This application is a continuation-in-part of and claims the benefit of application Ser. No. 12/906,991 entitled “CROSS CONNECTORS,” filed on Oct. 18, 2010, which is assigned to the assignee hereof and hereby expressly incorporated by reference herein.
1. Field
The present invention relates generally to the field of medical devices used in posterior spinal fixation surgery, and more particularly to cross connectors.
2. Description of the Related Art
Posterior spinal fixation surgery is a common procedure for patients who suffer from severe spinal conditions, such as spinal displacement, spinal instability, spinal degeneration, and/or spinal stenosis. Among other therapeutic goals, a successful posterior spinal fixation surgery may lead to the stabilization and fusion of several spinal bone segments of a patient. During a posterior spinal fixation surgery, a spine surgeon may insert several pedicle screws into one side of several spinal bone segments of the patient to establish several anchoring points. Then, the spine surgeon may engage and secure a stabilizing rod to the several anchoring points to restrict or limit the relative movement of the spinal bone segments.
Next, this procedure may be repeated on the other side of the spinal bone segments, such that two stabilizing rods may be anchored to both sides of the spinal bone segments of the patient. To further restrict or limit the relative movement of the spinal bone segments, a connector may be used to connect the two stabilizing rods, so that the two stabilizing rods may maintain a relatively constant distance from each other. When the posterior spinal fixation surgery is completed, the operated spinal bone segments may be substantially stabilized such that they may be in condition for spinal fusion.
Conventional connectors may suffer from several drawbacks. For example, some conventional connectors may be made of flat and straight arms, such that surgeons may have a difficult time in adjusting these connectors to fit the contour the of patient's spinal bone segments. Accordingly, the implantation of these conventional connectors may require the removal of the patient's spinous process from one or more spinal bone segments because they may not be adaptive to the spinal bone structure of the patient. Moreover, most conventional connectors may not be able to protect any damaged spinal bone segment of the patient because they are formed by a thin strip of alloy, which can only cover a small area. Furthermore, most conventional connectors lack pre-fixation flexibility, such that they may not be adjusted to fit patients with various spinal bone widths or asymmetrical spinal bone profile.
Thus, there are needs to provide cross connectors with improved features and qualities.
The present invention may provide various improvements over conventional connectors. For example, the present invention may provide various types of Real-X cross connectors, which may have an arch shape X-bridge that curves above the spinal bone segments of the patient. As such, the Real-X cross connectors may be more adaptive to the patient's spinal bone contour and provide better protect for the patient's spinal bone segments. For another example, the present invention may provide various types of Real-O cross connectors, which may have a protection ring that may surround the patient's spinous process. Because of its protection ring, the implantation of one of the Real-O cross connectors may eliminate the need of spinous process removal. Furthermore, as provided by the present invention, the Real-O cross connector may be combined with the Real-X cross connector to form a Real-XO cross connector, which may inherit the functional benefits of both Real-X and Real-O cross connectors.
In one embodiment, the present invention may provide a cross connector for use in conjunction with four or more pedicle screws for stabilizing and protecting one or more fixation levels of spinal bone segments. The cross connector may be configured to be anchored to the spinal bone segments by four or more pedicle screws, and it may include first and second elongated members each having first and second ends and a pivot segment positioned between the first and second ends, a fulcrum member configured to engage the pivot segment of the first elongated member and the pivot segment of the second elongated member, thereby allowing a relative movement therebetween, and a plurality of connecting devices, each configured to connect one of the first end or the second end of one of the first elongated stabilizer or the second elongated stabilizer to one of the four or more pedicle screws, such that the first and second elongated members are configured to form an X-shape bridge across the one or more fixation levels of spinal bone segments.
In another embodiment, the present invention may provide a cross connector for use in conjunction with first and second stabilizing rods for stabilizing and protecting one or more fixation levels of spinal bone segments. The first and second stabilizing rods may be configured to be anchored to left and right pedicles of the spinal bone segments. The cross connector is configured to be anchored to the spinal bone segments via the first and second stabilizing rods, and it may include first and second elongated members each having first and second ends and a pivot segment positioned between the first and second ends, a fulcrum member configured to engage the pivot segment of the first elongated member and the pivot segment of the second elongated member, thereby allowing a relative movement therebetween, a first anchoring device anchoring the first end of the first elongated member to the first stabilizing rod, a second anchoring device anchoring the second end of the first elongated member to the second stabilizing rod, a third anchoring device anchoring the first end of the second elongated member to the second stabilizing rod, and a fourth anchoring device anchoring the second end of the second elongated member to the first stabilizing rod, such that the first and second elongated members are configured to form an X-shape bridge across the one or more fixation levels of spinal bone segments.
In another embodiment, the present invention may include a cross connector for use in conjunction with first and second stabilizing rods for stabilizing and protecting one or more fixation levels of spinal bone segments. The first and second stabilizing rods may be configured to be anchored to left and right pedicles of the spinal bone segments. The cross connector may be configured to be anchored to the spinal bone segments via the first and second stabilizing rods, and it may include a first arm configured to be anchored to the first stabilizing rod, a center member having first and second ends and a pair of brackets joining the first and second ends to form a protection ring, the first end coupled to the first arm, the protection ring configured to laterally surround a spinous process of one of the spinal bone segment, and a second arm coupled to the second end of the center member and configured to be anchored to the second stabilizing rod.
In another embodiment, the present invention may provide a cross connector which may include a ring member having a circumferential surface, first and second arms, each of the first and second arms having first and second ends, the first ends of the first and second arms configured to be coupled to the circumferential surface of the ring member, such that the first and second arms form a first arched bridge for supporting the ring member, and first and second connecting devices, the first connecting device configured to be coupled to the second end of the first arm, the second connecting device configured to be coupled to the second end of the second arm.
In yet another embodiment, the present invention may provide a lockable joint for coupling a connecting device to an end of a cross connector. The lockable joint may include a housing having a top surface, a side wall, an inner socket surface, the top receiving port formed on the top surface, a side receiving port formed on the side wall, the side wall configured to be coupled to the connecting device, a bearing disposed within the housing and contacting the inner socket surface of the housing, a handle coupled to the bearing, the handle configured to extend outside the housing via the side opening, and configured to be coupled to the end of the cross connector, such that the handle has a range of multi-axle movement about the bearing, and a locking screw having a concave surface, the locking screw configured to engage the housing via the top receiving port, the concave surface configured to apply a compression force against the bearing when the locking screw is at a locking position, the compression force substantially restricting the range of multi-axle movement of the handle.
Other systems, methods, features, and advantages of the present invention will be or will become apparent to one skilled in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present invention, and be protected by the accompanying claims. Component parts shown in the drawings are not necessarily to scale, and may be exaggerated to better illustrate the important features of the present invention. In the drawings, like reference numerals designate like parts throughout the different views, wherein:
Apparatus, systems and methods that implement the embodiment of the various features of the present invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate some embodiments of the present invention and not to limit the scope of the present invention. Throughout the drawings, reference numbers are re-used to indicate correspondence between reference elements. In addition, the first digit of each reference number indicates the figure in which the element first appears.
In one embodiment of the present invention, the fulcrum member 130 may engage both the pivot segment 114 of the first elongated member 110 and the pivot segment 124 of the second elongated member 120. Consequently, as shown in
As shown in
Moreover, the RXCC 100 may be equipped with the first connecting device 131, the second connecting device 132, the third connecting device 133, and the fourth connecting device 134. More specifically, the first connecting device 131 may be coupled to the first end 112 of the first elongated member 110, the second connecting device 132 may be coupled to the first end 122 of the second elongated member 120, the third connecting device 133 may be coupled to the second end 116 of the first elongated member 110, and the fourth connecting device 134 may be coupled to the second end 126 of the second elongated member 120.
The four connecting devices 131, 132, 133, and 134 may be used for connecting the RXCC 100 to a group of pedicle screws or two stabilizing rods, both of which may be anchored to one or more spinal bone segments. As such, the RXCC 100 may substantially reduce or minimize the relative movement among the pedicle screws or among the two stabilizing rods. Advantageously, the RXCC 100 may provide extra support and stability to one or more spinal bone segments by virtue of connecting to the group of pedicle screws or the two stabilizing rods.
Referring to
After the anchoring process, the first stabilizing rod 162 may be received and secured by the anchored pedicle screws 141, 143, and 145, while the second stabilizing rod 164 may be received and secured by the anchored pedicle screws 142, 144, and 146. Accordingly, the first stabilizing rod 162 may be anchored to the spinal bone segments 151, 154, and 157 along a left pedicle line defined by the left pedicles 152, 155, and 158, and the second stabilizing rod 164 may be anchored to the spinal bone segments 151, 154, and 157 along a right pedicle line defined by the right pedicles 153, 156, and 159. Depending on the particular group of spinal bone segments being operated on, the left and right pedicle lines may be parallel to each other or they may be angularly positioned.
Next, the RXCC 100 may be placed over the spinal bone segments 151, 154, and 157. For example, as shown in
After the RXCC 100 is connected to the first and second stabilizing rods 162 and 164, the RXCC 100 may form the X-shape protection bridge over and across one or more spinal bone segments. In one configuration, the RXCC 100 may form the X-shape protection bridge for protecting the spinal bone segment 154. In another configuration, the RXCC 100 may form the X-shape protection bridge for protecting the spinal bone segment 151. In yet another configuration, the RXCC 100 may form the X-shape protection bridge for protecting the spinal bone segment 151.
Advantageously, because the first and second elongated members 110 and 120 may have the range of relative pivotal movement as shown in
According to an embodiment of the present invention,
Despite these similarities, the RXCC 200 may be different from the RXCC 100 in at least one embodiment. For example, the RXCC 200 may incorporate four anchoring devices 231, 232, 233, and 234 to perform the functions of the connecting devices 131, 132, 133, and 134 of the RXCC 100 as shown in
Generally, the anchoring device 240 may include a locking screw 241, a joint member 242, and a hook member 243. More specifically, the joint member 242 may be attached to the hook member 243 while the locking screw 241 may be a separate structure. The joint member 242 may have a first disc member 245, a second disc member 246, and a space defined therebetween. In order to properly receive one of the first ends 112 or 122 or one of the second ends 116 or 126, the space may have a height L21, which may be slightly greater than the thickness of each of the first and second ends 112, 122, 116, and 126. Moreover, in order to properly receive the locking screw 241, both the first and second discs 245 and 246 may each have an opening with a diameter slightly greater than a diameter of the locking screw 241.
Referring to
In order to limit the movement of the first end 112 in relative the anchoring device 231, the locking screw 241 may fully engage the first and second disc members 245 and 246. The locking screw 241 may cooperate with the first and second disc members 245 and 246 to assert a pair of vertical forces against the top and bottom surfaces of the first end 112. Accordingly, the friction between the joint member 242 and the first end 112 may increase substantially, and the relative movement of the first end 112 may be locked at a particular angular position in relative to the hook member 243.
The above assembling procedures may be repeated for the first end 122 of the second elongated member 120, the second end 116 of the first elongated member 110, and the second end 126 of the second elongated member 120. Accordingly, the first anchoring device 231 may be coupled to the first end 112, the second anchoring device 232 may be coupled to the first end 122, the third anchoring device 233 may be coupled to the second end 116, and the fourth anchoring device 234 may be coupled to the second end 126.
After the initial assembling process, the hook member 243 may be used to engage a segment of the stabilizing rod 260. When the anchoring device is properly positioned, the locking screw 241 may be driven further to contact the segment of the stabilizing rod 260. In one embodiment of the present invention, the locking screw 241 may assert a compression force against a top part of the stabilizing rod 260, which may redirect the compression force against a bottom section of the hook member 243. As a result, the bottom section of the hook member 243 may react to the compression force and produce a reaction force, which may be asserted against a bottom part of the stabilizing rod 260. Accordingly, the compression force may cooperate with the reaction force to secure the segment of stabilizing rod 260 within the hook member 243.
For example, to form the X-shape protection bridge above and across the spinal bone segment 154, the anchoring device 231 may engage the first stabilizing rod 162 between the pedicle screws 141 and 145, the anchoring device 234 may engage first stabilizing rod 162 between the pedicle screws 145 and 143, the anchoring device 232 may engage the second stabilizing rod 164 between the pedicle screws 142 and 146, and the anchoring device 233 may engage the second stabilizing rod 164 between the pedicle screws 146 and 144.
At this stage, the respective locking screws 241 may be free from contacting the first and second stabilizing rods 162 and 164, such that the RXCC 200 may still be free to slide along the first and second stabilizing rods 162 and 164. Advantageously, the X-shape protection bridge may be conveniently maneuvered to cover an area which may need to be protected. After the X-shape protection bridge is properly positioned, the respective locking screws 241 may be applied to secure the first and second rods 162 and 164 to the RXCC 200. Consequentially, the RXCC 200 may be anchored to the first and second rods 162 and 164 via the anchoring devices 231, 232, 233, and 235. At this stage, the RXCC 200 may remain relatively stationary with respect to the first and second stabilizing rods 162 and 164, the pedicle screws 141, 142, 143, 144, 145, and 146, and the spinal bone segments 151, 154, and 157.
As shown in
Despite these similarities, the RXCC 300 may be different from the RXCC 100 in at least one aspect. For example, the RXCC 300 may incorporate four articulated rods 331, 332, 333, and 334 to perform the functions of the connecting devices 131, 132, 133, and 134 of the RXCC 100 as shown in
Generally, the articulated rod 340 may include a locking screw 341, a joint member 342, and a rod member 343. More specifically, the joint member 342 may be attached to the rod member 343 while the locking screw 341 may be a separate structure. The joint member 342 may have a first disc member 345, a second disc member 346, and a space defined therebetween. In order to properly receive one of the first ends 112 or 122 or one of the second ends 116 or 126, the space may have a height L31 slightly greater than the thickness of each of the first and second ends 112, 122, 116, and 126. Moreover, in order to properly receive the locking screw 341, both the first and second discs 345 and 346 may each have an opening with a diameter slightly greater than a diameter of the locking screw 341.
Referring to
In order to limit the movement of the first end 112 in relative the anchoring device 331, the locking screw 341 may fully engage the first and second disc members 345 and 346. The locking screw 341 may cooperate with the first and second disc members 345 and 346 to assert a pair of vertical forces against the surfaces of the first end 112. As such, the friction between the first and second disc members 345 and 346 and the first end 312 may increase significantly, and the relative movement of the first end 112 may thus be substantially reduced or limited.
The above assembling procedures may be repeated for the first end 122 of the second elongated member 120, the second end 116 of the first elongated member 110, and the second end 126 of the second elongated member 120. Accordingly, the first articulated rod 331 may be coupled to the first end 112, the second articulated rod 332 may be coupled to the first end 122, the third articulated rod 333 may be coupled to the second end 116, and the fourth articulated rod 334 may be coupled to the second end 126.
After the initial assembling process, the rod member 343 may be received by and secured to the pedicle screw 140, which may include components as previously shown in
The rod member 343 may have similar structural and physical properties as the conventional stabilizing rods 162 and 164 as previously shown and discussed in
Moreover, the RXCC 300 may obviate the need for applying the pedicle screws 145 and 146 to the spinal bone segment 154. Furthermore, the RXCC 300 may be applied to two or more fixation levels of spinal bone segments. Accordingly, the RXCC 300 may reduce the number of implantable devices and the number of procedures for installing these implantable devices. Advantageously, using the RXCC 300 may help reduce the cost and time for performing posterior spinal surgery, thereby rendering it more affordable for the patients and more efficient for the surgeons.
In one embodiment, for example, the RXCC 300 may be adjusted to adapt to the spinal bone segments 381 with a small width L32 as shown in
Besides the configurations as shown in
The discussion now turns to arm length adjusting feature of the Real-X cross connector.
For example, the RXCC 400 may include a first elongated member (first arm) 410, a second elongated member (second arm) 420, the fulcrum member 130, and four connecting devices 131, 132, 133, and 134. The four connecting devices 131, 132, 133, and 134 may be implemented by the anchoring device 240 as shown in
For another example, the first and second elongated members 410 and 420 may have first ends 412 and 422, second ends 416 and 426, and pivot segments 414 and 424. For another example, the fulcrum member 130 may engage and pivot the pivot segments 414 and 424, such that the first and second elongated members 410 and 420 may have a relative pivotal movement about the fulcrum member 130.
For yet another example, RXCC 400 may form an X-shape protection bridge, which may have similar structural and functional features as the X-shape protection bridge formed by the RXCC 100.
Despite these similarities, the RXCC 400 may be different from the RXCC 100 in at least one aspect. For example, the RXCC 400 may incorporate four arm length adjusting devices (ALADs) 431, 432, 433, and 434 to allow the first and second elongated members 410 and 420 to extend and/or retract their respective length. According to an embodiment of the present invention, the four ALADs 431, 432, 433, and 434 may share the structural and functional features of an ALAD 440 as shown in
Generally, the ALAD 440 may include a locking screw 441, a nut member 448, a female member 442, and a male member 443. The female member 442 may be a receiving structure with a hollow core. As such, the female member 442 may include a top plate 444, a bottom plate 445 and a side wall 446. The side wall 446 may connect the top and bottom plates 444 and 445, which may define an opening and a space for receiving the male member 443. The male member 443 may have an insertion member 447 for inserting into the space of the female member 442.
In one embodiment, the female member 442 may be coupled to an end of the RXCC 400, which may be one of the first or second end 112, 122, 116, or 126, while the male member 443 may be coupled to the pivot segment 414 or 424. In another embodiment, the male member 443 may be coupled to an end of the RXCC 400, which may be one of the first or second ends 112, 122, 116, or 126, while the female member 442 may be coupled to the pivot segment 414 or 424.
Generally, the insertion member 447 may slide into or outside of the space of the female member 442 before the locking mechanism is triggered. In one embodiment, the insertion member 447 and the space may each have a length L40, which may range, for example, from 2 mm to about 20 mm. As such, the ALAD 440 may have a retracted length which may range, for example, from about 2 mm to about 20 mm, as well as an extended length which may range, for example, from about 4 mm to about 40 mm.
After the female member 442 and the male member 443 are properly adjusted to achieve a desirable arm length, the locking mechanism may be triggered. Generally, the locking mechanism may be actuated by a coupling between the locking screw 441 and the nut member 448 or by any other methods that may affix the insertion member 447 within the space of the female member 442. As shown in
After the locking screw 441 successfully penetrating the top plate 444, the insertion member 447 and the bottom plate 445, the nut member 448 may be coupled to the locking screw 441. Accordingly, a bolt of the locking screw 441 and the nut member 448 may apply a pair of compression forces against the top and bottom plates 444 and 445 respectively. The top and bottom plates 444 and 445 may then convert the pair of compression forces to a pair of frictional forces against the surfaces of the insertion member 447. As the pair of frictional forces increase, the insertion member 447 may become less free to slide along the space of the female member 442, and eventually, the insertion member 447 may be locked at a particular position.
The aforementioned adjustment procedures and ALAD configurations may be applied to each of the ALADs 431, 432, 433, and 434. Advantageously, the RXCC 400 may have a dynamic range of arm length configurations for fitting patients with various spinal bone structures.
For another example, as shown in
For yet another example, as shown in
It is understood that the X-axis and the Y-axis are relative terms and they should not be construed to represent any absolute orientation. For example, the Y-axis may be parallel to an approximate orientation of a patient's spine column. For another example, the X-axis may be parallel to the approximate orientation of the patient's spine column.
The discussion now turns to the structural and functional features of the fulcrum member 130. Generally, the fulcrum member 130 may be coupled to the pivot segments 114 and 124. As such, the fulcrum member 130 may perform as a pivot device for facilitating the pivotal movement between the first and second elongated members 110 (or 410) and 120 (or 420) as shown previously.
As shown in
As the pivot segment 124 of the second elongated member 120 descends into the receiving ports 532 and 534 of the base member 530, the pivot pin member 540 may penetrate a pivot hole 125 of the second elongated member 120, such that the pivot segment 114 of the first elongated member 110 may engage the pivot segment 124 of the second elongated member 120. When the pivot segment 124 is positioned substantially inside the cylindrical space, the cover member 520 may close the top space of the base member 530 by having the internal threaded section 522 to engage an external threaded section of the pivot pin member 540. Accordingly, the fulcrum member 500 may be formed, such that the second elongated member 120 and the first elongated member 110 may have the relative pivotal movement about the fulcrum member 500.
As shown in
Accordingly, the first joint member 610 may be coupled to the first and second ends 112 and 116 of the first elongated member, and the second joint member 620 may be coupled to the first and second ends 122 and 126 of the second elongated member. Advantageously, the alternative fulcrum member 600 may be fully integrated with the first and second elongated members 110 and 120 so that the number of assembly components, as well as the number of assembling steps, may be substantially reduced.
More specifically, the first joint member 610 may have first and second buffer regions 611 and 613 and a middle bar 612, which may connect the first and second buffer regions 611 and 613. Similarly, the second member 620 may have first and second buffer regions 621 and 623 and a middle bar 622, which may connect the first and second buffer regions 621. In order to facilitate the proper coupling between the first and second joint members 610 and 620, the pivot pin member 630 may be formed on the middle bar 612, and a pivot hole 624 may be extended through the middle bar 622. Alternatively, the pivot pin member 630 may be formed on the middle bar 622, and a pivot hole (not shown) may be defined and extended through the middle bar 612 according to another embodiment of the present invention.
The second joint member 620 may engage the first joint member 610 by allowing the pivot hole 624 to slide down the pivot pin member 630. Because both the middle bars 612 and 622 may have a combined thickness that may be less than or equal to the thickness of the first elongated member 610 or the second elongated member 620, the middle bars 612 and 622 may be free from contacting each other. Additionally, an optional spacer (not shown) may be inserted between the middle bars 612 and 622 to provide additional stability between the first and second joint members 610 and 620. After the first and second joint members 610 and 620 are properly coupled, the pivot cap 631 may be secured to the pivot pin 630 for locking the first and second joint members 610 and 620 together.
As shown in
Despite these similarities, the RXCC 700 may be different from the RXCC 400 in at least one aspect. For example, the RXCC 700 adopted two ARAs 710 and 720 as the connecting devices according to an embodiment of the present invention. From a design standpoint, the ARAs 710 and 720 may provide an integrated solution for conventional cross connectors.
Mainly, the ARAs 710 and 720 may incorporate the structural and functional features of the pair of stabilizing rods 162 and 164 as shown in
As shown in
Similar to the first ARA 710, the second ARA 720 may include first and second articulated ring members 732 and 733, first and second rod segments 723 and 726, and a rod adjustment device 724. Particularly, the first articulated ring member 732 may engage the first rod segment 723, the second articulated ring member 733 may engage the second rod segment 726, and the rod adjustment device 724 may be engaged to both the first and second rod segments 723 and 726. Moreover, the first articulated ring member 732 may be coupled to the first end 122 of the first elongated member 120, and the second articulated ring member 733 may be coupled to the second end 116 of the second elongated member 110.
According to an embodiment, the functions of the rod adjustment devices 714 and 724 may be realized by a rod adjustment assembly 740 as shown in
More particularly, the first and second insertion member 743 and 746 may have external threaded surfaces 742 and 745 respectively, and the sleeve member 744 may have an internal threaded surface 747. When the external threaded surfaces 742 and 745 engage the internal threaded surface 747, the first and second insertion members 743 and 746 may be screwed into or out of the sleeve member 744. Accordingly, the rod adjustment assembly 740 may have an adjustable length depending on the relative positions of the first and second rod segments 743 and 746 with respect to the sleeve member 744.
In one embodiment, the function of the articulated ring members 731, 732, 733, and 734 may be realized by an articulated ring assembly 750 as shown in
The ring member 753 may have a receiving port 755 for receiving a rod segment 743, which may be one of the first rod segment 713 of the first ARA 710, the second rod segment 716 of the first ARA 710, the first rod segment 723 of the second ARA 720, or the second rod segment 726 of the second ARA 720. Moreover, the ring member 753 may have one or more locking mechanism for preventing the rod segment 743 from sliding pass the receiving port 755 while allowing the rod segment 743 to have a free rotational movement about its central axis A71.
To implement the locking mechanism, the ring member 753 may include one or more protrusion ring(s) 754 disposed along the inner surface of the receiving port 755 according to an embodiment of the present invention. As shown in
The discussion now turns to a Real-O cross connector (ROCC), which may be used as an alternative device of the Real-X cross connector as discussed previously.
In one embodiment, the first and second arm 810 and 820 may be connected to the center member 803 to form an arch bridge 801 as shown in
The arch bridge 801 may define a space underneath the center member 803, and the protection ring 835 may create an opening at the center of the ROCC 800. Hence, the ROCC 800 may be place direct above a spinal bone segment and may avoid contacting the spinal bone segment's superior articular process, Mamillary process, accessory process, and inferior articular process. Furthermore, the protection ring 835 may help protect and preserve the spinous process by laterally surrounding a base of the spinous process, such that the spinous process of the spinal bone segment may protrude from the protection ring 835. Advantageously, the ROCC 800 may be placed directly across the spinal bone segment without removing the spinous process thereof, and thus, the ROCC 800 may also help prevent symptoms of pseudoarthritis.
Referring to
In order to provide a horizontal stabilization, the ROCC 800 may be anchored to the first stabilizing rod 162 by using the first anchoring device 842 and to the second stabilizing rod 164 by using the second anchoring device 844. Because of the opening defined by the protection ring 835 and the space underneath the arched bridge 801, the ROCC 800 may be conveniently placed above and across the spinal bone segment 151 without removing the spinous process 807 thereof. Advantageously, the ROCC 800 may improve the conventional spinal fixation surgery by making it safer and less intrusive to the patient's body. The above procedure may be repeated for other spinal bone segments. For example, another ROCC 800 may be placed above and across the spinal bone segment 154, such that the protection ring 835 may be placed around the base section of the spinous process 809.
Despite these similarities, the ROCC 850 may be different from the ROCC 800 in at least one aspect. For example, the center member 860 of the ROCC 850 may include a first joint member 862 for engaging the first arm 810 and a second joint member 864 for engaging the second arm 820. Generally, the first and second joint member 862 and 864 may function as two pivoting devices for the protection ring 835.
More specifically, the first and second joint member 862 and 864 may include certain joint mechanism to allow each of the first and second arms 810 and 820 to have a range of angular movement about the first and second ends 833 and 834 so that the ROCC 850 may be adjusted to adapt to various spinal bone structures. Meanwhile, the first and second joint member 862 and 864 may include certain locking mechanism to lock each of the first and second arms 810 and 820 once the ROCC 850 is properly adjusted. In one embodiment, for example, the functional features of the joint members 862 and 863 may be implemented by the joint member 242 as shown and discussed in
Referring to
In addition to the advantages of the ROCC 800, the ROCC 850 may include other advantages. For example, the joint members 862 and 864 may provide the ROCC 850 with more adjustability in terms of selecting the pair of anchoring points. As shown in
In order to adapt to the narrow spinal bone segments 151 and 154, the first and second arms 810 and 820 may be folded upward to reach a pair of higher anchored points, so as to reduce the distance between the protection ring 835 and the first and second stabilizing rods 162 and 164. This adjustment process may be repeated for adapting the ROCC 850 to spinal bone segments with a range of spinal bone widths. Advantageously, the ROCC 850 may be installed to patients with spinal bone segments of various widths.
Furthermore, the adjustability provided by the first and second joint members 862 and 864 may allow the ROCC 850 to adapt to asymmetric spinal bone segments. As shown in
The length adjustable device 914 may engage the first and second segments 912 and 916 of the first adjustable bracket 910, and the length adjustable device 914 may change the relative position between the first and second segments 912 and 916. Accordingly, the length adjustable device 914 may change the length of the first adjustable bracket 910. Similarly, the length adjustable device 924 may engage the first and second segments 922 and 926 of the first adjustable bracket 920, and the length adjustable device 924 may change the relative position between the first and second segments 922 and 926. Accordingly, the length adjustable device 924 may change the length of the first adjustable bracket 920.
The functional features of the length adjustable devices 914 and 924 may be realized by any compatible mechanical components. In one embodiment, for example, the length adjustable devices 914 and 924 may each be implemented by the arm length adjustable device 440 as described and discussed in
The discussion now turns to the various shapes of the protection rings of the Real-O cross connectors according to various embodiments of the present invention. As shown in
The discussion now turns to a Real-XO cross connector (RXOCC), which may be used as an alternative device of the Real-X cross connector (RXCC) and the Real-O cross connector (ROCC).
In one embodiment, the joint members 1121, 1122, 1123, and 1124 may secure the elongated members 1141, 1142, 1143, and 1144 to the protection ring 1110. In another embodiment, the ALADs 1145, 1146, 1147, and 1148 may be adjustable so that the elongated members 1141, 1142, 1143, and 1144 may each have an adjustable length. In yet another embodiment, the connecting devices 1161, 1162, 1163, and 1164 may connect the RXOCC to one or more spinal bone segments via several pedicle screws and/or a pair of elongated stabilizers. Although the connecting devices 1161, 1162, 1163, and 1164 are implemented by the articulated rod 1170 as shown in
Specifically, the elongated members 1141, 1142, 1143, and 1144 may be distributed along the edge of the protection ring 1110. When the joint members 1121, 1122, 1123, and 1124 are unlocked, the elongated members 1141, 1142, 1143, and 1144 may be free to be angularly displaced about the respective joint members. Alternatively, the elongated members 1141, 1142, 1143, and 1144 may be free to move along the edge of the protection ring 1110 when the respective joint members 1121, 1122, 1123, and 1124 are unlocked. When the joint members 1121, 1122, 1123, and 1124 are locked, the elongated members 1141, 1142, 1143, and 1144 may each be affixed to a particular position in relative to the protection ring 1110.
At the locking mode, the RXOCC 1100 may form a hybrid X-shaped protection bridge, which may arch over a space directly underneath the protection ring 1110 while allowing the space to extend through an opening defined by the protection ring 1110. Advantageously, the hybrid X-shaped protection bridge may inherit the benefits of the Real-X cross connector (RXCC) and the Real-O cross connector (ROCC).
As shown in
Before the locking screw 1131 substantially engages the second plate 1133, the end member 1135 may be freely rotated about the locking joint member 1130. Correspondingly, the first, second, third, and fourth elongated members 1141, 1142, 1143, and 1144 may be adjusted to different angular positions with respect to the protection ring 1110. Advantageously, the RXOCC 1100 may be adjustable to form X-shape protection bridges with various angular positions.
In order to lock the lockable joint 1130, the locking screw 1131 may be used for substantially engaging the second plate 1133. The locking screw 1131 may cooperate with the second plate 1133 to produce a pair of compression forces, which may be asserted against the end member 1135. As such, the frictional forces between the end member 1145 and the inner surfaces of the first and second plates 1132 and 1133 may be increased significantly. As a result, the end member 1135 may be locked in a particular position with respect to the lockable joint member 1130. Correspondingly, the first, second, third, and fourth elongated members 1141, 1142, 1143, and 1144 may each be locked at a particular angularly position with respect to the protection ring 1110.
More specifically, the insertion member 1153 may be slid in and out of the space before the locking screw 1151 substantially engages the second plate 1156. As such, the distance between the male and female member 1152 and 1154 may be adjusted. However, when the locking screw 1151 substantially engages the second plate 1156, the insertion member 1153 may be locked within a particular position within the space defined within the female member 1154. Accordingly, the male and female members 1152 and 1154 may be substantially stabilized and they may thus form an adjusted distance between them.
The lockable joint member 1174 may be similar to the lockable joint member 1130. As such, the lockable joint member 1174 may be used to secure an end member 1175, which may be one of the first, second, third, or fourth elongated member 1141, 1142, 1143, or 1144. Specifically, the locking joint member 1171 may include first and second plates 1172 and 1173, which may define a space for receiving the end member 1175, and a locking screw 1171 for locking the end member 1175 between the first and second plates 1172 and 1173. The rod member 1176 may share similar functionalities as a conventional stabilizing rod such that the rod member 1176 may be received and secured by a conventional pedicle screw, which may be anchored to a spinal bone segment.
Because the RXOCC 1100 may be fully adjustable before the several locking mechanisms are applied, the X-shape protection bridge 1112 may have several configurations for fitting patients with various spinal bone structures. In
Referring to
The discussion now turns to an alternative lockable joint member. Although the lockable joint member with the two-plate configuration has been discussed with respect to various embodiments of the present invention, an alternative lockable joint member with a multi-axial joint may be used for realizing several functional features of the lockable joint member. As shown in
As shown in
As shown in
As shown in
The discussion now turns to a cross connecting pedicle screw system, which may be used for stabilizing and protection one or more fixation levels of spinal bone segments. In
Generally, the RXCCPS 1300 may include a Real-X cross connector 1310 and four joint receiving (JR) pedicle screws 1320, 1330, 1340, and 1350. The JR pedicle screws 1320, 1330, 1340, and 1350 may be used for anchoring the Real-X cross connector 1310 to two or more spinal bone segments. The Real-X cross connector 1310 may stabilize the relative positions among the four JR pedicle screws 1320, 1330, 1340, and 1350. As a result, the RXCCPS system 1300 may be used for substantially stabilizing two or more spinal bone segments.
The fulcrum member 1302 may engage and pivot the first and second arched segments 1305 and 1307, such that the first and second elongated members 1304 and 1306 may form an adjustable X-shape bridge. Particularly, the first and second elongated members 1304 and 1306 may have a scissor-like movement, which may be advantageous for adapting to patients with various spinal bone widths. Moreover, the first and second elongated members 1304 and 1306 may each have an adjustable length (see
The centers of the first, second, third, and fourth spherical joints 1316, 1317, 1318, and 1319 may define a base plane S1310. The adjustable X-shaped bridge may arch over the base plane S1310, which may be occupied by two or more spinal bone segments. As such, the adjustable X-shaped bridge may extend across and protect one or more fixation levels of the spinal bone segments.
Moreover, the first spherical joint 1316 may define a first joint axis A1316, the second spherical joint 1318 may define a second joint axis A1318, the third spherical joint 1317 may define a third joint axis A1317, and the fourth spherical joint 1319 may define a fourth joint axis A1319. The first, second, third, and fourth joint axes A1316, A1318, A1317, and A1319 may be substantially perpendicular to base plane S1310, and they may represent the orientations of the respective first, second, third, and fourth spherical joints 1316, 1318, 1317, and 1319.
The four joint receiving (JR) pedicle screws may include a first JR pedicle screw 1320, a second JR pedicle screw 1330, a third JR pedicle screw 1340, and a fourth JR pedicle screw 1350. The first JR pedicle screw 1320 may have a cradle 1322 for engaging the first spherical joint 1316 and a threaded shaft 1326 for anchoring the cradle 1322 to a first spinal bone segment. The second JR pedicle screw 1330 may have a cradle 1332 for engaging the second spherical joint 1318 and a threaded shaft 1336 for anchoring the cradle 1332 to a second spinal bone segment. The third JR pedicle screw 1340 may have a cradle 1342 for engaging the third spherical joint 1317 and a threaded shaft 1346 for anchoring the cradle 1342 to the second spinal bone segment. The fourth JR pedicle screw 1350 may have a cradle 1352 for engaging the fourth spherical joint 1319 and a threaded shaft 1356 for anchoring the cradle 1352 to the first spinal bone segment.
Generally, the first, second, third, and fourth JR pedicle screws 1320, 1330, 1340, and 1350 may each have a multi-axle movement about the respective first, second, third, and fourth spherical joints 1316, 1318, 1317, and 1319. Particularly, the cradles 1322, 1332, 1342, and 1352 may rotate about the respective first, second, third, and fourth joint axes A1316, A1318, A1317, and A1319. Because the cradles 1322, 1332, 1342, and 1352 may be fully adjustable around the first, second, third, and fourth spherical joints 1316, 1318, 1317, and 1319, the RXCCPS system 1300 may be used under a wide range of pedicle insertion angles.
In
The joint axis, the cradle axis and the shaft axis may align with one another when no adjustment is made to a particular spherical joint. However, the shaft axis may deviate from the cradle axis to achieve a first multi-axle movement, and the cradle axis may deviate from the joint axis to achieve a second multi-axle movement. Accordingly, the RXCCPS 1300 may provide two levels of multi-axle movement, and it may thus improve the adjustability and flexibility of conventional pedicle screw and stabilizing rod systems.
For example, regarding the first RJ pedicle screw 1320, the shaft axis A1326 may align with the cradle axis A1322. As such, the threaded shaft 1326 may sustain a minimal first multi-axle movement. However, the cradle axis A1322 may deviate from the first joint axis A1316, such that the cradle 1322 may achieve a limited second multi-axle movement.
For another example, regarding the second RJ pedicle screw 1330, the shaft axis A1336 may deviate from the cradle axis A1332. As such, the threaded shaft 1336 may achieve a limited first multi-axle movement. However, the cradle axis A1332 may align with the second joint axis A1318, such that the cradle 1332 may sustain a minimal second multi-axle movement.
For another example, regarding the third RJ pedicle screw 1340, the shaft axis A1346 may deviate from the cradle axis A1342. As such, the threaded shaft 1346 may achieve a limited first multi-axle movement. Moreover, the cradle axis A1342 may deviate from the third joint axis A1317, such that the cradle 1342 may achieve a limited second multi-axle movement.
For yet another example, regarding the fourth RJ pedicle screw 1350, the shaft axis A1356 may align with the cradle axis A1352. As such, the threaded shaft 1356 may sustain a minimal first multi-axle movement. Moreover, the cradle axis A1352 may align with the fourth joint axis A1319, such that the cradle 1352 may sustain a minimal second multi-axle movement.
The discussion now turns to the structural and functional features of the Real-X cross connector 1310.
For example, the first pivot member 1410 may include a pivot ring 1412, and the second pivot member 1420 may include a pivot base 1426, a pivot pin 1422 attached on the pivot base 1426, and a pair of pivot alignment bumps 1424. Particularly, the pivot pin 1422 may be used for engaging and pivoting the pivot ring 1412, and the pair of pivot alignment bumps 1412 may contact and guide the pivoting movement of the pivot ring 1412. In order to secure the first elongated member 1304 to the second elongated member 1305, a cap 1430 may be used for engaging the pivot pin 1422.
Moreover, the cap 1430 may be used for substantially restricting the relative movement between the first and second elongated members 1304 and 1305. The cap 1430 may press the pivot ring 1412 against the pivot base 1426 by substantially engaging the pivot pin 1422. This may increase the frictional force between the pivot ring 1422 and the pivot base 1426 and the frictional force between the pivot ring 1422 and the cap 1430. As a result, the increased frictional forces may lock the first and second elongated members 1304 and 1306 at a particular position to form a rigid X-shaped bridge.
Although
In
The first elongated member 1504 may be combined with the fulcrum member 1520, which may include a channel 1522 and a knob 1524. When the knob is relaxed, the peak of the second V-shaped arched segment 1507 may travel along the channel 1522. As such, the knob 1524 may be used for adjusting a peak-to-peak length 1530, which is measured between the peaks of the first and second V-shaped arched segment 1505 and 1507. Moreover, the second V-shaped arched segment 1507 may rotate about the knob 1524. The fulcrum member 1520 may facilitate a relative movement between the first and second elongated members 1504 and 1506, so that they may be adjusted to adapt to patients with various spinal bone configurations. After the proper adjustment is made, the knob 1524 may be tightened to restrict the relative movement between the first and second elongated members 1504 and 1506.
In
The first knob 1624 may be used for adjusting a first angle A1602 between the first and second semi-arched segments 1616 and 1618. Similarly, the second knob 1626 may be used for adjusting a second angle A1604 between the third and fourth semi-arched segments 1617 and 1619. Together, the first and second knobs 1624 and 1626 may be used for controlling the peak-to-peak distance 1630 between the first and second elongated members 1604 and 1606. Accordingly, the spherical joints 1316, 1318, 1317, and 1319 may be adjusted angularly and longitudinally, so that the fully adjustable Real-X cross connector 1600 may adapt to patients with various spinal bone configurations.
Although
The discussion now turns to structural and functional features of the joint receiving (JR) pedicle screws.
The side wall 1731 of the cradle 1704 may have an inner threaded surface 1732 for engaging the set screw 1702 and one or more receiving ports 1734 for receiving the spherical joint 1750, which may be one of the four spherical joints 1316, 1318, 1317, and 1319 as shown in
The screw member 1708 may include a semi-spherical joint 1741 and a threaded shaft 1745. The semi-spherical joint 1741 may have a first concave surface 1742, a hemispherical surface 1743 formed on the opposite side of the first concave surface 1742, and a bearing socket 1745 formed on the first concave surface 1742. The threaded shaft 1745 may be coupled to the hemispherical surface 1743 of the semi-spherical joint 1741, and it may protrude from the base 1733 of the cradle 1704. When the locking members 1722 of the cylindrical adaptor 1704 are deployed, the semi-spherical joint 1741 may be retained within the cylindrical space defined by the cradle 1704.
The bearing socket 1745 may be used for receiving a drilling force to drive the threaded shaft 1745 into a particularly bone segment, thereby anchoring the cradle 1704 to that bone segment. After being anchored, the base 1733 of the cradle 1704 may engage and pivot the hemispherical surface 1743 of the semi-spherical joint 1741, such that the threaded shaft 1745 may have the first multi-axle movement (See
The first concave surface 1742 of the semi-spherical joint 1741 may be used for receiving, contacting, and engaging the spherical joint 1750. As such, the spherical joint 1750 may move freely around the first concave surface 1742. The free movement of the spherical joint 1750 may facilitate part of the second multi-axle movement since the semi-spherical joint 1741 may become an integral part of the cradle 1704.
Generally, as shown in
To secure the spherical joint 1750, the threaded side wall 1714 may engage the inner threaded surface 1732 of the cradle 1704 until the second concave surface 1716 makes contact with the spherical joint 1750. At that point, the spherical joint 1750 may move freely around the second concave surface 1716. The free movement of the spherical joint may facilitate part of the second multi-axle movement since the set screw 1712 may become an integral part of the cradle 1704. Together, the first and second concave surfaces 1742 and 1716 may cooperatively engage the spherical joint 1750, such that the cradle 1704 may achieve the second multi-axle movement about the spherical joint 1750.
To lock the spherical joint 1750 in position, the threaded side wall 1714 of the set screw 1702 may convert the locking force received from the socket 1712 to a compression force. The second concave surface 1716 may apply the compression force against the spherical joint 1750. Moreover, the compression force may be redirected to the base 1733 of the cradle 1704, which may respond by generating a reaction force. Eventually, the first concave surface 1742 of the semi-spherical joint 1741 may redirect the reaction force against the spherical joint 1750. Together, the compression force and the reaction force may cooperate with each other, and they may cause a simultaneous reduction of the first and second multi-axle movements. Accordingly, the spherical joint 1750 may be locked in a particular position within the cradle 1704.
Referring to
After being anchored to the spinal bone segment, the cradle 1920 may move around the joint holder 1932. As shown in
The cradle 1920 may receive the spherical joint 1942. After the spherical joint 1942 is positioned within the cradle 1920, the flat end member 1940 may protrude from the cradle 1920 via one of the receiving ports 1924. The concave inner surface 1936 of the joint holder 1932 may be used for contacting the spherical joint 1942. As such, the spherical joint 1942 may move around the concave inner surface 1936.
The set screw 1910 may have a bearing socket 1912, a contact surface 1916 positioned on the opposite side of the bearing socket 1912, and a threaded side wall 1914 coupled between the bearing socket 1912 and the contact surface 1916. The bearing socket 1912 may be used for receiving a locking force applied by a surgical ranch. The threaded side wall 1914 may engage the inner threaded side wall 1922 of the cradle 1920 while the bearing socket 1912 is receiving the locking force. As the set screw 1910 descends into the cradle 1920, the contact surface 1916 may contact and engage the spherical joint 1942. The contact surface 1916 may be flat, convex, or concave. In one embodiment, the contact surface 1916 may be convex, which may establish a single contact point with the spherical joint 1942. In another embodiment, the contact surface 1916 may be concave, which may establish a plurality of contact points with the spherical joint 1942.
The contact surface 1916 may cooperate with the concave inner surface 1936 to allow the spherical joint 1942 to freely rotate within the cradle 1920. Accordingly, the flat end member 1940 may have a second multi-axle movement 1940 in relative to the cradle 1920. The size of the receiving ports 1924 may limit the range of the second multi-axle movement 1962.
When the threaded side wall 1914 of the set screw 1910 is substantially engaged to the inner threaded side wall 1922 of the cradle 1920, the locking force may be converted to a compression force 1952. The contact surface 1916 of the set screw 1910 may apply the compression force 1952 against the spherical joint 1942. The compression force 1952 may be redirected to the base of the cradle 1920. As a result, the convex pivot ring 1926 of the cradle 1920 may apply a reaction force 1954 along a circular path and against the outer convex surface 1938 of the joint holder 1932. In turn, the joint holder 1932 may redirect the reaction force 1954 to the spherical joint 1942.
The compression force 1952 may cooperate with the reaction force 1954 to substantially restrain the relative movements among the spherical joint 1942, the joint holder 1932, and the cradle 1920. By tightening the set screw 1910 into the cradle 1920, the first and second multi-axle movements 1964 and 1962 may be simultaneously reduced and suspended. To prevent the joint holder 1932 from sliding within the cradle 1920, the convex pivot ring 1926 may be depressible, the feature of which may increase the friction between the outer convex surface 1938 and the base section of the cradle 1920. To prevent the spherical joint 1940 from moving along the joint holder 1932, the inner concave surface 1936 may include one or more depressible bumps, rings, or protrusions, which may be used for increasing the friction between the inner concave surface 1936 and the spherical joint 1942. Compared to conventional pedicle screws, the JR pedicle screw 1900 may be easier to manufacture and assemble because it has fewer components and installation steps.
The spherical ring joint 2032 may serve similar functions as the spherical joints as discussed in
The base member 2020 may include a threaded head 2021, a pivot pole 2022 coupled to the threaded head 2021, a first (bottom) joint holder 2024 peripherally coupled to the pivot pole 2022, and a threaded shaft 2026 coupled to the pivot pole 2022. The threaded head 2021 may include a bearing socket 2025, which may be driven by a surgical ranch. As such, the threaded shaft 2026 may be driven into a spinal bone segment and thereby anchoring the base member 2020 to the spinal bone segment.
After being anchored, the base member 2020 may receive the spherical ring joint 2032. Particularly, the double conical channel of the spherical ring joint 2032 may be penetrated by the pivot pole 2022 of the base member 2020. The first joint holder 2024 of the base member 2020 may have a first concave surface 2023 for contacting the toroidal section 2036 of the spherical ring joint 2032. The spherical ring joint 2032 may move around the first concave surface 2023, such that the flat end member 2030 may have a wide range of relative movement with respect to the threaded shaft 2026.
After receiving the spherical ring joint 2036, the base member 2020 may be engaged by the cap member 2010. Particularly, the cap member 2010 may have a set screw 2012 and a second (top) joint holder 2014 coupled to the set screw 2012. The set screw 2012 may have an inner threaded section 2013 for engaging the threaded head 2021 of the base member 2020. The second joint holder 2014 may contact the spherical ring joint 2032 as the set screw 2012 is further engaged to the screw head 2021.
The set screw 2012 and the threaded head 2021 may cooperatively lock the second joint holder 2014 at a particular position, thereby retaining the spherical ring joint 2032 in between the first and second concave surfaces 2023 and 2016. As such, the spherical ring joint 2023 may be anchored to the spinal bone segment.
The first and second concave surfaces 2023 and 2016 may engage the toroidal mid-section 2036 of the spherical ring joint 2032, thereby allowing the spherical ring joint 2032 to freely rotate. Moreover, the first and second inner conical surfaces 2033 and 2034 may facilitate a wide range of movement between the spherical ring joint 2032 and the pivot pole 2022. As such, the flat end member 2030 may have a multi-axle movement 2062 along a circular space 2064, which may be defined between the first and second joint holders 2024 and 2014.
When the threaded wall 2013 of the set screw 2012 is substantially engaged to the threaded head 2021, the second concave surface 2016 may assert a compression force 2052 against the spherical ring joint 2032. Particularly, the compression force 2052 may be applied along a circular path on the toroidal mid-section 2036. The compression force 2052 may be redirected to the first concave surface 2023. In response, the first concave surface 2023 may generate a reaction force 2054, which may be applied along another circular path on the toroidal mid-section 2036.
Together, the compression force 2052 may cooperate with the reaction force 2054 to substantially restrain the relative movement between the spherical ring joint 2032 and the pivot pole 2022. As a result, the multi-axle movements 2062 may be reduced and suspended in one single step. To prevent the spherical ring joint 2032 from moving along the first and second concave surfaces 2023 and 2016, each of the first and second concave surfaces 2023 and 2016 may include one or more depressible bumps, rings, or protrusions, which may be used for increasing the friction between the spherical ring joint 2032 and the first and second concave surfaces 2023 and 2016. Compared to conventional pedicle screws, the alternative JR pedicle screw 2000 may be easier and less costly to manufacture and assemble because it has fewer components and installation steps.
Exemplary embodiments of the invention have been disclosed in an illustrative style. Accordingly, the terminology employed throughout should be read in a non-limiting manner. Although minor modifications to the teachings herein will occur to those well versed in the art, it shall be understood that what is intended to be circumscribed within the scope of the patent warranted hereon are all such embodiments that reasonably fall within the scope of the advancement to the art hereby contributed, and that that scope shall not be restricted, except in light of the appended claims and their equivalents.
Number | Date | Country | |
---|---|---|---|
Parent | 12906991 | Oct 2010 | US |
Child | 12962996 | US |