage of SSBR since the 3′- and/or 5′-termini of most, if not all, SSBs are ‘damaged’. End processing generally involves restoring a damaged 3′-end to a hydroxylated state and and/or a damaged 5′ end to a phosphate moiety, so that the ends become ligation-competent. Enzymes that can process damaged 3′ termini include PNKP, APE1, and TDP1. Enzymes that can process damaged 5′ termini include PNKP, DNA polymerase beta, and APTX. LIG3 (DNA ligase III) can also participate in end processing. Once the ends are cleaned, gap filling can occur.


At the DNA gap filling stage, the proteins typically present are PARP1, DNA polymerase beta, XRCC1, FEN1 (flap endonuclease 1), DNA polymerase delta/epsilon, PCNA, and LIG1. There are two ways of gap filling, the short patch repair and the long patch repair. Short patch repair involves the insertion of a single nucleotide that is missing. At some SSBs, “gap filling” might continue displacing two or more nucleotides (displacement of up to 12 bases have been reported). FEN1 is an endonuclease that removes the displaced 5′-residues. Multiple DNA polymerases, including Pol β, are involved in the repair of SSBs, with the choice of DNA polymerase influenced by the source and type of SSB.


In the fourth stage, a DNA ligase such as LIG1 (Ligase I) or LIG3 (Ligase III) catalyzes joining of the ends. Short patch repair uses Ligase III and long patch repair uses Ligase I.


Sometimes, SSBR is replication-coupled. This pathway can involve one or more of CtIP, MRN, ERCC1, and FEN1. Additional factors that may promote SSBR include: aPARP, PARP1, PARP2, PARG, XRCC1, DNA polymerase b, DNA polymerase d, DNA polymerase e, PCNA, LIG1, PNK, PNKP, APE1, APTX, APLF, TDP1, LIG3, FEN1, CtIP, MRN, and ERCC1.


MMR (Mismatch Repair)


Cells contain three excision repair pathways: MMR, BER, and NER. The excision repair pathways have a common feature in that they typically recognize a lesion on one strand of the DNA, then exo/endonucleases remove the lesion and leave a 1-30 nucleotide gap that is sub-sequentially filled in by DNA polymerase and finally sealed with ligase. A more complete picture is given in Li, Cell Research (2008) 18:85-98, and a summary is provided here.


Mismatch repair (MMR) operates on mispaired DNA bases.


The MSH2/6 or MSH2/3 complexes both have ATPases activity that plays an important role in mismatch recognition and the initiation of repair. MSH2/6 preferentially recognizes base-base mismatches and identifies mispairs of 1 or 2 nucleotides, while MSH2/3 preferentially recognizes larger ID mispairs.


hMLH1 heterodimerizes with hPMS2 to form hMutL α which possesses an ATPase activity and is important for multiple steps of MMR. It possesses a PCNA/replication factor C (RFC)-dependent endonuclease activity which plays an important role in 3′ nick-directed MMR involving EXO1. (EXO1 is a participant in both HR and MMR.) It regulates termination of mismatch-provoked excision. Ligase I is the relevant ligase for this pathway. Additional factors that may promote MMR include: EXO1, MSH2, MSH3, MSH6, MLH1, PMS2, MLH3, DNA Pol d, RPA, HMGB1, RFC, and DNA ligase I.


Base Excision Repair (BER)


The base excision repair (BER) pathway is active throughout the cell cycle; it is responsible primarily for removing small, non-helix-distorting base lesions from the genome. In contrast, the related Nucleotide Excision Repair pathway (discussed in the next section) repairs bulky helix-distorting lesions. A more detailed explanation is given in Caldecott, Nature Reviews Genetics 9, 619-631 (August 2008), and a summary is given here.


Upon DNA base damage, base excision repair (BER) is initiated and the process can be simplified into five major steps: (a) removal of the damaged DNA base; (b) incision of the subsequent a basic site; (c) clean-up of the DNA ends; (d) insertion of the correct nucleotide into the repair gap; and (e) ligation of the remaining nick in the DNA backbone. These last steps are similar to the SSBR.


In the first step, a damage-specific DNA glycosylase excises the damaged base through cleavage of the N-glycosidic bond linking the base to the sugar phosphate backbone. Then AP endonuclease-1 (APE1) or bifunctional DNA glycosylases with an associated lyase activity incised the phosphodiester backbone to create a DNA single strand break (SSB). The third step of BER involves cleaning-up of the DNA ends. The fourth step in BER is conducted by Pol that adds a new complementary nucleotide into the repair gap and in the final step XRCC1/Ligase III seals the remaining nick in the DNA backbone. This completes the short-patch BER pathway in which the majority (˜80%) of damaged DNA bases are repaired. However, if the 5′-ends in step 3 are resistant to end processing activity, following one nucleotide insertion by Pol β there is then a polymerase switch to the replicative DNA polymerases, Pol δ/ε, which then add ˜2-8 more nucleotides into the DNA repair gap. This creates a 5′-flap structure, which is recognized and excised by flap endonuclease-1 (FEN-1) in association with the processivity factor proliferating cell nuclear antigen (PCNA). DNA ligase I then seals the remaining nick in the DNA backbone and completes long-patch BER. Additional factors that may promote the BER pathway include: DNA glycosylase, APE1, Polb, Pold, Pole, XRCC1, Ligase III, FEN-1, PCNA, RECQL4, WRN, MYH, PNKP, and APTX.


Nucleotide Excision Repair (NER)


Nucleotide excision repair (NER) is an important excision mechanism that removes bulky helix-distorting lesions from DNA. Additional details about NER are given in Marteijn et al., Nature Reviews Molecular Cell Biology 15, 465-481 (2014), and a summary is given here. NER a broad pathway encompassing two smaller pathways: global genomic NER (GG-NER) and transcription coupled repair NER (TC-NER). GG-NER and TC-NER use different factors for recognizing DNA damage. However, they utilize the same machinery for lesion incision, repair, and ligation.


Once damage is recognized, the cell removes a short single-stranded DNA segment that contains the lesion. Endonucleases XPF/ERCC1 and XPG (encoded by ERCC5) remove the lesion by cutting the damaged strand on either side of the lesion, resulting in a single-strand gap of 22-30 nucleotides. Next, the cell performs DNA gap filling synthesis and ligation. Involved in this process are: PCNA, RFC, DNA Pol δ, DNA Pol ε or DNA Pol κ, and DNA ligase I or XRCC1/Ligase III. Replicating cells tend to use DNA pol ε and DNA ligase I, while non-replicating cells tend to use DNA Pol δ, DNA Pol κ, and the XRCC1/Ligase III complex to perform the ligation step.


NER can involve the following factors: XPA-G, POLH, XPF, ERCC1, XPA-G, and LIG1. Transcription-coupled NER (TC-NER) can involve the following factors: CSA, CSB, XPB, XPD, XPG, ERCC1, and TTDA. Additional factors that may promote the NER repair pathway include XPA-G, POLH, XPF, ERCC1, XPA-G, LIG1, CSA, CSB, XPA, XPB, XPC, XPD, XPF, XPG, TTDA, UVSSA, USP7, CETN2, RAD23B, UV-DDB, CAK subcomplex, RPA, and PCNA.


Interstrand Crosslink (ICL)


A dedicated pathway called the ICL repair pathway repairs interstrand crosslinks. Interstrand crosslinks, or covalent crosslinks between bases in different DNA strand, can occur during replication or transcription. ICL repair involves the coordination of multiple repair processes, in particular, nucleolytic activity, translesion synthesis (TLS), and HDR. Nucleases are recruited to excise the ICL on either side of the crosslinked bases, while TLS and HDR are coordinated to repair the cut strands. ICL repair can involve the following factors: endonucleases, e.g., XPF and RAD51C, endonucleases such as RAD51, translesion polymerases, e.g., DNA polymerase zeta and Rev1), and the Fanconi anemia (FA) proteins, e.g., FancJ.


Other Pathways


Several other DNA repair pathways exist in mammals.


Translesion synthesis (TLS) is a pathway for repairing a single stranded break left after a defective replication event and involves translesion polymerases, e.g., DNA polζ and Rev1.


Error-free postreplication repair (PRR) is another pathway for repairing a single stranded break left after a defective replication event.


V.4 Targeted Knockdown


Unlike CRISPR/Cas-mediated gene knockout, which permanently eliminates expression by mutating the gene at the DNA level, CRISPR/Cas knockdown allows for temporary reduction of gene expression through the use of artificial transcription factors. Mutating key residues in both DNA cleavage domains of the Cas9 protein (e.g. the D10A and H840A mutations) results in the generation of a catalytically inactive Cas9 (eiCas9 which is also known as dead Cas9 or dCas9) molecule. A catalytically inactive Cas9 complexes with a gRNA and localizes to the DNA sequence specified by that gRNA's targeting domain, however, it does not cleave the target DNA. Fusion of the dCas9 to an effector domain, e.g., a transcription repression domain, enables recruitment of the effector to any DNA site specified by the gRNA. Although an enzymatically inactive (eiCas9) Cas9 molecule itself can block transcription when recruited to early regions in the coding sequence, more robust repression can be achieved by fusing a transcriptional repression domain (for example KRAB, SID or ERD) to the Cas9 and recruiting it to the target knockdown position, e.g., within 1000 bp of sequence 3′ of the start codon or within 500 bp of a promoter region 5′ of the start codon of a gene. It is likely that targeting DNAseI hypersensitive sites (DHSs) of the promoter may yield more efficient gene repression or activation because these regions are more likely to be accessible to the Cas9 protein and are also more likely to harbor sites for endogenous transcription factors. Especially for gene repression, it is contemplated herein that blocking the binding site of an endogenous transcription factor would aid in downregulating gene expression. In an embodiment, one or more eiCas9 molecules may be used to block binding of one or more endogenous transcription factors. In another embodiment, an eiCas9 molecule can be fused to a chromatin modifying protein. Altering chromatin status can result in decreased expression of the target gene. One or more eiCas9 molecules fused to one or more chromatin modifying proteins may be used to alter chromatin status.


In an embodiment, a gRNA molecule can be targeted to a known transcription response elements (e.g., promoters, enhancers, etc.), a known upstream activating sequences (UAS), and/or sequences of unknown or known function that are suspected of being able to control expression of the target DNA.


CRISPR/Cas-mediated gene knockdown can be used to reduce expression of an unwanted allele or transcript. Contemplated herein are scenarios wherein permanent destruction of the gene is not ideal. In these scenarios, site-specific repression may be used to temporarily reduce or eliminate expression. It is also contemplated herein that the off-target effects of a Cas-repressor may be less severe than those of a Cas-nuclease as a nuclease can cleave any DNA sequence and cause mutations whereas a Cas-repressor may only have an effect if it targets the promoter region of an actively transcribed gene. However, while nuclease-mediated knockout is permanent, repression may only persist as long as the Cas-repressor is present in the cells. Once the repressor is no longer present, it is likely that endogenous transcription factors and gene regulatory elements would restore expression to its natural state.


V.5 Examples of gRNAs in Genome Editing Methods


gRNA molecules as described herein can be used with Cas9 molecules that generate a double strand break or a single strand break to alter the sequence of a target nucleic acid, e.g., a target position or target genetic signature. gRNA molecules useful in these methods are described below.


In an embodiment, the gRNA, e.g., a chimeric gRNA, is configured such that it comprises one or more of the following properties;


a) it can position, e.g., when targeting a Cas9 molecule that makes double strand breaks, a double strand break (i) within 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 nucleotides of a target position, or (ii) sufficiently close that the target position is within the region of end resection;


b) it has a targeting domain of at least 16 nucleotides, e.g., a targeting domain of (i) 16, (ii), 17, (iii) 18, (iv) 19, (v) 20, (vi) 21, (vii) 22, (viii) 23, (ix) 24, (x) 25, or (xi) 26 nucleotides; and


c)

    • (i) the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides, e.g., at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides from a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail and proximal domain, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom;
    • (ii) there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain, e.g., at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides from the corresponding sequence of a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis gRNA, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom;
    • (iii) there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain, e.g., at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides from the corresponding sequence of a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis gRNA, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom;
    • (iv) the tail domain is at least 10, 15, 20, 25, 30, 35 or 40 nucleotides in length, e.g., it comprises at least 10, 15, 20, 25, 30, 35 or 40 nucleotides from a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail domain, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom; or
    • (v) the tail domain comprises 15, 20, 25, 30, 35, 40 nucleotides or all of the corresponding portions of a naturally occurring tail domain, e.g., a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail domain.


In an embodiment, the gRNA is configured such that it comprises properties: a and b(i).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(ii).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(iii).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(iv).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(v).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(vi).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(vii).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(viii).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(ix).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(x).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(xi).


In an embodiment, the gRNA is configured such that it comprises properties: a and c.


In an embodiment, the gRNA is configured such that in comprises properties: a, b, and c.


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(i), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(i), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(ii), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(ii), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(iii), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(iii), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(iv), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(iv), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(v), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(v), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(vi), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(vi), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(vii), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(vii), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(viii), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(viii), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(ix), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(ix), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(x), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(x), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(xi), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(xi), and c(ii).


In an embodiment, the gRNA, e.g., a chimeric gRNA, is configured such that it comprises one or more of the following properties;


a) one or both of the gRNAs can position, e.g., when targeting a Cas9 molecule that makes single strand breaks, a single strand break within (i) 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 nucleotides of a target position, or (ii) sufficiently close that the target position is within the region of end resection;


b) one or both have a targeting domain of at least 16 nucleotides, e.g., a targeting domain of (i) 16, (ii), 17, (iii) 18, (iv) 19, (v) 20, (vi) 21, (vii) 22, (viii) 23, (ix) 24, (x) 25, or (xi) 26 nucleotides; and


c)

    • (i) the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides, e.g., at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides from a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail and proximal domain, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom;
    • (ii) there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain, e.g., at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides from the corresponding sequence of a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis gRNA, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom;
    • (iii) there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain, e.g., at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides from the corresponding sequence of a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis gRNA, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom;
    • (iv) the tail domain is at least 10, 15, 20, 25, 30, 35 or 40 nucleotides in length, e.g., it comprises at least 10, 15, 20, 25, 30, 35 or 40 nucleotides from a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail domain, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom; or
    • (v) the tail domain comprises 15, 20, 25, 30, 35, 40 nucleotides or all of the corresponding portions of a naturally occurring tail domain, e.g., a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail domain.


In an embodiment, the gRNA is configured such that it comprises properties: a and b(i).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(ii).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(iii).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(iv).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(v).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(vi).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(vii).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(viii).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(ix).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(x).


In an embodiment, the gRNA is configured such that it comprises properties: a and b(xi).


In an embodiment, the gRNA is configured such that it comprises properties: a and c.


In an embodiment, the gRNA is configured such that in comprises properties: a, b, and c.


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(i), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(i), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(ii), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(ii), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(iii), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(iii), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(iv), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(iv), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(v), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(v), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(vi), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(vi), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(vii), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(vii), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(viii), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(viii), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(ix), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(ix), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(x), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(x), and c(ii).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(xi), and c(i).


In an embodiment, the gRNA is configured such that in comprises properties: a(i), b(xi), and c(ii).


In an embodiment, the gRNA is used with a Cas9 nickase molecule having HNH activity, e.g., a Cas9 molecule having the RuvC activity inactivated, e.g., a Cas9 molecule having a mutation at D10, e.g., the D10A mutation.


In an embodiment, the gRNA is used with a Cas9 nickase molecule having RuvC activity, e.g., a Cas9 molecule having the HNH activity inactivated, e.g., a Cas9 molecule having a mutation at H840, e.g., the H840A.


In an embodiment, the gRNAs are used with a Cas9 nickase molecule having RuvC activity, e.g., a Cas9 molecule having the HNH activity inactivated, e.g., a Cas9 molecule having a mutation at H863, e.g., the N863A.


In an embodiment, a pair of gRNAs, e.g., a pair of chimeric gRNAs, comprising a first and a second gRNA, is configured such that they comprises one or more of the following properties;


a) one or both of the gRNAs can position, e.g., when targeting a Cas9 molecule that makes single strand breaks, a single strand break within (i) 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 nucleotides of a target position, or (ii) sufficiently close that the target position is within the region of end resection;


b) one or both have a targeting domain of at least 16 nucleotides, e.g., a targeting domain of (i) 16, (ii), 17, (iii) 18, (iv) 19, (v) 20, (vi) 21, (vii) 22, (viii) 23, (ix) 24, (x) 25, or (xi) 26 nucleotides;


c) for one or both:

    • (i) the proximal and tail domain, when taken together, comprise at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides, e.g., at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides from a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail and proximal domain, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom;
    • (ii) there are at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides 3′ to the last nucleotide of the second complementarity domain, e.g., at least 15, 18, 20, 25, 30, 31, 35, 40, 45, 49, 50, or 53 nucleotides from the corresponding sequence of a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis gRNA, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom;
    • (iii) there are at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides 3′ to the last nucleotide of the second complementarity domain that is complementary to its corresponding nucleotide of the first complementarity domain, e.g., at least 16, 19, 21, 26, 31, 32, 36, 41, 46, 50, 51, or 54 nucleotides from the corresponding sequence of a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis gRNA, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom;
    • (iv) the tail domain is at least 10, 15, 20, 25, 30, 35 or 40 nucleotides in length, e.g., it comprises at least 10, 15, 20, 25, 30, 35 or 40 nucleotides from a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail domain; or, or a sequence that differs by no more than 1, 2, 3, 4, 5; 6, 7, 8, 9 or 10 nucleotides therefrom; or
    • (v) the tail domain comprises 15, 20, 25, 30, 35, 40 nucleotides or all of the corresponding portions of a naturally occurring tail domain, e.g., a naturally occurring S. pyogenes, S. thermophilus, S. aureus, or N. meningitidis tail domain;


d) the gRNAs are configured such that, when hybridized to target nucleic acid, they are separated by 0-50, 0-100, 0-200, at least 10, at least 20, at least 30 or at least 50 nucleotides;


e) the breaks made by the first gRNA and second gRNA are on different strands; and


f) the PAMs are facing outwards.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a and b(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a and b(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a and b(iii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a and b(iv).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a and b(v).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a and b(vi).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a and b(vii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a and b(viii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a and b(ix).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a and b(x).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a and b(xi).


In an embodiment, one or both of the gRNAs configured such that it comprises properties: a and c.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a, b, and c.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(i), and c(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(i), and c(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(i), c, and d.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(i), c, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(i), c, d, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(ii), and c(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(ii), and c(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(ii), c, and d.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(ii), c, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(ii), c, d, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(iii), and c(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(iii), and c(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(iii), c, and d.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(iii), c, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(iii), c, d, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(iv), and c(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(iv), and c(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(iv), c, and d.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(iv), c, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(iv), c, d, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(v), and c(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(v), and c(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(v), c, and d.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(v), c, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(v), c, d, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(vi), and c(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(vi), and c(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(vi), c, and d.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(vi), c, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(vi), c, d, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(vii), and c(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(vii), and c(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(vii), c, and d.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(vii), c, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(vii), c, d, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(viii), and c(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(viii), and c(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(viii), c, and d.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(viii), c, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(viii), c, d, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(ix), and c(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(ix), and c(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(ix), c, and d.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(ix), c, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(ix), c, d, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(x), and c(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(x), and c(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(x), c, and d.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(x), c, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(x), c, d, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(xi), and c(i).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(xi), and c(ii).


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(xi), c, and d.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(xi), c, and e.


In an embodiment, one or both of the gRNAs is configured such that it comprises properties: a(i), b(xi), c, d, and e.


In an embodiment, the gRNAs are used with a Cas9 nickase molecule having HNH activity, e.g., a Cas9 molecule having the RuvC activity inactivated, e.g., a Cas9 molecule having a mutation at D10, e.g., the D10A mutation.


In an embodiment, the gRNAs are used with a Cas9 nickase molecule having RuvC activity, e.g., a Cas9 molecule having the HNH activity inactivated, e.g., a Cas9 molecule having a mutation at H840, e.g., the H840A.


In an embodiment, the gRNAs are used with a Cas9 nickase molecule having RuvC activity, e.g., a Cas9 molecule having the HNH activity inactivated, e.g., a Cas9 molecule having a mutation at N863, e.g., the N863A.


VI. Target Cells

Cas9 molecules and gRNA molecules, e.g., a Cas9 molecule/gRNA molecule complex, can be used to manipulate a cell, e.g., to edit a target nucleic acid, in a wide variety of cells.


In an embodiment, a cell is manipulated by altering or editing (e.g., introducing a mutation in) the CCR5 target gene, e.g., as described herein. In an embodiment, the expression of the CCR5target gene is altered or modulated, e.g., in vivo. In another embodiment, the expression of the CCR5 target gene is altered or modulated, e.g., ex vivo.


The Cas9 and gRNA molecules described herein can be delivered to a target cell. In an embodiment, the target cell is a circulating blood cell, e.g., a T cell (e.g., a CD4+ T cell, a CD8+ T cell, a helper T cell, a regulatory T cell, a cytotoxic T cell, a memory T cell, a T cell precursor or a natural killer T cell), a B cell (e.g., a progenitor B cell, a Pre B cell, a Pro B cell, a memory B cell, a plasma B cell), a monocyte, a megakaryocyte, a neutrophil, an eosinophil, a basophil, a mast cell, a reticulocyte, a lymphoid progenitor cell, a myeloid progenitor cell, a gut-associated lymphoid tissue (GALT) cell, a dendritic cell, a macrophage, a microglial cell, or a hematopoietic stem cell. In an embodiment, the target cell is a bone marrow cell, (e.g., a lymphoid progenitor cell, a myeloid progenitor cell, an erythroid progenitor cell, a hematopoietic stem cell, or a mesenchymal stem cell). In an embodiment, the target cell is a CD4+ T cell. In an embodiment, the target cell is a lymphoid progenitor cell (e.g. a common lymphoid progenitor (CLP) cell). In an embodiment, the target cell is a myeloid progenitor cell (e.g. a common myeloid progenitor (CMP) cell). In an embodiment, the target cell is a hematopoietic stem cell (e.g. a long term hematopoietic stem cell (LT-HSC), a short term hematopoietic stem cell (ST-HSC), a multipotent progenitor (MPP) cell, a lineage restricted progenitor (LRP) cell).


In an embodiment, the target cell is manipulated ex vivo by editing (e.g., introducing a mutation in) the CCR5 target gene and/or modulating the expression of the CCR5 target gene, and administered to the subject. Sources of target cells for ex vivo manipulation may include, by way of example, the subject's blood, the subject's cord blood, or the subject's bone marrow. Sources of target cells for ex vivo manipulation may also include, by way of example, heterologous donor blood, cord blood, or bone marrow.


In an embodiment, a CD4+T cell is removed from the subject, manipulated ex vivo as described above, and the CD4+T cell is returned to the subject. In an embodiment, a lymphoid progenitor cell is removed from the subject, manipulated ex vivo as described above, and the lymphoid progenitor cell is returned to the subject. In an embodiment, a myeloid progenitor cell is removed from the subject, manipulated ex vivo as described above, and the myeloid progenitor cell is returned to the subject. In an embodiment, a hematopoietic stem cell is removed from the subject, manipulated ex vivo as described above, and the hematopoietic stem cell is returned to the subject.


A suitable cell can also include a stem cell such as, by way of example, an embryonic stem cell, an induced pluripotent stem cell, a hematopoietic stem cell, a neuronal stem cell and a mesenchymal stem cell. In an embodiment, the cell is an induced pluripotent stem cells (iPS) cell or a cell derived from an iPS cell, e.g., an iPS cell generated from the subject, modified to correct the mutation and differentiated into a clinically relevant cell such as e.g, a CD4+ T cell, a lymphoid progenitor cell, myeloid progenitor cell, a macrophage, dendritic cell, gut associated lymphoid tissue or a hematopoietic stem cell. In an embodiment, AAV is used to transduce the target cells, e.g., the target cells described herein.


VII. Delivery, Formulations and Routes of Administration

The components, e.g., a Cas9 molecule and gRNA molecule can be delivered or formulated in a variety of forms, see, e.g., Tables 14 and 15. In an embodiment, one Cas9 molecule and two or more (e.g., 2, 3, 4, or more) different gRNA molecules are delivered, e.g., by an AAV vector. In an embodiment, the sequence encoding the Cas9 molecule and the sequence(s) encoding the two or more (e.g., 2, 3, 4, or more) different gRNA molecules are present on the same nucleic acid molecule, e.g., an AAV vector. When a Cas9 or gRNA component is encoded as DNA for delivery, the DNA will typically but not necessarily include a control region, e.g., comprising a promoter, to effect expression. Useful promoters for Cas9 molecule sequences include CMV, EFS, EF-1a, MSCV, PGK, CAG control promoters. In an embodiment, the promoter is a constitutive promoter. In another embodiment, the promoter is a tissue specific promoter. Useful promoters for gRNAs include H1, 7SK, tRNA, and U6 promoters. Promoters with similar or dissimilar strengths can be selected to tune the expression of components. Sequences encoding a Cas9 molecule can comprise a nuclear localization signal (NLS), e.g., an SV40 NLS. In an embodiment, the sequence encoding a Cas9 molecule comprises at least two nuclear localization signals. In an embodiment a promoter for a Cas9 molecule or a gRNA molecule can be, independently, inducible, tissue specific, or cell specific.


Table 14 provides examples of how the components can be formulated, delivered, or administered.









TABLE 14







Elements









Cas9
gRNA



Mole-
mole-


cule(s)
cule(s)
Comments





DNA
DNA
In this embodiment, a Cas9 molecule, typically




an eaCas9 molecule, and a gRNA are transcribed




from DNA. In this embodiment, they are




encoded on separate molecules.








DNA
In this embodiment, a Cas9 molecule, typically



an eaCas9 molecule, and a gRNA are transcribed



from DNA, here from a single molecule.









DNA
RNA
In this embodiment, a Cas9 molecule, typically




an eaCas9 molecule, is transcribed from




DNA, and a gRNA is provided as in vitro




transcribed or synthesized RNA


mRNA
RNA
In this embodiment, a Cas9 molecule, typically




an eaCas9 molecule, is translated from in vitro




transcribed mRNA, and a gRNA is provided as




in vitro transcribed or synthesized RNA.


mRNA
DNA
In this embodiment, a Cas9 molecule, typically




an eaCas9 molecule, is translated from in vitro




transcribed mRNA, and a gRNA is transcribed




from DNA.


Protein
DNA
In this embodiment, a Cas9 molecule, typically




an eaCas9 molecule, is provided as a protein,




and a gRNA is transcribed from DNA.


Protein
RNA
In this embodiment, an eaCas9 molecule is




provided as a protein, and a gRNA is provided




as transcribed or synthesized RNA.









Table 15 summarizes various delivery methods for the components of a Cas system, e.g., the Cas9 molecule component and the gRNA molecule component, as described herein.













TABLE 15






Delivery






into Non-
Duration

Type of



Dividing
of
Genome
Molecule


Delivery Vector/Mode
Cells
Expression
Integration
Delivered







Physical (e.g.,
YES
Transient
NO
Nucleic


electroporation, particle gun,



Acids and


Calcium Phosphate



Proteins


transfection, cell compression


or squeezing)












Viral
Retrovirus
NO
Stable
YES
RNA



Lentivirus
YES
Stable
YES/NO with
RNA






modifications



Adenovirus
YES
Transient
NO
DNA



Adeno-
YES
Stable
NO
DNA



Associated



Virus (AAV)



Vaccinia Virus
YES
Very
NO
DNA





Transient



Herpes Simplex
YES
Stable
NO
DNA



Virus


Non-Viral
Cationic
YES
Transient
Depends on
Nucleic



Liposomes


what is
Acids and






delivered
Proteins



Polymeric
YES
Transient
Depends on
Nucleic



Nanoparticles


what is
Acids and






delivered
Proteins


Biological
Attenuated
YES
Transient
NO
Nucleic


Non-Viral
Bacteria



Acids


Delivery
Engineered
YES
Transient
NO
Nucleic


Vehicles
Bacteriophages



Acids



Mammalian
YES
Transient
NO
Nucleic



Virus-like



Acids



Particles



Biological
YES
Transient
NO
Nucleic



liposomes:



Acids



Erythrocyte



Ghosts and



Exosomes










DNA-Based Delivery of a Cas9 Molecule and or One or More gRNA Molecule


Nucleic acids encoding Cas9 molecules (e.g., eaCas9 molecules) and/or gRNA molecules, can be administered to subjects or delivered into cells by art-known methods or as described herein. For example, Cas9-encoding and/or gRNA-encoding DNA can be delivered, e.g., by vectors (e.g., viral or non-viral vectors), non-vector based methods (e.g., using naked DNA or DNA complexes), or a combination thereof.


DNA encoding Cas9 molecules (e.g., eaCas9 molecules) and/or gRNA molecules can be conjugated to molecules (e.g., N-acetylgalactosamine) promoting uptake by the target cells (e.g., the target cells described herein).


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a vector (e.g., viral vector/virus or plasmid).


A vector can comprise a sequence that encodes a Cas9 molecule and/or a gRNA molecule. A vector can also comprise a sequence encoding a signal peptide (e.g., for nuclear localization, nucleolar localization, mitochondrial localization), fused, e.g., to a Cas9 molecule sequence. For example, ae vector can comprise a nuclear localization sequence (e.g., from SV40) fused to the sequence encoding the Cas9 molecule.


One or more regulatory/control elements, e.g., a promoter, an enhancer, an intron, a polyadenylation signal, a Kozak consensus sequence, internal ribosome entry sites (IRES), a 2A sequence, and splice acceptor or donor can be included in the vectors. In some embodiments, the promoter is recognized by RNA polymerase II (e.g., a CMV promoter). In other embodiments, the promoter is recognized by RNA polymerase III (e.g., a U6 promoter). In some embodiments, the promoter is a regulated promoter (e.g., inducible promoter). In other embodiments, the promoter is a constitutive promoter. In some embodiments, the promoter is a tissue specific promoter. In some embodiments, the promoter is a viral promoter. In other embodiments, the promoter is a non-viral promoter.


In some embodiments, the vector or delivery vehicle is a viral vector (e.g., for generation of recombinant viruses). In some embodiments, the virus is a DNA virus (e.g., dsDNA or ssDNA virus). In other embodiments, the virus is an RNA virus (e.g., an ssRNA virus). Exemplary viral vectors/viruses include, e.g., retroviruses, lentiviruses, adenovirus, adeno-associated virus (AAV), vaccinia viruses, poxviruses, and herpes simplex viruses.


In some embodiments, the virus infects dividing cells. In other embodiments, the virus infects non-dividing cells. In some embodiments, the virus infects both dividing and non-dividing cells. In some embodiments, the virus can integrate into the host genome. In some embodiments, the virus is engineered to have reduced immunity, e.g., in human. In some embodiments, the virus is replication-competent. In other embodiments, the virus is replication-defective, e.g., having one or more coding regions for the genes necessary for additional rounds of virion replication and/or packaging replaced with other genes or deleted. In some embodiments, the virus causes transient expression of the Cas9 molecule and/or the gRNA molecule. In other embodiments, the virus causes long-lasting, e.g., at least 1 week, 2 weeks, 1 month, 2 months, 3 months, 6 months, 9 months, 1 year, 2 years, or permanent expression, of the Cas9 molecule and/or the gRNA molecule. The packaging capacity of the viruses may vary, e.g., from at least about 4 kb to at least about 30 kb, e.g., at least about 5 kb, 10 kb, 15 kb, 20 kb, 25 kb, 30 kb, 35 kb, 40 kb, 45 kb, or 50 kb.


In an embodiment, the viral vector recognizes a specific cell type or tissue. For example, the viral vector can be pseudotyped with a different/alternative viral envelope glycoprotein; engineered with a cell type-specific receptor (e.g., genetic modification(s) of one or more viral envelope glycoproteins to incorporate a targeting ligand such as a peptide ligand, a single chain antibody, or a growth factor); and/or engineered to have a molecular bridge with dual specificities with one end recognizing a viral glycoprotein and the other end recognizing a moiety of the target cell surface (e.g., a ligand-receptor, monoclonal antibody, avidin-biotin and chemical conjugation).


Exemplary viral vectors/viruses include, e.g., retroviruses, lentiviruses, adenovirus, adeno-associated virus (AAV), vaccinia viruses, poxviruses, and herpes simplex viruses.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a recombinant retrovirus. In some embodiments, the retrovirus (e.g., Moloney murine leukemia virus) comprises a reverse transcriptase, e.g., that allows integration into the host genome. In some embodiments, the retrovirus is replication-competent. In other embodiments, the retrovirus is replication-defective, e.g., having one of more coding regions for the genes necessary for additional rounds of virion replication and packaging replaced with other genes, or deleted.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a recombinant lentivirus. For example, the lentivirus is replication-defective, e.g., does not comprise one or more genes required for viral replication.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a recombinant adenovirus. In some embodiments, the adenovirus is engineered to have reduced immunity in human.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a recombinant AAV. In some embodiments, the AAV does not incorporate its genome into that of a host cell, e.g., a target cell as describe herein. In some embodiments, the AAV can incorporate at least part of its genome into that of a host cell, e.g., a target cell as described herein. In some embodiments, the AAV is a self-complementary adeno-associated virus (scAAV), e.g., a scAAV that packages both strands which anneal together to form double stranded DNA. AAV serotypes that may be used in the disclosed methods, include AAV1, AAV2, modified AAV2 (e.g., modifications at Y444F, Y500F, Y730F and/or S662V), AAV3, modified AAV3 (e.g., modifications at Y705F, Y731F and/or T492V), AAV4, AAV5, AAV6, modified AAV6 (e.g., modifications at S663V and/or T492V), AAV8, AAV 8.2, AAV9, AAV rh 10, and pseudotyped AAV, such as AAV2/8, AAV2/5 and AAV2/6 can also be used in the disclosed methods. In an embodiment, an AAV capsid that can be used in the methods described herein is a capsid sequence from serotype AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV.rh8, AAV.rh10, AAV.rh32/33, AAV.rh43, AAV.rh64R1, or AAV7m8.


In an embodiment, the Cas9- and/or gRNA-encoding DNA is delivered in a re-engineered AAV capsid, e.g., with 50% or greater, e.g., 60% or greater, 70% or greater, 80% or greater, 90% or greater, or 95% or greater, sequence homology with a capsid sequence from serotypes AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV.rh8, AAV.rh10, AAV.rh32/33, AAV.rh43, or AAV.rh64R1.


In an embodiment, the Cas9- and/or gRNA-encoding DNA is delivered by a chimeric AAV capsid. Exemplary chimeric AAV capsids include, but are not limited to, AAV9i1, AAV2i8, AAV-DJ, AAV2G9, AAV2i8G9, or AAV8G9.


In an embodiment, the AAV is a self-complementary adeno-associated virus (scAAV), e.g., a scAAV that packages both strands which anneal together to form double stranded DNA.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a hybrid virus, e.g., a hybrid of one or more of the viruses described herein. In an embodiment, the hybrid virus is hybrid of an AAV (e.g., of any AAV serotype), with a Bocavirus, B19 virus, porcine AAV, goose AAV, feline AAV, canine AAV, or MVM.


A Packaging cell is used to form a virus particle that is capable of infecting a target cell. Such a cell includes a 293 cell, which can package adenovirus, and a ψ2 cell or a PA317 cell, which can package retrovirus. A viral vector used in gene therapy is usually generated by a producer cell line that packages a nucleic acid vector into a viral particle. The vector typically contains the minimal viral sequences required for packaging and subsequent integration into a host or target cell (if applicable), with other viral sequences being replaced by an expression cassette encoding the protein to be expressed, eg. Cas9. For example, an AAV vector used in gene therapy typically only possesses inverted terminal repeat (ITR) sequences from the AAV genome which are required for packaging and gene expression in the host or target cell. The missing viral functions can be supplied in trans by the packaging cell line and/or plasmid containing E2A, E4, and VA genes from adenovirus, and plasmid encoding Rep and Cap genes from AAV, as described in “Triple Transfection Protocol.” Henceforth, the viral DNA is packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely rep and cap, but lacking ITR sequences. In embodiment, the viral DNA is packaged in a producer cell line, which contains E1A and/or E1B genes from adenovirus. The cell line is also infected with adenovirus as a helper. The helper virus (e.g., adenovirus or HSV) or helper plasmid promotes replication of the AAV vector and expression of AAV genes from the helper plasmid with ITRs. The helper plasmid is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV.


In an embodiment, the viral vector has the ability of cell type and/or tissue type recognition. For example, the viral vector can be pseudotyped with a different/alternative viral envelope glycoprotein; engineered with a cell type-specific receptor (e.g., genetic modification of the viral envelope glycoproteins to incorporate targeting ligands such as a peptide ligand, a single chain antibody, a growth factor); and/or engineered to have a molecular bridge with dual specificities with one end recognizing a viral glycoprotein and the other end recognizing a moiety of the target cell surface (e.g., ligand-receptor, monoclonal antibody, avidin-biotin and chemical conjugation).


In an embodiment, the viral vector achieves cell type specific expression. For example, a tissue-specific promoter can be constructed to restrict expression of the transgene (Cas 9 and gRNA) in only the target cell. The specificity of the vector can also be mediated by microRNA-dependent control of transgene expression. In an embodiment, the viral vector has increased efficiency of fusion of the viral vector and a target cell membrane. For example, a fusion protein such as fusion-competent hemagglutin (HA) can be incorporated to increase viral uptake into cells. In an embodiment, the viral vector has the ability of nuclear localization. For example, a virus that requires the breakdown of the cell wall (during cell division) and therefore will not infect a non-diving cell can be altered to incorporate a nuclear localization peptide in the matrix protein of the virus thereby enabling the transduction of non-proliferating cells.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a non-vector based method (e.g., using naked DNA or DNA complexes). For example, the DNA can be delivered, e.g., by organically modified silica or silicate (Ormosil), electroporation, transient cell compression or squeezing (e.g., as described in Lee, et al, 2012, Nano Lett 12: 6322-27), gene gun, sonoporation, magnetofection, lipid-mediated transfection, dendrimers, inorganic nanoparticles, calcium phosphates, or a combination thereof.


In an embodiment, delivery via electroporation comprises mixing the cells with the Cas9- and/or gRNA-encoding DNA in a cartridge, chamber or cuvette and applying one or more electrical impulses of defined duration and amplitude. In an embodiment, delivery via electroporation is performed using a system in which cells are mixed with the Cas9- and/or gRNA-encoding DNA in a vessel connected to a device (e.g, a pump) which feeds the mixture into a cartridge, chamber or cuvette wherein one or more electrical impulses of defined duration and amplitude are applied, after which the cells are delivered to a second vessel.


In some embodiments, the Cas9- and/or gRNA-encoding DNA is delivered by a combination of a vector and a non-vector based method. For example, a virosome comprises a liposome combined with an inactivated virus (e.g., HIV or influenza virus), which can result in more efficient gene transfer, e.g., in a respiratory epithelial cell than either a viral or a liposomal method alone.


In an embodiment, the delivery vehicle is a non-viral vector. In an embodiment, the non-viral vector is an inorganic nanoparticle. Exemplary inorganic nanoparticles include, e.g., magnetic nanoparticles (e.g., Fe3MnO2) silica The outer surface of the nanoparticle can be conjugated with a positively charged polymer (e.g., polyethylenimine, polylysine, polyserine) which allows for attachment (e.g., conjugation or entrapment) of payload. In an embodiment, the non-viral vector is an organic nanoparticle (e.g., entrapment of the payload inside the nanoparticle). Exemplary organic nanoparticles include, e.g., SNALP liposomes that contain cationic lipids together with neutral helper lipids which are coated with polyethylene glycol (PEG) and protamine and nucleic acid complex coated with lipid coating.


Exemplary lipids for gene transfer are shown below in Table 16.









TABLE 16







Lipids Used for Gene Transfer









Lipid
Abbreviation
Feature





1,2-Dioleoyl-sn-glycero-3-phosphatidylcholine
DOPC
Helper


1,2-Dioleoyl-sn-glycero-3-phosphatidylethanolamine
DOPE
Helper


Cholesterol

Helper


N-[1-(2,3-Dioleyloxy)prophyl]N,N,N-trimethylammonium chloride
DOTMA
Cationic


1,2-Dioleoyloxy-3-trimethylammonium-propane
DOTAP
Cationic


Dioctadecylamidoglycylspermine
DOGS
Cationic


N-(3-Aminopropyl)-N,N-dimethyl-2,3-bis(dodecyloxy)-1-
GAP-DLRIE
Cationic


propanaminium bromide


Cetyltrimethylammonium bromide
CTAB
Cationic


6-Lauroxyhexyl ornithinate
LHON
Cationic


1-(2,3-Dioleoyloxypropyl)-2,4,6-trimethylpyridinium
2Oc
Cationic


2,3-Dioleyloxy-N-[2(sperminecarboxamido-ethyl]-N,N-dimethyl-1-
DOSPA
Cationic


propanaminium trifluoroacetate


1,2-Dioleyl-3-trimethylammonium-propane
DOPA
Cationic


N-(2-Hydroxyethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-
MDRIE
Cationic


propanaminium bromide


Dimyristooxypropyl dimethyl hydroxyethyl ammonium bromide
DMRI
Cationic


3β-[N-(N′,N′-Dimethylaminoethane)-carbamoyl]cholesterol
DC-Chol
Cationic


Bis-guanidium-tren-cholesterol
BGTC
Cationic


1,3-Diodeoxy-2-(6-carboxy-spermyl)-propylamide
DOSPER
Cationic


Dimethyloctadecylammonium bromide
DDAB
Cationic


Dioctadecylamidoglicylspermidin
DSL
Cationic


rac-[(2,3-Dioctadecyloxypropyl)(2-hydroxyethyl)]-
CLIP-1
Cationic


dimethylammonium chloride


rac-[2(2,3-Dihexadecyloxypropyl-
CLIP-6
Cationic


oxymethyloxy)ethyl]trimethylammonium bromide


Ethyldimyristoylphosphatidylcholine
EDMPC
Cationic


1,2-Distearyloxy-N,N-dimethyl-3-aminopropane
DSDMA
Cationic


1,2-Dimyristoyl-trimethylammonium propane
DMTAP
Cationic


O,O′-Dimyristyl-N-lysyl aspartate
DMKE
Cationic


1,2-Distearoyl-sn-glycero-3-ethylphosphocholine
DSEPC
Cationic


N-Palmitoyl D-erythro-sphingosyl carbamoyl-spermine
CCS
Cationic


N-t-Butyl-N0-tetradecyl-3-tetradecylaminopropionamidine
diC14-amidine
Cationic


Octadecenolyoxy[ethyl-2-heptadecenyl-3 hydroxyethyl]
DOTIM
Cationic


imidazolinium chloride


N1-Cholesteryloxycarbonyl-3,7-diazanonane-1,9-diamine
CDAN
Cationic


2-(3-[Bis(3-amino-propyl)-amino]propylamino)-N-
RPR209120
Cationic


ditetradecylcarbamoylme-ethyl-acetamide


1,2-dilinoleyloxy-3-dimethylaminopropane
DLinDMA
Cationic


2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane
DLin-KC2-DMA
Cationic


dilinoleyl-methyl-4-dimethylaminobutyrate
DLin-MC3-DMA
Cationic









Exemplary polymers for gene transfer are shown below in Table 17.









TABLE 17







Polymers Used for Gene Transfer










Polymer
Abbreviation







Poly(ethylene)glycol
PEG



Polyethylenimine
PEI



Dithiobis(succinimidylpropionate)
DSP



Dimethyl-3,3′-dithiobispropionimidate
DTBP



Poly(ethyleneimine)biscarbamate
PEIC



Poly(L-lysine)
PLL



Histidine modified PLL



Poly(N-vinylpyrrolidone)
PVP



Poly(propylenimine)
PPI



Poly(amidoamine)
PAMAM



Poly(amido ethylenimine)
SS-PAEI



Triethylenetetramine
TETA



Poly(β-aminoester)



Poly(4-hydroxy-L-proline ester)
PHP



Poly(allylamine)



Poly(α-[4-aminobutyl]-L-glycolic acid)
PAGA



Poly(D,L-lactic-co-glycolic acid)
PLGA



Poly(N-ethyl-4-vinylpyridinium bromide)



Poly(phosphazene)s
PPZ



Poly(phosphoester)s
PPE



Poly(phosphoramidate)s
PPA



Poly(N-2-hydroxypropylmethacrylamide)
pHPMA



Poly (2-(dimethylamino)ethyl methacrylate)
pDMAEMA



Poly(2-aminoethyl propylene phosphate)
PPE-EA



Chitosan



Galactosylated chitosan



N-Dodacylated chitosan



Histone



Collagen



Dextran-spermine
D-SPM










In an embodiment, the vehicle has targeting modifications to increase target cell update of nanoparticles and liposomes, e.g., cell specific antigens, monoclonal antibodies, single chain antibodies, aptamers, polymers, sugars, and cell penetrating peptides. In an embodiment, the vehicle uses fusogenic and endosome-destabilizing peptides/polymers. In an embodiment, the vehicle undergoes acid-triggered conformational changes (e.g., to accelerate endosomal escape of the cargo). In an embodiment, a stimuli-cleavable polymer is used, e.g., for release in a cellular compartment. For example, disulfide-based cationic polymers that are cleaved in the reducing cellular environment can be used.


In an embodiment, the delivery vehicle is a biological non-viral delivery vehicle. In an embodiment, the vehicle is an attenuated bacterium (e.g., naturally or artificially engineered to be invasive but attenuated to prevent pathogenesis and expressing the transgene (e.g., Listeria monocytogenes, certain Salmonella strains, Bifidobacterium longum, and modified Escherichia coli), bacteria having nutritional and tissue-specific tropism to target specific tissues, bacteria having modified surface proteins to alter target tissue specificity). In an embodiment, the vehicle is a genetically modified bacteriophage (e.g., engineered phages having large packaging capacity, less immunogenic, containing mammalian plasmid maintenance sequences and having incorporated targeting ligands). In an embodiment, the vehicle is a mammalian virus-like particle. For example, modified viral particles can be generated (e.g., by purification of the “empty” particles followed by ex vivo assembly of the virus with the desired cargo). The vehicle can also be engineered to incorporate targeting ligands to alter target tissue specificity. In an embodiment, the vehicle is a biological liposome. For example, the biological liposome is a phospholipid-based particle derived from human cells (e.g., erythrocyte ghosts, which are red blood cells broken down into spherical structures derived from the subject (e.g., tissue targeting can be achieved by attachment of various tissue or cell-specific ligands), or secretory exosomes—subject (i.e., patient) derived membrane-bound nanovescicle (30-100 nm) of endocytic origin (e.g., can be produced from various cell types and can therefore be taken up by cells without the need of for targeting ligands).


In an embodiment, one or more nucleic acid molecules (e.g., DNA molecules) other than the components of a Cas system, e.g., the Cas9 molecule component and/or the gRNA molecule component described herein, are delivered. In an embodiment, the nucleic acid molecule is delivered at the same time as one or more of the components of the Cas system are delivered. In an embodiment, the nucleic acid molecule is delivered before or after (e.g., less than about 30 minutes, 1 hour, 2 hours, 3 hours, 6 hours, 9 hours, 12 hours, 1 day, 2 days, 3 days, 1 week, 2 weeks, or 4 weeks) one or more of the components of the Cas system are delivered. In an embodiment, the nucleic acid molecule is delivered by a different means than one or more of the components of the Cas system, e.g., the Cas9 molecule component and/or the gRNA molecule component, are delivered. The nucleic acid molecule can be delivered by any of the delivery methods described herein. For example, the nucleic acid molecule can be delivered by a viral vector, e.g., an integration-deficient lentivirus, and the Cas9 molecule component and/or the gRNA molecule component can be delivered by electroporation, e.g., such that the toxicity caused by nucleic acids (e.g., DNAs) can be reduced. In an embodiment, the nucleic acid molecule encodes a therapeutic protein, e.g., a protein described herein. In an embodiment, the nucleic acid molecule encodes an RNA molecule, e.g., an RNA molecule described herein.


Delivery of RNA Encoding a Cas9 Molecule


RNA encoding Cas9 molecules (e.g., eaCas9 molecules or eiCas9 molecules) and/or gRNA molecules, can be delivered into cells, e.g., target cells described herein, by art-known methods or as described herein. For example, Cas9-encoding and/or gRNA-encoding RNA can be delivered, e.g., by microinjection, electroporation, transient cell compression or squeezing (e.g., as described in Lee, et al., 2012, Nano Lett 12: 6322-27), lipid-mediated transfection, peptide-mediated delivery, or a combination thereof. Cas9-encoding and/or gRNA-encoding RNA can be conjugated to molecules to promote uptake by the target cells (e.g., target cells described herein).


In an embodiment, delivery via electroporation comprises mixing the cells with the RNA encoding Cas9 molecules (e.g., eaCas9 molecules, eiCas9 molecules or eiCas9 fusion proteins) and/or gRNA molecules in a cartridge, chamber or cuvette and applying one or more electrical impulses of defined duration and amplitude. In an embodiment, delivery via electroporation is performed using a system in which cells are mixed with the RNA encoding Cas9 molecules (e.g., eaCas9 molecules, eiCas9 molecules or eiCas9 fusion proteins) and/or gRNA molecules in a vessel connected to a device (e.g., a pump) which feeds the mixture into a cartridge, chamber or cuvette wherein one or more electrical impulses of defined duration and amplitude are applied, after which the cells are delivered to a second vessel.


Delivery Cas9 Molecule Protein


Cas9 molecules (e.g., eaCas9 molecules or eiCas9 molecules) can be delivered into cells by art-known methods or as described herein. For example, Cas9 protein molecules can be delivered, e.g., by microinjection, electroporation, transient cell compression or squeezing (e.g., as described in Lee, et al, 2012, Nano Lett 12: 6322-27), lipid-mediated transfection, peptide-mediated delivery, or a combination thereof. Delivery can be accompanied by DNA encoding a gRNA or by a gRNA. Cas9 protein can be conjugated to molecules promoting uptake by the target cells (e.g., target cells described herein).


In an embodiment, delivery via electroporation comprises mixing the cells with the Cas9 molecules (e.g., eaCas9 molecules, eiCas9 molecules or eiCas9 fusion proteins) with or without gRNA molecules in a cartridge, chamber or cuvette and applying one or more electrical impulses of defined duration and amplitude. In an embodiment, delivery via electroporation is performed using a system in which cells are mixed with the Cas9 molecules (e.g., eaCas9 molecules, eiCas9 molecules or eiCas9 fusion proteins) with or without gRNA molecules in a vessel connected to a device (e.g., a pump) which feeds the mixture into a cartridge, chamber or cuvette wherein one or more electrical impulses of defined duration and amplitude are applied, after which the cells are delivered to a second vessel.


Route of Administration


Systemic modes of administration include oral and parenteral routes. Parenteral routes include, by way of example, intravenous, intrarterial, intraosseous, intramuscular, intradermal, subcutaneous, intranasal and intraperitoneal routes. Components administered systemically may be modified or formulated to target the components to cells of the blood and bone marrow.


Local modes of administration include, by way of example, intra-bone marrow, intrathecal, and intra-cerebroventricular routes. In an embodiment, significantly smaller amounts of the components (compared with systemic approaches) may exert an effect when administered locally (for example, intra-bone marrow) compared to when administered systemically (for example, intravenously). Local modes of administration can reduce or eliminate the incidence of potentially toxic side effects that may occur when therapeutically effective amounts of a component are administered systemically.


In an embodiment, components described herein are delivered by intra-bone marrow injection. Injections may be made directly into the bone marrow compartment of one or more than one bone. In an embodiment, nanoparticle or viral, e.g., AAV vector, delivery is via intra-bone marrow injection.


Administration may be provided as a periodic bolus or as continuous infusion from an internal reservoir or from an external reservoir (for example, from an intravenous bag). Components may be administered locally, for example, by continuous release from a sustained release drug delivery device.


In addition, components may be formulated to permit release over a prolonged period of time. A release system can include a matrix of a biodegradable material or a material which releases the incorporated components by diffusion. The components can be homogeneously or heterogeneously distributed within the release system. A variety of release systems may be useful, however, the choice of the appropriate system will depend upon rate of release required by a particular application. Both non-degradable and degradable release systems can be used. Suitable release systems include polymers and polymeric matrices, non-polymeric matrices, or inorganic and organic excipients and diluents such as, but not limited to, calcium carbonate and sugar (for example, trehalose). Release systems may be natural or synthetic. However, synthetic release systems are preferred because generally they are more reliable, more reproducible and produce more defined release profiles. The release system material can be selected so that components having different molecular weights are released by diffusion through or degradation of the material.


Representative synthetic, biodegradable polymers include, for example: polyamides such as poly(amino acids) and poly(peptides); polyesters such as poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), and poly(caprolactone); poly(anhydrides); polyorthoesters; polycarbonates; and chemical derivatives thereof (substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), copolymers and mixtures thereof. Representative synthetic, non-degradable polymers include, for example: polyethers such as poly(ethylene oxide), poly(ethylene glycol), and poly(tetramethylene oxide); vinyl polymers-polyacrylates and polymethacrylates such as methyl, ethyl, other alkyl, hydroxyethyl methacrylate, acrylic and methacrylic acids, and others such as poly(vinyl alcohol), poly(vinyl pyrolidone), and poly(vinyl acetate); poly(urethanes); cellulose and its derivatives such as alkyl, hydroxyalkyl, ethers, esters, nitrocellulose, and various cellulose acetates; polysiloxanes; and any chemical derivatives thereof (substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), copolymers and mixtures thereof.


Poly(lactide-co-glycolide) microsphere can also be used for intraocular injection. Typically the microspheres are composed of a polymer of lactic acid and glycolic acid, which are structured to form hollow spheres. The spheres can be approximately 15-30 microns in diameter and can be loaded with components described herein.


Bi-Modal or Differential Delivery of Components


Separate delivery of the components of a Cas system, e.g., the Cas9 molecule component and the gRNA molecule component, and more particularly, delivery of the components by differing modes, can enhance performance, e.g., by improving tissue specificity and safety.


In an embodiment, the Cas9 molecule and the gRNA molecule are delivered by different modes, or as sometimes referred to herein as differential modes. Different or differential modes, as used herein, refer modes of delivery that confer different pharmacodynamic or pharmacokinetic properties on the subject component molecule, e.g., a Cas9 molecule or gRNA molecule. For example, the modes of delivery can result in different tissue distribution, different half-life, or different temporal distribution, e.g., in a selected compartment, tissue, or organ.


Some modes of delivery, e.g., delivery by a nucleic acid vector that persists in a cell, or in progeny of a cell, e.g., by autonomous replication or insertion into cellular nucleic acid, result in more persistent expression of and presence of a component. Examples include viral, e.g., adeno-associated virus or lentivirus, delivery.


By way of example, the components, e.g., a Cas9 molecule and a gRNA molecule, can be delivered by modes that differ in terms of resulting half-life or persistent of the delivered component the body, or in a particular compartment, tissue or organ. In an embodiment, a gRNA molecule can be delivered by such modes. The Cas9 molecule component can be delivered by a mode which results in less persistence or less exposure to the body or a particular compartment or tissue or organ.


More generally, in an embodiment, a first mode of delivery is used to deliver a first component and a second mode of delivery is used to deliver a second component. The first mode of delivery confers a first pharmacodynamic or pharmacokinetic property. The first pharmacodynamic property can be, e.g., distribution, persistence, or exposure, of the component, or of a nucleic acid that encodes the component, in the body, a compartment, tissue or organ. The second mode of delivery confers a second pharmacodynamic or pharmacokinetic property. The second pharmacodynamic property can be, e.g., distribution, persistence, or exposure, of the component, or of a nucleic acid that encodes the component, in the body, a compartment, tissue or organ.


In an embodiment, the first pharmacodynamic or pharmacokinetic property, e.g., distribution, persistence or exposure, is more limited than the second pharmacodynamic or pharmacokinetic property.


In an embodiment, the first mode of delivery is selected to optimize, e.g., minimize, a pharmacodynamic or pharmacokinetic property, e.g., distribution, persistence or exposure.


In an embodiment, the second mode of delivery is selected to optimize, e.g., maximize, a pharmacodynamic or pharmcokinetic property, e.g., distribution, persistence or exposure.


In an embodiment, the first mode of delivery comprises the use of a relatively persistent element, e.g., a nucleic acid, e.g., a plasmid or viral vector, e.g., an AAV or lentivirus. As such vectors are relatively persistent product transcribed from them would be relatively persistent.


In an embodiment, the second mode of delivery comprises a relatively transient element, e.g., an RNA or protein.


In an embodiment, the first component comprises gRNA, and the delivery mode is relatively persistent, e.g., the gRNA is transcribed from a plasmid or viral vector, e.g., an AAV or lentivirus. Transcription of these genes would be of little physiological consequence because the genes do not encode for a protein product, and the gRNAs are incapable of acting in isolation. The second component, a Cas9 molecule, is delivered in a transient manner, for example as mRNA or as protein, ensuring that the full Cas9 molecule/gRNA molecule complex is only present and active for a short period of time.


Furthermore, the components can be delivered in different molecular form or with different delivery vectors that complement one another to enhance safety and tissue specificity.


Use of differential delivery modes can enhance performance, safety and efficacy. E.g., the likelihood of an eventual off-target modification can be reduced. Delivery of immunogenic components, e.g., Cas9 molecules, by less persistent modes can reduce immunogenicity, as peptides from the bacterially-derived Cas enzyme are displayed on the surface of the cell by MEW molecules. A two-part delivery system can alleviate these drawbacks.


Differential delivery modes can be used to deliver components to different, but overlapping target regions. The formation active complex is minimized outside the overlap of the target regions. Thus, in an embodiment, a first component, e.g., a gRNA molecule is delivered by a first delivery mode that results in a first spatial, e.g., tissue, distribution. A second component, e.g., a Cas9 molecule is delivered by a second delivery mode that results in a second spatial, e.g., tissue, distribution. In an embodiment, the first mode comprises a first element selected from a liposome, nanoparticle, e.g., polymeric nanoparticle, and a nucleic acid, e.g., viral vector. The second mode comprises a second element selected from the group. In an embodiment, the first mode of delivery comprises a first targeting element, e.g., a cell specific receptor or an antibody, and the second mode of delivery does not include that element. In embodiment, the second mode of delivery comprises a second targeting element, e.g., a second cell specific receptor or second antibody.


When the Cas9 molecule is delivered in a virus delivery vector, a liposome, or polymeric nanoparticle, there is the potential for delivery to and therapeutic activity in multiple tissues, when it may be desirable to only target a single tissue. A two-part delivery system can resolve this challenge and enhance tissue specificity. If the gRNA molecule and the Cas9 molecule are packaged in separated delivery vehicles with distinct but overlapping tissue tropism, the fully functional complex is only be formed in the tissue that is targeted by both vectors.


Ex Vivo Delivery

In some embodiments, components described in Table 14 are introduced into cells which are then introduced into the subject, e.g., cells are removed from a subject, manipulated ex vivo and then introduced into the subject. Methods of introducing the components can include, e.g., any of the delivery methods described in Table 15.


VIII. Modified Nucleosides, Nucleotides, and Nucleic Acids

Modified nucleosides and modified nucleotides can be present in nucleic acids, e.g., particularly gRNA, but also other forms of RNA, e.g., mRNA, RNAi, or siRNA. As described herein, “nucleoside” is defined as a compound containing a five-carbon sugar molecule (a pentose or ribose) or derivative thereof, and an organic base, purine or pyrimidine, or a derivative thereof. As described herein, “nucleotide” is defined as a nucleoside further comprising a phosphate group.


Modified nucleosides and nucleotides can include one or more of:


(i) alteration, e.g., replacement, of one or both of the non-linking phosphate oxygens and/or of one or more of the linking phosphate oxygens in the phosphodiester backbone linkage;


(ii) alteration, e.g., replacement, of a constituent of the ribose sugar, e.g., of the 2′ hydroxyl on the ribose sugar;


(iii) wholesale replacement of the phosphate moiety with “dephospho” linkers;


(iv) modification or replacement of a naturally occurring nucleobase;


(v) replacement or modification of the ribose-phosphate backbone;


(vi) modification of the 3′ end or 5′ end of the oligonucleotide, e.g., removal, modification or replacement of a terminal phosphate group or conjugation of a moiety; and


(vii) modification of the sugar.


The modifications listed above can be combined to provide modified nucleosides and nucleotides that can have two, three, four, or more modifications. For example, a modified nucleoside or nucleotide can have a modified sugar and a modified nucleobase. In an embodiment, every base of a gRNA is modified, e.g., all bases have a modified phosphate group, e.g., all are phosphorothioate groups. In an embodiment, all, or substantially all, of the phosphate groups of a unimolecular or modular gRNA molecule are replaced with phosphorothioate groups.


In an embodiment, modified nucleotides, e.g., nucleotides having modifications as described herein, can be incorporated into a nucleic acid, e.g., a “modified nucleic acid.” In some embodiments, the modified nucleic acids comprise one, two, three or more modified nucleotides. In some embodiments, at least 5% (e.g., at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100%) of the positions in a modified nucleic acid are a modified nucleotides.


Unmodified nucleic acids can be prone to degradation by, e.g., cellular nucleases. For example, nucleases can hydrolyze nucleic acid phosphodiester bonds. Accordingly, in one aspect the modified nucleic acids described herein can contain one or more modified nucleosides or nucleotides, e.g., to introduce stability toward nucleases.


In some embodiments, the modified nucleosides, modified nucleotides, and modified nucleic acids described herein can exhibit a reduced innate immune response when introduced into a population of cells, both in vivo and ex vivo. The term “innate immune response” includes a cellular response to exogenous nucleic acids, including single stranded nucleic acids, generally of viral or bacterial origin, which involves the induction of cytokine expression and release, particularly the interferons, and cell death. In some embodiments, the modified nucleosides, modified nucleotides, and modified nucleic acids described herein can disrupt binding of a major groove interacting partner with the nucleic acid. In some embodiments, the modified nucleosides, modified nucleotides, and modified nucleic acids described herein can exhibit a reduced innate immune response when introduced into a population of cells, both in vivo and ex vivo, and also disrupt binding of a major groove interacting partner with the nucleic acid.


Definitions of Chemical Groups


As used herein, “alkyl” is meant to refer to a saturated hydrocarbon group which is straight-chained or branched. Example alkyl groups include methyl (Me), ethyl (Et), propyl (e.g., n-propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, t-butyl), pentyl (e.g., n-pentyl, isopentyl, neopentyl), and the like. An alkyl group can contain from 1 to about 20, from 2 to about 20, from 1 to about 12, from 1 to about 8, from 1 to about 6, from 1 to about 4, or from 1 to about 3 carbon atoms.


As used herein, “aryl” refers to monocyclic or polycyclic (e.g., having 2, 3 or 4 fused rings) aromatic hydrocarbons such as, for example, phenyl, naphthyl, anthracenyl, phenanthrenyl, indanyl, indenyl, and the like. In some embodiments, aryl groups have from 6 to about 20 carbon atoms.


As used herein, “alkenyl” refers to an aliphatic group containing at least one double bond.


As used herein, “alkynyl” refers to a straight or branched hydrocarbon chain containing 2-12 carbon atoms and characterized in having one or more triple bonds. Examples of alkynyl groups include, but are not limited to, ethynyl, propargyl, and 3-hexynyl.


As used herein, “arylalkyl” or “aralkyl” refers to an alkyl moiety in which an alkyl hydrogen atom is replaced by an aryl group. Aralkyl includes groups in which more than one hydrogen atom has been replaced by an aryl group. Examples of “arylalkyl” or “aralkyl” include benzyl, 2-phenylethyl, 3-phenylpropyl, 9-fluorenyl, benzhydryl, and trityl groups.


As used herein, “cycloalkyl” refers to a cyclic, bicyclic, tricyclic, or polycyclic non-aromatic hydrocarbon groups having 3 to 12 carbons. Examples of cycloalkyl moieties include, but are not limited to, cyclopropyl, cyclopentyl, and cyclohexyl.


As used herein, “heterocyclyl” refers to a monovalent radical of a heterocyclic ring system. Representative heterocyclyls include, without limitation, tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyl, pyrrolidonyl, piperidinyl, pyrrolinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, and morpholinyl.


As used herein, “heteroaryl” refers to a monovalent radical of a heteroaromatic ring system. Examples of heteroaryl moieties include, but are not limited to, imidazolyl, oxazolyl, thiazolyl, triazolyl, pyrrolyl, furanyl, indolyl, thiophenyl pyrazolyl, pyridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, indolizinyl, purinyl, naphthyridinyl, quinolyl, and pteridinyl.


Phosphate Backbone Modifications


The Phosphate Group


In some embodiments, the phosphate group of a modified nucleotide can be modified by replacing one or more of the oxygens with a different substituent. Further, the modified nucleotide, e.g., modified nucleotide present in a modified nucleic acid, can include the wholesale replacement of an unmodified phosphate moiety with a modified phosphate as described herein. In some embodiments, the modification of the phosphate backbone can include alterations that result in either an uncharged linker or a charged linker with unsymmetrical charge distribution.


Examples of modified phosphate groups include phosphorothioate, phosphoroselenates, borano phosphates, borano phosphate esters, hydrogen phosphonates, phosphoroamidates, alkyl or aryl phosphonates and phosphotriesters. In some embodiments, one of the non-bridging phosphate oxygen atoms in the phosphate backbone moiety can be replaced by any of the following groups: sulfur (S), selenium (Se), BR3 (wherein R can be, e.g., hydrogen, alkyl, or aryl), C (e.g., an alkyl group, an aryl group, and the like), H, NR2 (wherein R can be, e.g., hydrogen, alkyl, or aryl), or OR (wherein R can be, e.g., alkyl or aryl). The phosphorous atom in an unmodified phosphate group is achiral. However, replacement of one of the non-bridging oxygens with one of the above atoms or groups of atoms can render the phosphorous atom chiral; that is to say that a phosphorous atom in a phosphate group modified in this way is a stereogenic center. The stereogenic phosphorous atom can possess either the “R” configuration (herein Rp) or the “S” configuration (herein Sp).


Phosphorodithioates have both non-bridging oxygens replaced by sulfur. The phosphorus center in the phosphorodithioates is achiral which precludes the formation of oligoribonucleotide diastereomers. In some embodiments, modifications to one or both non-bridging oxygens can also include the replacement of the non-bridging oxygens with a group independently selected from S, Se, B, C, H, N, and OR (R can be, e.g., alkyl or aryl).


The phosphate linker can also be modified by replacement of a bridging oxygen, (i.e., the oxygen that links the phosphate to the nucleoside), with nitrogen (bridged phosphoroamidates), sulfur (bridged phosphorothioates) and carbon (bridged methylenephosphonates). The replacement can occur at either linking oxygen or at both of the linking oxygens.


Replacement of the Phosphate Group


The phosphate group can be replaced by non-phosphorus containing connectors. In some embodiments, the charge phosphate group can be replaced by a neutral moiety.


Examples of moieties which can replace the phosphate group can include, without limitation, e.g., methyl phosphonate, hydroxylamino, siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino.


Replacement of the Ribophosphate Backbone


Scaffolds that can mimic nucleic acids can also be constructed wherein the phosphate linker and ribose sugar are replaced by nuclease resistant nucleoside or nucleotide surrogates. In some embodiments, the nucleobases can be tethered by a surrogate backbone. Examples can include, without limitation, the morpholino, cyclobutyl, pyrrolidine and peptide nucleic acid (PNA) nucleoside surrogates.


Sugar Modifications


The modified nucleosides and modified nucleotides can include one or more modifications to the sugar group. For example, the 2′ hydroxyl group (OH) can be modified or replaced with a number of different “oxy” or “deoxy” substituents. In some embodiments, modifications to the 2′ hydroxyl group can enhance the stability of the nucleic acid since the hydroxyl can no longer be deprotonated to form a 2′-alkoxide ion. The 2′-alkoxide can catalyze degradation by intramolecular nucleophilic attack on the linker phosphorus atom.


Examples of “oxy”-2′ hydroxyl group modifications can include alkoxy or aryloxy (OR, wherein “R” can be, e.g., alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or a sugar); polyethyleneglycols (PEG), O(CH2CH2O)nCH2CH2OR wherein R can be, e.g., H or optionally substituted alkyl, and n can be an integer from 0 to 20 (e.g., from 0 to 4, from 0 to 8, from 0 to 10, from 0 to 16, from 1 to 4, from 1 to 8, from 1 to 10, from 1 to 16, from 1 to 20, from 2 to 4, from 2 to 8, from 2 to 10, from 2 to 16, from 2 to 20, from 4 to 8, from 4 to 10, from 4 to 16, and from 4 to 20). In some embodiments, the “oxy”-2′ hydroxyl group modification can include “locked” nucleic acids (LNA) in which the 2′ hydroxyl can be connected, e.g., by a C1-6 alkylene or C1-6 heteroalkylene bridge, to the 4′ carbon of the same ribose sugar, where exemplary bridges can include methylene, propylene, ether, or amino bridges; O-amino (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, or diheteroarylamino, ethylenediamine, or polyamino) and aminoalkoxy, O(CH2)n-amino, (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, or diheteroarylamino, ethylenediamine, or polyamino). In some embodiments, the “oxy”-2′ hydroxyl group modification can include the methoxyethyl group (MOE), (OCH2CH2OCH3, e.g., a PEG derivative).


“Deoxy” modifications can include hydrogen (i.e. deoxyribose sugars, e.g., at the overhang portions of partially ds RNA); halo (e.g., bromo, chloro, fluoro, or iodo); amino (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, diheteroarylamino, or amino acid); NH(CH2CH2NH)nCH2CH2-amino (wherein amino can be, e.g., as described herein), —NHC(O)R (wherein R can be, e.g., alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar), cyano; mercapto; alkyl-thio-alkyl; thioalkoxy; and alkyl, cycloalkyl, aryl, alkenyl and alkynyl, which may be optionally substituted with e.g., an amino as described herein.


The sugar group can also contain one or more carbons that possess the opposite stereochemical configuration than that of the corresponding carbon in ribose. Thus, a modified nucleic acid can include nucleotides containing e.g., arabinose, as the sugar. The nucleotide “monomer” can have an alpha linkage at the 1′ position on the sugar, e.g., alpha-nucleosides. The modified nucleic acids can also include “abasic” sugars, which lack a nucleobase at C-1′. These abasic sugars can also be further modified at one or more of the constituent sugar atoms. The modified nucleic acids can also include one or more sugars that are in the L form, e.g. L-nucleosides.


Generally, RNA includes the sugar group ribose, which is a 5-membered ring having an oxygen. Exemplary modified nucleosides and modified nucleotides can include, without limitation, replacement of the oxygen in ribose (e.g., with sulfur (S), selenium (Se), or alkylene, such as, e.g., methylene or ethylene); addition of a double bond (e.g., to replace ribose with cyclopentenyl or cyclohexenyl); ring contraction of ribose (e.g., to form a 4-membered ring of cyclobutane or oxetane); ring expansion of ribose (e.g., to form a 6- or 7-membered ring having an additional carbon or heteroatom, such as for example, anhydrohexitol, altritol, mannitol, cyclohexanyl, cyclohexenyl, and morpholino that also has a phosphoramidate backbone). In some embodiments, the modified nucleotides can include multicyclic forms (e.g., tricyclo; and “unlocked” forms, such as glycol nucleic acid (GNA) (e.g., R-GNA or S-GNA, where ribose is replaced by glycol units attached to phosphodiester bonds), threose nucleic acid (TNA, where ribose is replaced with α-L-threofuranosyl-(3′→2′)).


Modifications on the Nucleobase


The modified nucleosides and modified nucleotides described herein, which can be incorporated into a modified nucleic acid, can include a modified nucleobase. Examples of nucleobases include, but are not limited to, adenine (A), guanine (G), cytosine (C), and uracil (U). These nucleobases can be modified or wholly replaced to provide modified nucleosides and modified nucleotides that can be incorporated into modified nucleic acids. The nucleobase of the nucleotide can be independently selected from a purine, a pyrimidine, a purine or pyrimidine analog. In some embodiments, the nucleobase can include, for example, naturally-occurring and synthetic derivatives of a base.


Uracil


In some embodiments, the modified nucleobase is a modified uracil. Exemplary nucleobases and nucleosides having a modified uracil include without limitation pseudouridine (ψ), pyridin-4-one ribonucleoside, 5-aza-uridine, 6-aza-uridine, 2-thio-5-aza-uridine, 2-thio-uridine (s2U), 4-thio-uridine (s4U), 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uridine (ho5U), 5-aminoallyl-uridine, 5-halo-uridine (e.g., 5-iodo-uridine or 5-bromo-uridine), 3-methyl-uridine (m3U), 5-methoxy-uridine (mo5U), uridine 5-oxyacetic acid (cmo5U), uridine 5-oxyacetic acid methyl ester (mcmo5U), 5-carboxymethyl-uridine (cm5U), 1-carboxymethyl-pseudouridine, 5-carboxyhydroxymethyl-uridine (chm5U), 5-carboxyhydroxymethyl-uridine methyl ester (mchm5U), 5-methoxycarbonylmethyl-uridine (mcm5U), 5-methoxycarbonylmethyl-2-thio-uridine (mcm5s2U), 5-aminomethyl-2-thio-uridine (nm5s2U), 5-methylaminomethyl-uridine (mnm5U), 5-methylaminomethyl-2-thio-uridine (mnm5s2U), 5-methylaminomethyl-2-seleno-uridine (mnm5se2U), 5-carbamoylmethyl-uridine (ncm5U), 5-carboxymethylaminomethyl-uridine (cmnm5U), 5-carboxymethylaminomethyl-2-thio-uridine (cmnm5s2U), 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyl-uridine (τcm5U), 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine(τm5s2U), 1-taurinomethyl-4-thio-pseudouridine, 5-methyl-uridine (m5U, i.e., having the nucleobase deoxythymine), 1-methyl-pseudouridine 5-methyl-2-thio-uridine (m5s2U), 1-methyl-4-thio-pseudouridine m1s4ψ) 4-thio-1-methyl-pseudouridine, 3-methyl-pseudouridine (m3Ψ), 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouridine (D), dihydropseudouridine, 5,6-dihydrouridine, 5-methyl-dihydrouridine (m5D), 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxy-uridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, N1-methyl-pseudouridine, 3-(3-amino-3-carboxypropyl)uridine (acp3U), 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine (acp3ψ), 5-(isopentenylaminomethyl)uridine (inm5U), 5-(isopentenylaminomethyl)-2-thio-uridine (inm5s2U), α-thio-uridine, 2′-O-methyl-uridine (Um), 5,2′-O-dimethyl-uridine (m5Um), 2′-O-methyl-pseudouridine (ψm), 2-thio-2′-O-methyl-uridine (s2Um), 5-methoxycarbonylmethyl-2′-O-methyl-uridine (mcm5Um), 5-carbamoylmethyl-2′-O-methyl-uridine (ncm5Um), 5-carboxymethylaminomethyl-2′-O-methyl-uridine (cmnm5Um), 3,2′-O-dimethyl-uridine (m3Um), 5-(isopentenylaminomethyl)-2′-O-methyl-uridine (inm5Um), 1-thio-uridine, deoxythymidine, 2′-F-ara-uridine, 2′-F-uridine, 2′-OH-ara-uridine, 5-(2-carbomethoxyvinyl) uridine, 5-[3-(1-E-propenylamino)uridine, pyrazolo[3,4-d]pyrimidines, xanthine, and hypoxanthine.


Cytosine


In some embodiments, the modified nucleobase is a modified cytosine. Exemplary nucleobases and nucleosides having a modified cytosine include without limitation 5-aza-cytidine, 6-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine (m3C), N4-acetyl-cytidine (act), 5-formyl-cytidine (f5C), N4-methyl-cytidine (m4C), 5-methyl-cytidine (m5C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm5C), 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine (s2C), 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, lysidine (k2C), α-thio-cytidine, 2′-O-methyl-cytidine (Cm), 5,2′-O-dimethyl-cytidine (m5Cm), N4-acetyl-2′-O-methyl-cytidine (ac4Cm), N4,2′-O-dimethyl-cytidine (m4Cm), 5-formyl-2′-O-methyl-cytidine (f5Cm), N4,N4,2′-O-trimethyl-cytidine (m42Cm), 1-thio-cytidine, 2′-F-ara-cytidine, 2′-F-cytidine, and 2′-OH-ara-cytidine.


Adenine


In some embodiments, the modified nucleobase is a modified adenine. Exemplary nucleobases and nucleosides having a modified adenine include without limitation 2-amino-purine, 2,6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6-chloro-purine), 6-halo-purine (e.g., 6-chloro-purine), 2-amino-6-methyl-purine, 8-azido-adenosine, 7-deaza-adenosine, 7-deaza-8-aza-adenosine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyl-adenosine (m1A), 2-methyl-adenosine (m2A), N6-methyl-adenosine (m6A), 2-methylthio-N6-methyl-adenosine (ms2 m6A), N6-isopentenyl-adenosine (i6A), 2-methylthio-N6-isopentenyl-adenosine (ms2i6A), N6-(cis-hydroxyisopentanyl)adenosine (io6A), 2-methylthio-N6-(cis-hydroxyisopentanyl)adenosine (ms2io6A), N6-glycinylcarbamoyl-adenosine (g6A), N6-threonylcarbamoyl-adenosine (t6A), (t6A), N6-methyl-N6-threonylcarbamoyl-adenosine 2-methylthio-N6-threonylcarbamoyl-adenosine (ms2g6A), N6,N6-dimethyl-adenosine (m62A), N6-hydroxynorvalylcarbamoyl-adenosine (hn6A), 2-methylthio-N6-hydroxynorvalylcarbamoyl-adenosine (ms2hn6A), N6-acetyl-adenosine (ac6A), 7-methyl-adenosine, 2-methylthio-adenosine, 2-methoxy-adenosine, α-thio-adenosine, 2′-O-methyl-adenosine (Am), N6,2′-O-dimethyl-adenosine (m6Am), N6-Methyl-2′-deoxyadenosine, N6,N6,2′-O-trimethyl-adenosine (m62Am), 1,2′-O-dimethyl-adenosine (m1Am), 2′-O-ribosyladenosine (phosphate) (Ar(p)), 2-amino-N6-methyl-purine, 1-thio-adenosine, 8-azido-adenosine, 2′-F-ara-adenosine, 2′-F-adenosine, 2′-OH-ara-adenosine, and N6-(19-amino-pentaoxanonadecyl)-adenosine.


Guanine


In some embodiments, the modified nucleobase is a modified guanine. Exemplary nucleobases and nucleosides having a modified guanine include without limitation inosine (I), 1-methyl-inosine (m1I), wyosine (imG), methylwyosine (mimG), 4-demethyl-wyosine (imG-14), isowyosine (imG2), wybutosine (yW), peroxywybutosine (o2yW), hydroxywybutosine (OHyW), undermodified hydroxywybutosine (OHyW*), 7-deaza-guanosine, queuosine (Q), epoxyqueuosine (oQ), galactosyl-queuosine (galQ), mannosyl-queuosine (manQ), 7-cyano-7-deaza-guanosine (preQ0), 7-aminomethyl-7-deaza-guanosine (preQ1), archaeosine (G+), 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine (m7G), 6-thio-7-methyl-guanosine, 7-methyl-inosine, 6-methoxy-guanosine, 1-methyl-guanosine (m′G), N2-methyl-guanosine (m2G), N2,N2-dimethyl-guanosine (m22G), N2,7-dimethyl-guanosine (m2,7G), N2, N2,7-dimethyl-guanosine (m2,2,7G), 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, N2,N2-dimethyl-6-thio-guanosine, α-thio-guanosine, 2′-O-methyl-guanosine (Gm), N2-methyl-2′-O-methyl-guanosine (m2Gm), N2,N2-dimethyl-2′-O-methyl-guanosine (m22Gm), 1-methyl-2′-O-methyl-guanosine (m′Gm), N2,7-dimethyl-2′-O-methyl-guanosine (m2,7Gm), 2′-O-methyl-inosine (Im), 1,2′-O-dimethyl-inosine (m′Im), O6-phenyl-2′-deoxyinosine, 2′-O-ribosylguanosine (phosphate) (Gr(p)), 1-thio-guanosine, O6-methyl-guanosine, O6-Methyl-2′-deoxyguanosine, 2′-F-ara-guanosine, and 2′-F-guanosine.


Exemplary Modified gRNAs


In some embodiments, the modified nucleic acids can be modified gRNAs. It is to be understood that any of the gRNAs described herein can be modified in accordance with this section, including any gRNA that comprises a targeting domain from Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, or 18.


As discussed above, transiently expressed or delivered nucleic acids can be prone to degradation by, e.g., cellular nucleases. Accordingly, in one aspect the modified gRNAs described herein can contain one or more modified nucleosides or nucleotides which introduce stability toward nucleases. While not wishing to be bound by theory it is also believed that certain modified gRNAs described herein can exhibit a reduced innate immune response when introduced into a population of cells, particularly the cells of the present invention. As noted above, the term “innate immune response” includes a cellular response to exogenous nucleic acids, including single stranded nucleic acids, generally of viral or bacterial origin, which involves the induction of cytokine expression and release, particularly the interferons, and cell death.


While some of the exemplary modification discussed in this section may be included at any position within the gRNA sequence, in some embodiments, a gRNA comprises a modification at or near its 5′ end (e.g., within 1-10, 1-5, or 1-2 nucleotides of its 5′ end). In some embodiments, a gRNA comprises a modification at or near its 3′ end (e.g., within 1-10, 1-5, or 1-2 nucleotides of its 3′ end). In some embodiments, a gRNA comprises both a modification at or near its 5′ end and a modification at or near its 3′ end.


In an embodiment, the 5′ end of a gRNA is modified by the inclusion of a eukaryotic mRNA cap structure or cap analog (e.g., a G(5)ppp(5)G cap analog, a m7G(5)ppp(5)G cap analog, or a 3′-O-Me-m7G(5)ppp(5)G anti reverse cap analog (ARCA)). The cap or cap analog can be included during either chemical synthesis or in vitro transcription of the gRNA.


In an embodiment, an in vitro transcribed gRNA is modified by treatment with a phosphatase (e.g., calf intestinal alkaline phosphatase) to remove the 5′ triphosphate group.


In an embodiment, the 3′ end of a gRNA is modified by the addition of one or more (e.g., 25-200) adenine (A) residues. The polyA tract can be contained in the nucleic acid (e.g., plasmid, PCR product, viral genome) encoding the gRNA, or can be added to the gRNA during chemical synthesis, or following in vitro transcription using a polyadenosine polymerase (e.g., E. coli Poly(A)Polymerase).


In an embodiment, in vitro transcribed gRNA contains both a 5′ cap structure or cap analog and a 3′ polyA tract. In an embodiment, an in vitro transcribed gRNA is modified by treatment with a phosphatase (e.g., calf intestinal alkaline phosphatase) to remove the 5′ triphosphate group and comprises a 3′ polyA tract.


In some embodiments, gRNAs can be modified at a 3′ terminal U ribose. For example, the two terminal hydroxyl groups of the U ribose can be oxidized to aldehyde groups and a concomitant opening of the ribose ring to afford a modified nucleoside as shown below:




embedded image


wherein “U” can be an unmodified or modified uridine.


In another embodiment, the 3′ terminal U can be modified with a 2′3′ cyclic phosphate as shown below:




embedded image


wherein “U” can be an unmodified or modified uridine.


In some embodiments, the gRNA molecules may contain 3′ nucleotides which can be stabilized against degradation, e.g., by incorporating one or more of the modified nucleotides described herein. In this embodiment, e.g., uridines can be replaced with modified uridines, e.g., 5-(2-amino)propyl uridine, and 5-bromo uridine, or with any of the modified uridines described herein; adenosines and guanosines can be replaced with modified adenosines and guanosines, e.g., with modifications at the 8-position, e.g., 8-bromo guanosine, or with any of the modified adenosines or guanosines described herein.


In some embodiments, sugar-modified ribonucleotides can be incorporated into the gRNA, e.g., wherein the 2′ OH-group is replaced by a group selected from H, —OR, —R (wherein R can be, e.g., alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar), halo, —SH, —SR (wherein R can be, e.g., alkyl, cycloalkyl, aryl, aralkyl, heteroaryl or sugar), amino (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, diheteroarylamino, or amino acid); or cyano (—CN). In some embodiments, the phosphate backbone can be modified as described herein, e.g., with a phosphothioate group. In some embodiments, one or more of the nucleotides of the gRNA can each independently be a modified or unmodified nucleotide including, but not limited to 2′-sugar modified, such as, 2′-O-methyl, 2′-O-methoxyethyl, or 2′-Fluoro modified including, e.g., 2′-F or 2′-O-methyl, adenosine (A), 2′-F or 2′-O-methyl, cytidine (C), 2′-F or 2′-O-methyl, uridine (U), 2′-F or 2′-O-methyl, thymidine (T), 2′-F or 2′-O-methyl, guanosine (G), 2′-O-methoxyethyl-5-methyluridine (Teo), 2′-O-methoxyethyladenosine (Aeo), 2′-O-methoxyethyl-5-methylcytidine (m5Ceo), and any combinations thereof.


In some embodiments, a gRNA can include “locked” nucleic acids (LNA) in which the 2′ OH-group can be connected, e.g., by a C1-6 alkylene or C1-6 heteroalkylene bridge, to the 4′ carbon of the same ribose sugar, where exemplary bridges can include methylene, propylene, ether, or amino bridges; O-amino (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, or diheteroarylamino, ethylenediamine, or polyamino) and aminoalkoxy or O(CH2)n-amino (wherein amino can be, e.g., NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diarylamino, heteroarylamino, or diheteroarylamino, ethylenediamine, or polyamino).


In some embodiments, a gRNA can include a modified nucleotide which is multicyclic (e.g., tricyclo; and “unlocked” forms, such as glycol nucleic acid (GNA) (e.g., R-GNA or S-GNA, where ribose is replaced by glycol units attached to phosphodiester bonds), or threose nucleic acid (TNA, where ribose is replaced with α-L-threofuranosyl-(3′→2′)).


Generally, gRNA molecules include the sugar group ribose, which is a 5-membered ring having an oxygen. Exemplary modified gRNAs can include, without limitation, replacement of the oxygen in ribose (e.g., with sulfur (S), selenium (Se), or alkylene, such as, e.g., methylene or ethylene); addition of a double bond (e.g., to replace ribose with cyclopentenyl or cyclohexenyl); ring contraction of ribose (e.g., to form a 4-membered ring of cyclobutane or oxetane); ring expansion of ribose (e.g., to form a 6- or 7-membered ring having an additional carbon or heteroatom, such as for example, anhydrohexitol, altritol, mannitol, cyclohexanyl, cyclohexenyl, and morpholino that also has a phosphoramidate backbone). Although the majority of sugar analog alterations are localized to the 2′ position, other sites are amenable to modification, including the 4′ position. In an embodiment, a gRNA comprises a 4′-S, 4′-Se or a 4′-C-aminomethyl-2′-O-Me modification.


In some embodiments, deaza nucleotides, e.g., 7-deaza-adenosine, can be incorporated into the gRNA. In some embodiments, 0- and N-alkylated nucleotides, e.g., N6-methyl adenosine, can be incorporated into the gRNA. In some embodiments, one or more or all of the nucleotides in a gRNA molecule are deoxynucleotides.


miRNA Binding Sites


microRNAs (or miRNAs) are naturally occurring cellular 19-25 nucleotide long noncoding RNAs. They bind to nucleic acid molecules having an appropriate miRNA binding site, e.g., in the 3′ UTR of an mRNA, and down-regulate gene expression. While not wishing to be bound by theory it is believed that the down regulation is either by reducing nucleic acid molecule stability or by inhibiting translation. An RNA species disclosed herein, e.g., an mRNA encoding Cas9 can comprise an miRNA binding site, e.g., in its 3′UTR. The miRNA binding site can be selected to promote down regulation of expression is a selected cell type. By way of example, the incorporation of a binding site for miR-122, a microRNA abundant in liver, can inhibit the expression of the gene of interest in the liver.


EXAMPLES

The following Examples are merely illustrative and are not intended to limit the scope or content of the invention in any way.


Example 1
Evaluation of Candidate Guide RNAs (gRNAs)

The suitability of candidate gRNAs can be evaluated as described in this example. Although described for a chimeric gRNA, the approach can also be used to evaluate modular gRNAs.


Cloning gRNAs into Vectors


For each gRNA, a pair of overlapping oligonucleotides is designed and obtained. Oligonucleotides are annealed and ligated into a digested vector backbone containing an upstream U6 promoter and the remaining sequence of a long chimeric gRNA. Plasmid is sequence-verified and prepped to generate sufficient amounts of transfection-quality DNA. Alternate promoters maybe used to drive in vivo transcription (e.g. H1 promoter) or for in vitro transcription (e.g., a T7 promoter).


Cloning gRNAs in Linear dsDNA Molecule (STITCHR)


For each gRNA, a single oligonucleotide is designed and obtained. The U6 promoter and the gRNA scaffold (e.g. including everything except the targeting domain, e.g., including sequences derived from the crRNA and tracrRNA, e.g., including a first complementarity domain; a linking domain; a second complementarity domain; a proximal domain; and a tail domain) are separately PCR amplified and purified as dsDNA molecules. The gRNA-specific oligonucleotide is used in a PCR reaction to stitch together the U6 and the gRNA scaffold, linked by the targeting domain specified in the oligonucleotide. Resulting dsDNA molecule (STITCHR product) is purified for transfection. Alternate promoters may be used to drive in vivo transcription (e.g., H1 promoter) or for in vitro transcription (e.g., T7 promoter). Any gRNA scaffold may be used to create gRNAs compatible with Cas9s from any bacterial species.


Initial gRNA Screen


Each gRNA to be tested is transfected, along with a plasmid expressing Cas9 and a small amount of a GFP-expressing plasmid into human cells. In preliminary experiments, these cells can be immortalized human cell lines such as 293T, K562 or U2OS. Alternatively, primary human cells may be used. In this case, cells may be relevant to the eventual therapeutic cell target (e.g., a circulating blood cell, e.g., a T cell (e.g., a CD4+ T cell, a CD8+ T cell, a helper T cell, a regulatory T cell, a cytotoxic T cell, a memory T cell, a T cell precursor or a natural killer T cell)). The use of primary cells similar to the potential therapeutic target cell population may provide important information on gene targeting rates in the context of endogenous chromatin and gene expression.


Transfection may be performed using lipid transfection (such as Lipofectamine or Fugene) or by electroporation (such as Lonza Nucleofection). Following transfection, GFP expression can be determined either by fluorescence microscopy or by flow cytometry to confirm consistent and high levels of transfection. These preliminary transfections can comprise different gRNAs and different targeting approaches (17-mers, 20-mers, nuclease, dual-nickase, etc.) to determine which gRNAs/combinations of gRNAs give the greatest activity.


Efficiency of cleavage with each gRNA may be assessed by measuring NHEJ-induced indel formation at the target locus by a T7E1-type assay or by sequencing. Alternatively, other mismatch-sensitive enzymes, such as Cell/Surveyor nuclease, may also be used.


For the T7E1 assay, PCR amplicons are approximately 500-700 bp with the intended cut site placed asymmetrically in the amplicon. Following amplification, purification and size-verification of PCR products, DNA is denatured and re-hybridized by heating to 95° C. and then slowly cooling. Hybridized PCR products are then digested with T7 Endonuclease I (or other mismatch-sensitive enzyme) which recognizes and cleaves non-perfectly matched DNA. If indels are present in the original template DNA, when the amplicons are denatured and re-annealed, this results in the hybridization of DNA strands harboring different indels and therefore lead to double-stranded DNA that is not perfectly matched. Digestion products may be visualized by gel electrophoresis or by capillary electrophoresis. The fraction of DNA that is cleaved (density of cleavage products divided by the density of cleaved and uncleaved) may be used to estimate a percent NHEJ using the following equation: % NHEJ=(1−(1−fraction cleaved)1/2). The T7E1 assay is sensitive down to about 2-5% NHEJ.


Sequencing may be used instead of, or in addition to, the T7E1 assay. For Sanger sequencing, purified PCR amplicons are cloned into a plasmid backbone, transformed, miniprepped and sequenced with a single primer. Sanger sequencing may be used for determining the exact nature of indels after determining the NHEJ rate by T7E1.


Sequencing may also be performed using next generation sequencing techniques. When using next generation sequencing, amplicons may be 300-500 bp with the intended cut site placed asymmetrically. Following PCR, next generation sequencing adapters and barcodes (for example Illumina multiplex adapters and indexes) may be added to the ends of the amplicon, e.g., for use in high throughput sequencing (for example on an Illumina MiSeq). This method allows for detection of very low NHEJ rates.


Example 2
Assessment of Gene Targeting by NHEJ

The gRNAs that induce the greatest levels of NHEJ in initial tests can be selected for further evaluation of gene targeting efficiency. In this case, cells are derived from disease subjects and, therefore, harbor the relevant mutation.


Following transfection (usually 2-3 days post-transfection) genomic DNA may be isolated from a bulk population of transfected cells and PCR may be used to amplify the target region. Following PCR, gene targeting efficiency to generate the desired mutations (either knockout of a target gene or removal of a target sequence motif) may be determined by sequencing. For Sanger sequencing, PCR amplicons may be 500-700 bp long. For next generation sequencing, PCR amplicons may be 300-500 bp long. If the goal is to knockout gene function, sequencing may be used to assess what percent of alleles have undergone NHEJ-induced indels that result in a frameshift or large deletion or insertion that would be expected to destroy gene function. If the goal is to remove a specific sequence motif, sequencing may be used to assess what percent of alleles have undergone NHEJ-induced deletions that span this sequence.


Example 3
Screening of gRNAs for CCR5

In order to identify gRNAs with the highest on target NHEJ efficiency, 24 S. pyogenes gRNAs were selected for testing (Table 18). A DNA plasmid comprised of an exemplary gRNA (including the target region and appropriate TRACR sequence) under the control of a U6 promoter was generated by restriction enzyme cloning. This DNA template was subsequently transfected into 293 cells using Lipofectamine 3000 along with a DNA plasmid encoding the appropriate Cas9 downstream of a CMV promoter. Genomic DNA was isolated from the cells 48-72 hours post transfection. To determine the rate of modification at the CCR5 gene, the target region was amplified using a locus PCR with the following primers (CCR5 exon 3 5′ primer: TATCAAGTGTCAAGTCCAATCTATGACATC (SEQ ID NO: 5752); CCR5 exon 3 3′ primer: GGAAATTCTTCCAGAATTGATACTGACTG (SEQ ID NO: 5753). After PCR amplification, a T7E1 assay was performed on the PCR product. Briefly, this assay involves melting the PCR product followed by a re-annealing step. If gene modification has occurred, there will exist double stranded products that are not perfect matches due to some frequency of insertions or deletions. These double stranded products are sensitive to cleavage by a T7 endonuclease 1 enzyme at the site of mismatch. Therefore, the efficiency of cutting by the Cas9/gRNA complex can be determined by analyzing the amount of T7E1 cleavage. The formula that is used to provide a measure of % NHEJ from the T7E1 cutting is the following: 100*(1−((1−(fraction cleaved))̂0.5)). The results of this analysis are shown in FIG. 10.













TABLE 18







gRNA
Targeting Domain Sequence
SEQ ID NO




















CCR5-1
GCCUCCGCUCUACUCAC
396







CCR5-3
GCCGCCCAGUGGGACUU
397







CCR5-4
GCAUAGUGAGCCCAGAA
401







CCR5-6
GCCUUUUGCAGUUUAUC
409







CCR5-10
GACAAUCGAUAGGUACC
399







CCR5-13
GACAAGUGUGAUCACUU
404







CCR5-14
GGUACCUAUCGAUUGUC
402







CCR5-43
GCUGCCGCCCAGUGGGACUU
388







CCR5-45
GGUACCUAUCGAUUGUCAGG
394







CCR5-47
GCAGCAUAGUGAGCCCAGAA
393







CCR5-49
GUGAGUAGAGCGGAGGCAGG
395







CCR5-52
AUGUGUCAACUCUUGAC
398







CCR5-53
UUGACAGGGCUCUAUUUUAU
499







CCR5-54
ACAGGGCUCUAUUUUAU
5749







CCR5-55
UCAUCCUCCUGACAAUCGAU
477







CCR5-56
UCCUCCUGACAAUCGAU
5750







CCR5-57
CCUGACAAUCGAUAGGUACC
463







CCR5-58
GGUGACAAGUGUGAUCACUU
4469







CCR5-60
CCAGGUACCUAUCGAUUGUC
391







CCR5-61
ACCUAUCGAUUGUCAGG
5751







CCR5-62
UCAGCCUUUUGCAGUUUAUC
476







CCR5-64
CACAUUGAUUUUUUGGC
400







CCR5-65
AGUAGAGCGGAGGCAGG
442







CCR5-66
CCUGCCUCCGCUCUACUCAC
387










Example 4
Assessment of Gene Targeting in Hematopoietic Stem Cells

Transplantation of autologous CD34+ hematopoietic stem cells (HSCs) that have been genetically modified to prevent expression of the wild-type CCR5 gene product prevents entry of the HIV virus HSC progeny that are normally susceptible to HIV infection (e.g., macrophages and CD4 T-lymphocytes). Clinically, transplantation of HSCs that contain a genetic mutation in the coding sequence for the CCR5 chemokine receptor has been shown to control HIV infection long-term (Witter et. al, New England Journal of Medicine, 2009; 360(7):692-698). Genome editing with the CRISPR/Cas9 platform precisely alters endogenous gene targets by creating an indel at the targeted cut site that can lead to knock down of gene expression at the edited locus. In this Example, genome editing in human mobilized peripheral blood CD34+ HSCs after co-delivery of Cas9 with gRNA targeting the CCR5 locus was evaluated to induce gene editing in CD34+ cells.


Human CD34+ HSCs cells from mobilized peripheral blood (AllCells) were thawed into StemSpan Serum-Free Expansion Medium (SFEM™, StemCell Technologies) containing 100 ng/mL each of the following cytokines: human stem cell factor (SCF), thrombopoietin (TPO), and flt-3 ligand (FL) (all from Peprotech). Cells were grown for 3 days in a humidified incubator and 5% CO2 20% O2. On day 3, media was replaced with fresh Stemspan-SFEM™ supplemented with human SCF, TPO, FL and 40 nM of the small molecule UM171 (Xcess Bio), a human HSC self-renewal agonist which has been shown to support robust expansion of human HSCs (Fares et. al, Science, 2014; 345(6203):1509-1512). The published use of UM171 involved prolonged exposure of HSCs to the small molecule for ex vivo expansion of HSCs. In the current experiment, HSCs were exposed to UM171 for 2 hours before and 24 hours after delivery of Cas9 and gRNA plasmid DNA. This UM171 treatment protocol was based on the pilot studies that indicated acute pre-treatment with UM171 before lentivirus vector mediated gene delivery improved HSC viability compared to HSCs treated with vehicle (dimethylsulfoxide, DMSO, Sigma) alone. After the 2-hour pretreatment with UM171, 1 million CD34+ HSCs were Nucleofected™ with the Amaxa™ 4D Nucleofector™ device (Lonza), Program EO100 using components of the P3 Primary Cell 4D-Nucleofector Kit™ (Lonza) according to the manufacturer's instructions. Briefly, one million cells were suspended in Nucleofector™ solution and the following amounts of plasmid DNA were added to the cell suspension: 1250 ng plasmid expressing CCR5 gRNA (CCR5-43) from the human U6 promoter and 3750 ng plasmid expressing wild-type S. pyogenes Cas 9 transcriptionally regulated by the CMV promoter. After Nucleofection™, cells were plated into Stemspan-SFEM™ supplemented with SCF, TPO, FL and 40 nM UM171. After overnight incubation, HSCs were plated in Stemspan-SFEM™ plus cytokines without UM171. At 96 hours after Nucleofection™, CD34+ cells were counted for by trypan blue exclusion and divided into 3 portions for the following analyses: a) flow cytometry analysis for assessment of viability by co-staining with 7-Aminoactinomycin-D (7-AAD) and allophycocyanin (APC)-conjugated Annexin-V antibody (ebioscience); b) flow cytometry analysis for maintenance of HSC phenotype (after co-staining with phycoerythrin (PE)-conjugated anti-human CD34 antibody and fluorescein isothicyanate (FITC)-conjugated anti-human CD90, both from BD Bioscience; c) hematopoietic colony forming cell (CFC) analysis by plating 1500 cells in semi-solid methylcellulose based Methocult medium (StemCell Technologies) that supports differentiation of erythroid and myeloid blood cell colonies from HSCs and serves as a surrogate assay to evaluate HSC multipotency and differentiation potential ex vivo; d) genomic DNA analysis for detection of editing at the CCR5 locus. Genomic DNA was extracted from HSCs 96 hours after Nucleofection™, and CCR5 locus-specific PCR reactions were performed.


HSCs that were Nucleofected™ with Cas9 and CCR5 gRNA plasmids after pre-treatment with UM171 exhibited >93% viability (7-AAD AnnexinV) and maintained co-expression of CD34 and CD90, as determined by flow cytometry analysis (FIG. 11). In addition, the UM171-treated Nucleofected™ cells were able to divide, as there was an increase in cell number with a fold-expansion similar to the level achieved win unelectroporated HSCS (Table 19). In contrast, HSCs Nucleofected™ without UM171 pre-treatment had decreased viability and cell did not expand in culture.


Table 19 shows that UM171 preserved CD34+ HSC viability after Nucleofection™ with wild type Cas9 and CCR5-43 gRNA plasmid DNA (96 hours)












TABLE 19








Fold expansion of



Condition
CD34+ cells (96 hours)



















No Nucleofection ™
1.6



Nucleofection ™ + UM171 treatment
1.5



Nucleofection ™ + vehicle treatment
0.6










In order to detect indels at the CCR5 locus, T7E1 assays were performed on CCR5 locus-specific PCR products that were amplified from genomic DNA samples from Nucleofected™ CD34+ HSCs and then percentage of indels detected at the CCR5 locus was calculated. Twenty percent indels was detected in the genomic DNA from CD34+ HSCs Nucleofected™ with Cas9 and CCR5 gRNA plasmids after pre-treatment with UM171.


To evaluate maintenance of HSC potency and differentiation potential, two weeks after plating CD34+ HSCs in CFC assays, hematopoietic activity was quantified based on scoring the HSC progeny by enumerating the total number of hematopoietic colony forming units (CFU) and the frequencies of specific blood cell phenotypes, including: mixed myeloid/erythroid (Granulocyte-erythroid-monocyte macrophage, CFU-GEMM), myeloid (CFU-macrophage (M), granulocyte-macrophage (CFU-GM)) and erythroid (CFU-E) colonies. CD34+ HSCs that were Nucleofected™ after UM171 pre-treatment maintained CFC potential compared to un-Nucleofected™ HSCs (Table 20). In contrast, CD34+ HSCs that were Nucleofected™ without UM171 pre-treatment had reduced CFC potential (lower total CFC counts and reduced numbers of mixed-phenotype colonies (CFU-GEMM) and erythroid colonies (CFU-E)) in comparison to un-Nucleofected™ CD34+ HSCs.


Table 20 shows that UM171 preserved CD34+ HSC viability after Nucleofection™ with wild-type Cas9 and CCR5-43 gRNA plasmid DNA (two weeks).










TABLE 20








Number of colony forming units per 1500



CD34+ HSCs plated













Condition
E
G
M
GM
GEMM
Total
















No Nucleofection ™
64
3
88
5
11
171


Nucleofection ™ + UM171
92
40
64
32
20
228


Nucleofection ™ + vehicle
18
22
6
1
1
28









Delivery of co-delivery wild-type S. pyogenes Cas9 and a single CCR5 gRNA plasmid DNA supported 20% genome editing of CD34+ HSCs, without loss of cell viability, multipotency, self-renewal and differentiation potential. Pre-treatment and short-term (24-hour) co-culture with the HSC self-renewal agonist UM171 was critical for maintenance of HSC survival and proliferation after Nucleofection™ with Cas9/gRNA DNA. Clinically, transplantation of HSCs that contain a genetic mutation in the CCR5 gene generated by CRISPR/Cas9 related methods can be used to achieve long term control of HIV infection.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned herein are hereby incorporated by reference in their entirety as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.


EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.


Other embodiments are within the following claims.

Claims
  • 1. A CRISPR/Cas system, comprising: a gRNA molecule comprising a targeting domain which is complementary with a target sequence of a C-C chemokine receptor type 5 (CCR5) gene; anda Cas9 molecule.
  • 2. The system of claim 1, wherein said system is configured to forma double strand break or a single strand break within 500 bp, 450 bp, 400 bp, 350 bp, 300 bp, 250 bp, 200 bp, 150 bp, 100 bp, 50 bp, 25 bp, or 10 bp of a CCR5 target position, thereby altering said CCR5 gene.
  • 3. The system of claim 2, wherein said CCR5 target position is selected from the group consisting of CCR5 target knockout positions, CCR5 target knockdown positions, CCR5 target point positions, and CCR5 target hotspot mutations.
  • 4. The system of claim 1, wherein said Cas9 molecule is selected from the group consisting of an enzymatically active Cas9 (eaCas9) molecule, an enzymatically inactive Cas9 (eiCas9) molecule, and an eiCas9 fusion protein.
  • 5. The system of claim 4, wherein said eaCas9 molecule comprises HNH-like domain cleavage activity but has no, or no significant, N-terminal RuvC-like domain cleavage activity.
  • 6. The system of claim 4, wherein said eaCas9 molecule is an HNH-like domain nickase.
  • 7. The system of claim 4, wherein said eaCas9 molecule comprises a mutation at D10.
  • 8. The system of claim 4, wherein said eaCas9 molecule comprises N-terminal RuvC-like domain cleavage activity but has no, or no significant, HNH-like domain cleavage activity.
  • 9. The system of claim 4, wherein said eaCas9 molecule is an N-terminal RuvC-like domain nickase.
  • 10. The system of claim 4, wherein said eaCas9 molecule comprises a mutation at H840 or N863.
  • 11. The system of claim 4, wherein said eiCas9 fusion protein is an eiCas9-transcription repressor domain fusion.
  • 12. The system of claim 1, wherein said Cas9 molecule is an S. aureus Cas9 molecule, an S. pyogenes Cas9 molecule, or a N. meningitidis Cas9 molecule.
  • 13. The system of claim 2, wherein said altering said CCR5 gene comprises knocking out said CCR5 gene, or knocking down said CCR5 gene.
  • 14. The system of claim 1, wherein said targeting domain is configured to target a coding region or a non-coding region of said CCR5 gene, wherein said non-coding region comprises a promoter region, an enhancer region, an intron, the 3′ UTR, the 5′ UTR, or a polyadenylation signal region of said CCR5 gene; and said coding region comprises an exon of said CCR5 gene.
  • 15. The system of claim 1, wherein said targeting domain comprises or consists of a nucleotide sequence that is the same as, or differs by no more than 3 nucleotides from, a targeting domain sequence selected from the targeting domain sequences disclosed in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, and 18.
  • 16. The system of claim 1, wherein said gRNA is a modular gRNA molecule or a chimeric gRNA molecule.
  • 17. The system of claim 1, wherein said targeting domain has a length of 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or 26 nucleotides.
  • 18. The system of claim 1, wherein said gRNA molecule comprises from 5′ to 3′: a targeting domain;a first complementarity domain;a linking domain;a second complementarity domain;a proximal domain; anda tail domain.
  • 19. The system of claim 18, wherein said linking domain is no more than 25 nucleotides in length.
  • 20. The system of claim 18, wherein said proximal and tail domain, taken together, are at least 20, at least 25, at least 30, or at least 40 nucleotides in length.
  • 21. A cell transfected with the CRISPR/Cas system of claim 1.
  • 22. A gRNA molecule comprising a targeting domain which is complementary with a target sequence of a CCR5 gene.
  • 23. The gRNA molecule of claim 22, wherein said targeting domain comprises or consists of a nucleotide sequence that is the same as, or differs by no more than 3 nucleotides from, a targeting domain sequence selected from the targeting domain sequences disclosed in Tables 1A-1F, 2A-2C, 3A-3E, 4A-4C, 5A-5C, 6A-6E, 7A-7C, and 18.
  • 24. A composition comprising the gRNA molecule of claim 22.
  • 25. The composition of claim 24, further comprising a Cas9 molecule.
  • 26. A nucleic acid composition that comprises: (a) a first nucleotide sequence that encodes a gRNA molecule comprising a targeting domain that is complementary with a target sequence of a CCR5 gene.
  • 27. The nucleic acid composition of claim 26, further comprising: (b) a second nucleotide sequence that encodes a Cas9 molecule.
  • 28. The nucleic acid of claim 27, wherein said Cas9 molecule is selected from the group consisting of an eaCas9 molecule, an eiCas9 molecule, and an eiCas9 fusion protein.
  • 29. The nucleic acid of claim 27, wherein said Cas9 molecule is an S. aureus Cas9 molecule, an S. pyogenes Cas9 molecule, or a N. meningitidis Cas9 molecule.
  • 30. The nucleic acid composition of claim 27, wherein (a) and (b) are present on one nucleic acid molecule; or (a) is present on a first nucleic acid molecule and (b) is present on a second nucleic acid molecule.
  • 31. The nucleic acid composition of claim 30, wherein each of said nucleic acid molecule, said first nucleic acid molecule, and said second nucleic acid molecule is a DNA plasmid.
  • 32. The nucleic acid composition of claim 26, further comprising: (c) a third nucleotide sequence that encodes a second gRNA molecule comprising a targeting domain that is complementary with a second target sequence of said CCR5 gene.
  • 33. A cell transfected with the nucleic acid composition of claim 26.
  • 34. A method of altering a CCR5 gene in a cell, comprising administering to said cell: (i) a CRISPR/Cas system comprising: (a) a gRNA molecule comprising a targeting domain which is complementary with a target domain sequence of said CCR5 gene and (b) a Cas9 molecule; or(ii) a nucleic acid composition that comprises: (a) a first nucleotide sequence encoding a gRNA molecule comprising a targeting domain that is complementary with a target sequence of a CCR5 gene and (b) a second nucleotide sequence encoding a Cas9 molecule.
  • 35. The method of claim 34, wherein said alteration comprises knockout of said CCR5 gene or knockdown of said CCR5 gene.
  • 36. The method of claim 35, wherein said knockout of said CCR5 gene comprises: (a) insertion or deletion of one or more nucleotides in close proximity to or within the early coding region of said CCR5 gene, or(b) deletion of a genomic sequence comprising at least a portion of said CCR5 gene.
  • 37. The method of claim 35, wherein said alteration comprises knockdown of said CCR5 gene and said Cas9 molecule is an eiCas9 molecule or an eiCas9 fusion protein.
  • 38. The method of claim 34, wherein said alteration of said CCR5 gene results in reduction or elimination of (a) expression of said CCR5 gene, (b) CCR5 protein function, and/or (c) level of CCR5 protein.
  • 39. The method of claim 34, wherein said cell is from a subject suffering from or at risk for HIV infection or AIDS.
  • 40. The method of claim 34, wherein said cell is selected from the group consisting of a stem cell, a progenitor cell, a T cell, a B cell, and a blood cell.
  • 41. The method of claim 34, wherein said cell is a hematopoietic stem cell.
REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT International Patent Application No. PCT/US2015/022497, filed on Mar. 25, 2015, which claims the benefit of U.S. Provisional Application No. 61/970,237, filed Mar. 25, 2014, the contents of each of which are hereby incorporated by reference in their entirety herein, and to each of which priority is claimed.

Provisional Applications (1)
Number Date Country
61970237 Mar 2014 US
Continuations (1)
Number Date Country
Parent PCT/US2015/022497 Mar 2015 US
Child 15274728 US