Not applicable.
Not applicable.
This present disclosure relates generally to a system for retaining a cross fire tube in a gas turbine combustor. More specifically, embodiments of the present disclosure relate to a flow sleeve and retention clip used to secure a cross fire tube in proper axial and radial position while also reducing blockage to a surrounding air passageway.
A gas turbine engine typically comprises a multi-stage compressor coupled to a multi-stage turbine via an axial shaft. Air enters the gas turbine engine and passes through the compressor where its temperature and pressure increase as it passes through subsequent stages of the compressor. The compressed air is then directed to one or more combustors where it mixes with a fuel source to create a combustible mixture. This mixture is ignited in the one or more combustors to create a flow of hot combustion gases. These gases are directed into the turbine causing the turbine to rotate, thereby driving the compressor. The output of the gas turbine engine can be mechanical thrust via exhaust from the turbine or shaft power from the rotation of an axial shaft, where the axial shaft can drive a generator to produce electricity.
In a typical industrial gas turbine engine, the combustor section comprises a plurality of can-annular combustors. In this configuration, a plurality of individual combustors is arranged about the axis of the gas turbine engine, where each combustor receives a portion of the compressed air from the compressor. However, in order to eliminate the need for ignition sources in each combustor for use at start-up as well as any time a combustor flashes back or when a flame is unintentionally extinguished, the plurality of individual combustors is connected by a plurality of cross fire tubes. In operation, one combustor can be ignited, and the flame will pass through the cross fire tubes to an adjacent combustor, thereby igniting a combustible mixture in an adjacent combustor.
A cross fire tube arrangement in accordance with the prior art is disclosed in
Referring now to
The following presents a simplified summary of the disclosure to provide a basic understanding of some aspects thereof. This summary is not an extensive overview of the application. It is not intended to identify critical elements of the disclosure or to delineate the scope of the disclosure. Its sole purpose is to present some concepts of the disclosure in a simplified form as a prelude to the more detailed description that is presented elsewhere herein.
The present disclosure provides a system for retaining a cross fire tube within a gas turbine combustor, including a flow sleeve and retention clip configuration reducing potential blockage to an air passageway between the flow sleeve and a combustion liner.
In an embodiment of the present disclosure, a flow sleeve for a gas turbine combustion system is provided. The flow sleeve comprises a generally annular body having a flange at a forward end thereof and one or more openings in the generally annular body for receiving one or more cross fire tubes from an adjacent combustion chamber. The flow sleeve further comprises one or more recessed portions in the flange and a clip block having a T-shaped cross section positioned axially between the one or more recessed portions and the one or more openings.
In an alternate embodiment of the present disclosure, a system for retaining a cross fire tube between adjacent combustors in a gas turbine engine is disclosed. The system comprises a flow sleeve having a generally annular body, a flange at a forward end of the generally annular body, where the flange has one or more recessed portions. The generally annular body has one or more openings and a clip block having a T-shaped cross section positioned axially between the one or more recessed portions and the one or more openings. A cross fire tube extends through each of the one or more openings and is secured by a retention clip which extends along an inner surface of the generally annular body and has a mounting plate engaging the one or more recessed portions of the flow sleeve flange. A centerbody extends from the mounting plate and a first finger and a second finger extend from the center body, where the first and second fingers surround a portion of the tube, thus preventing the tube from moving into or out of the one or more openings in the generally annular body.
In yet another embodiment of the present disclosure, a retention clip for securing a cross fire tube in a gas turbine combustor is provided. The retention clip comprises a mounting plate, a centerbody extending from the mounting plate where the centerbody has a through hole and a slot extending away from the through hole. A first finger and a second finger extend from the center body, where the first and second fingers have an axially extending space therebetween. The retention clip has at least one curved portion extending along the centerbody such that the first and second fingers provide a spring tension when the clip is secured to the flow sleeve.
The present disclosure is aimed at providing an improved way of securing cross fire tubes between adjacent combustors while also reducing any interference into the surrounding passageway. These and other features of this disclosure can be best understood from the following description and claims.
The present disclosure is described in detail below with reference to the attached drawing figures, wherein:
The present disclosure is intended for use in a gas turbine engine, such as a gas turbine used for aircraft engines and/or power generation. As such, the present disclosure is capable of being used in a variety of turbine operating environments, regardless of the manufacturer.
As those skilled in the art will readily appreciate, a gas turbine engine is circumferentially disposed about an engine centerline, or axial centerline axis. The engine includes a compressor, a combustion section and a turbine with the turbine coupled to the compressor via an engine shaft. As is well known in the art, air compressed in the compressor is mixed with fuel and ignited in the combustion section and then expanded in the turbine. For certain gas turbine engines, such as industrial gas turbines used in power generation, the combustion system comprises a plurality of interconnected can-annular combustion chambers. The chambers are connected by a plurality of tubes for passing a flame between adjacent combustors to aid in the ignition process.
The present disclosure is depicted in
Referring now to
The flow sleeve 500 also comprises a clip block 514 positioned axially between the one or more recessed portions 510 and the one or more openings 508. The clip block 514, which in one embodiment is welded to the generally annular body 502, is used to secure a retainer clip and cross fire tube in place, as discussed in more detail below. The clip block 514 can be formed of a variety of shapes depending on the specific cross fire tube and retainer clip geometry. For the embodiment depicted in
As discussed above, in a can-annular combustor configuration, a combustion liner is located within a flow sleeve. Compressed air from an engine compressor is directed between the combustion liner and flow sleeve in order to cool the combustion liner and direct the air into the combustion liner. As a result, this air is also preheated before entering the combustion liner and undergoes a combustion process to generate hot combustion gases for powering the turbine section. In order to properly locate the combustion liner within the flow sleeve, a plurality of pegs 516 extend radially inward from the generally annular body 502. Mounting tabs extend radially outward from a combustion liner and slide into the slots in the plurality of pegs 516.
Another feature of the present disclosure is shown in
Referring still to
The retainer clip can be made from a variety of materials but is preferably made in a flat pattern from a material capable of withstanding the temperatures adjacent the cross fire tubes as well as the adjacent components. Such acceptable materials may include a tool steel as well as InconelĀ® X-750, a nickel-chromium alloy. The retainer clip 700 can be cut from a plate, typically 0.062 inches to 0.125 inches thick. Features such as the through hole 706, slot 708, and axially extending space 714 are cut out of the plate material while in a flat pattern, typically by a laser or wire EDM and then the mounting flange 702 is bent at approximately 90-degree angle relative to the centerbody 704.
Referring now to
The system 800 comprises a flow sleeve 500 having a generally annular body 502, a flange 504 with one or more recessed portions 510 located therein. The generally annular body 502 of the flow sleeve 500 also includes one or more openings 508 as well as a clip block 514 positioned between the one or more recessed portions 510 and the one or more openings 508.
A tube 802 extends through the one or more openings 508 of the flow sleeve 500. This tube, also known as a cross fire tube may comprise multiple tubes, often in a telescoping arrangement for connecting adjacent combustors. The tube 802 may also include a groove about its outer surface 804 for receiving the retention clip 700. As shown in
In operation, once a flow sleeve is installed in adjacent combustor cases, one or more tubes 802, also commonly referred to as cross fire tubes, are passed through the openings 508 in the flow sleeve annular body 502. Then, a combustion liner is installed into the flow sleeve 500. Once the combustion liner is positioned within the flow sleeve 500, the tubes 802 are slid into the corresponding combustion liner. Once the tubes 802 are in the appropriate position through the flow sleeve and into the combustion liner, the retention clip 700 is positioned between the inner surface 806 of the generally annular body 502 and the clip block 514, such that each of the first finger 710 and second finger 712 extends at least partially through one of the gaps 517A and 517B and the fingers 710, 712 expand to surround at least a portion of the tube 802. The retention clip is slid into the flow sleeve 500 until the mounting plate 702 is positioned within the recessed portion 510 of the flange 504. Then, the mounting plate is secured to the flange 504 by placing a plurality of fasteners (not depicted) through mounting holes 703 in the mounting plate 702 and into the holes 512 in the recessed portion 510 of the flange 504.
Due to the curvatures 716 in the retention clip 700, and as discussed above, the retention clip 700 provides some resistance as it is positioned in place between the inner surface 806 of the generally annular body 502 and the clip block 514. This further aids in preventing accidental removal of the retention clip 700.
As can be seen from
Although a preferred embodiment of this disclosure has been provided, one of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. For that reason, the following claims should be studied to determine the true scope and content of this disclosure. Since many possible embodiments may be made of the disclosure without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
From the foregoing, it will be seen that this disclosure is one well adapted to attain all the ends and objects hereinabove set forth together with other advantages which are obvious, and which are inherent to the structure.
It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4077205 | Pane et al. | Mar 1978 | A |
4249372 | White | Feb 1981 | A |
6681578 | Bunker | Jan 2004 | B1 |
6705088 | Martling et al. | Mar 2004 | B2 |
6912838 | Sileo et al. | Jul 2005 | B2 |
7007482 | Green et al. | Mar 2006 | B2 |
7386980 | Green et al. | Jun 2008 | B2 |
7540156 | Brown et al. | Jun 2009 | B2 |
8220273 | Iwasaki | Jul 2012 | B2 |
8544277 | Johnson et al. | Oct 2013 | B2 |
9511447 | Lin et al. | Dec 2016 | B2 |
20040172952 | Sileo | Sep 2004 | A1 |
20090044540 | Pangle | Feb 2009 | A1 |
20140123619 | DiCintio | May 2014 | A1 |
20160109135 | Kidder | Apr 2016 | A1 |
20160209034 | Maurer et al. | Jul 2016 | A1 |
20180087693 | Dhanasekaran | Mar 2018 | A1 |
Entry |
---|
PCT Application No. PCT/US19/59412, International Search Report and Written Opinion, dated Jan. 21, 2020, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20200141584 A1 | May 2020 | US |