The present invention relates to a weighing apparatus for weighing bales as they are discharged from the bale chute of an agricultural baler.
Weighing apparatuses have previously been proposed comprising a weighing table secured to a support frame by way of load beams which produce electrical output signals indicative of the weight resting on the weighing table. In U.S. patent application Ser. No. 11/941,620, a weighing apparatus is built into a bale chute of an agricultural baler to weigh bales before they are discharged.
Two or more load beams have been previously used to support the weighing table on the support frame so that the downward force is measured at each point of support. The forces measured by the different load beams were then summed to indicate the total weight acting down on the weighing table. A weighing apparatus using two load beams, arranged one on each side of the bale chute and often duplicate electronic processing circuitry is often quite costly to manufacture. A less expensive weighing apparatus using fewer components would therefore be desirable.
With a view to enabling the cost of the weighing apparatus to be reduced still further, the present invention provides a weighing apparatus for weighing bales on the bale chute of a square baler, which weighing apparatus comprises a weighing table supported on one side of a support frame by means of a single load beam, means supporting the other side of the weighing table on the support frame, means for measuring the inclination of the weighing table relative to the horizontal and circuitry for processing the output signal of the single load beam in dependence upon the sensed inclination to provide an indication of the weight supported by the weighing table.
The invention takes advantage of the fact that as a square bale travels along a bale chute, it is always centered on the weighing table. Assuming therefore that its center of gravity lies directly above the mid-point between the load beam on one side and the pivot on the other, the force measured by the load beam will be precisely one half of the weight of the bale. However, such an assumption cannot be made if the weighing table is not horizontal because the center of gravity of the bale is higher than the imaginary plane passing through the load beam on one side and the pivot axis on the other.
The invention overcomes this problem by measuring the inclination of the weighing table. As the through section of a bale produced by a square baler is fixed, there is a fixed relationship between the line of action of the weight of the bale and inclination of the weighing table and the inclination measurement thereby enables the weight measurement to be compensated for the inclination of the ground.
As the cost of an inclinometer is less than that of a load beam, the invention provides a significant cost saving.
When the bale is not centrally positioned when coming out of the baling chamber, e.g. when the machine is driving on a hillside, one may provide means, such as deflector plates, in the bale chute to center the bale, forcing the bale to be positioned in the correct weighing position.
The correction applied to the weight signal derived from the load beam may either be generated within the signal processor by a suitable algorithm or it may be derived from a look-up table stored in a memory.
In the case that the baler is driven over the swath in such a manner that the picked up material is not uniformly placed in the baling chamber, the weight distribution in the through section of the bale is not uniform and will result in a bale which is not perfectly square when coming out of the baling chamber. Weighing with one load beam will result in a wrong measurement.
This may be overcome in an embodiment of the invention by using the left-right indication signal that is used by the driver of the tractor to center the header over the swath. Such a left-right indication signal may for example be generated by analyzing the output signal of an optical sensing device, such as a laser scanner, monitoring the ground ahead of the tractor. If the left-right indicator detects that the tractor is not positioned precisely in the middle of the swath, it will warn the driver to drive more to the left or to the right, as the case may be. However, this signal can also be used as a compensation signal for the weighing measurement of the bale.
The invention will now be described further, by way of example, with reference to the accompanying drawings, in which:
When allowing pivoting movement about two axes, a single load beam 10 will need to take up the entire moment. Alternatively, the ball joint 30 can be replaced by a bearing allowing only pivoting movement about the axis normal to the plane of
As a further possibility, a metal beam having the same dimensions and properties as the load beam itself can be used to replace the ball joint 30. When using the metal beam, the same situation is created as using two load beams, however without weighing capacity in the metal beam. The measured results of the one load beam 10 then need to be compensated by software to eliminate possible errors.
On the other side of the bale chute, the weighing table is supported by the load beam 10, more clearly shown in
It is important for the bale to be placed symmetrically on the weighing table. When the bale is not centrally positioned when coming out of the baling chamber, means such as deflector plates are foreseen to center the bale to allow the bale to be positioned in the correct weighing position.
One cannot make the assumption that the weight of the bale 40 will always be shared equally between the pivot 30 and the load beam 10.
Because the cross-sectional dimensions of the bales are constant, being determined by the size of the baling chamber, there is a simple mathematical relationship between the inclination and the fraction of the weight of the bale supported by the load beam 10. As the moments about the pivot point 30 of the force exerted by the weight of the bale and the reaction force at the load beam must balance exactly, the reaction force at the load beam is a function of the angle of inclination, the size of the bale, and the distance between the load beam 10 and the pivot point 30. As the section of the bales and the width of the weighing table are known constants, the fraction of the full weight of the bale sensed by the load beam will vary with the angle of inclination only.
In the present invention, a transducer (not shown) is provided to indicate the angle of inclination of the weighing table 16 relative to the horizontal and its output is applied to an electronic circuit analyzing the output signal of the sensor 24 of the load beam 10.
From simple geometry and applied mathematics, one can set out an equation giving a correction factor to be applied to the force sensed by the load beam 10 in order to indicate the weight of the bale. The correction factor can therefore readily be computed by the electronic circuit. To increase the speed of analysis, it is alternatively possible to store correction factors in a table from which they are looked up in dependence upon the sensed inclination of the weighing table.
If the baler is driven over the swath in such a manner that the picked up material is not uniformly pushed in the baling chamber, the weight distribution in the through section of the bale is not uniform and will result in a bale having a section which is not perfectly square when coming out of the baling chamber. Weighing with one load beam will result in a wrong measurement if no compensation for this error is made.
A correction signal can be obtained by using the left-right indication that is often used to guide the driver of the tractor along the swath. If the left-right indicator detects that the tractor is not positioned precisely in the middle of the swath, it will warn the driver to drive more to the left or to the right, depending on the case. This signal can be used as a correction signal for the weighing measurement of the bale.
Number | Date | Country | Kind |
---|---|---|---|
0710942.4 | Jun 2007 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
3363707 | Murray | Jan 1968 | A |
5209313 | Brodrick et al. | May 1993 | A |
5384436 | Pritchard | Jan 1995 | A |
5742010 | Griffin | Apr 1998 | A |
5753865 | Lechtman | May 1998 | A |
5850757 | Wierenga | Dec 1998 | A |
5959257 | Campbell | Sep 1999 | A |
6066809 | Campbell et al. | May 2000 | A |
6259167 | Norton | Jul 2001 | B1 |
6378276 | Dorge et al. | Apr 2002 | B1 |
6457295 | Arnold | Oct 2002 | B1 |
7064282 | Viaud et al. | Jun 2006 | B2 |
7514640 | De Rycke et al. | Apr 2009 | B2 |
7584696 | Verhaeghe et al. | Sep 2009 | B2 |
20040089483 | Viaud et al. | May 2004 | A1 |
20070278019 | Santi et al. | Dec 2007 | A1 |
20080141870 | Verhaeghe et al. | Jun 2008 | A1 |
20080142278 | De Rycke et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
8908567 | May 1989 | DE |
0990879 | May 2000 | EP |
57189022 | Nov 1982 | JP |
Number | Date | Country | |
---|---|---|---|
20080302581 A1 | Dec 2008 | US |