The present application claims priority from Japanese Patent application serial no. 2016-156416, filed on Aug. 9, 2016, the content of which is hereby incorporated by reference into this application.
The present invention relates to a structure of a gas turbine combustor and, more particularly, to a combustor structure of a multi-can type gas turbine including a plurality of combustors that mix and burn fuel and the air, the combustors being connected by a crossfire tube assembly.
There is a form called multi-can type gas turbine including multi-can type gas turbine combustors (hereinafter described as combustors) with respect to one gas turbine. Usually, in the multi-can type combustor, the combustors are annularly disposed around the gas turbine, an ignitor is set in one or several combustors, and the other remaining combustors do not include individual ignitors. Ignition of the combustors not including the ignitors is carried out through a pipe that connects the combustors adjacent to one another called crossfire tube assembly. When the gas turbine is started, a system for first igniting the combustor(s) in which the ignitor(s) is (are) set and igniting the adjacent combustors via the crossfire tube assembly to ignite all the combustors is adopted.
In general, the crossfire tube assembly is configured by a double pipe of an inner tube and an outer tube. The inner tube connects combustion chambers of the adjacent combustors, circulates a high-temperature combustion exhaust gas, and performs flame propagation. The outer tube is provided on the outer circumference side of the inner tube, connects channels of the air for fuel of the adjacent combustors, and reduces a pressure difference between an inner tube inner side and an inner tube outer side to play a role of protecting the inner tube.
The crossfire tube assembly is a constituent component necessary for the ignition operation explained above and needs to surely carry out the ignition. Since the crossfire tube assembly is exposed to the high-temperature combustion exhaust gas, prevention of thermal deformation and fire damage needs to be examined. A method of positioning in combining the combustors, a method of coping with deformation, and the like also need to be examined.
As the background art of this technical field, for example, there are techniques disclosed in Patent Document 1 to Patent Document 3. Patent Document 1 discloses a technique for cooling a crossfire tube assembly and preventing fire damage. Patent Document 2 discloses a positioning method in connecting combustors and a technique for cooling a crossfire tube assembly and preventing fire damage. Patent Document 3 discloses a technique for diffusing, with a plurality of flow disseminators provided with respect to a plurality of cooling holes provided in a combustor section, which is a partition wall configuring a combustion chamber of a combustor, to be aligned with the cooling holes, cooling air flowing through the cooling holes.
[Patent Document 1] JP-A-10-339440
[Patent Document 2] JP-A-11-14056
[Patent Document 3] JP-A-2010-106829
The crossfire tube assembly feeds the combustion exhaust gas to the combustors before ignition to ignite the combustors making use of a pressure difference that occurs between the combustors after ignition completion and the combustors before ignition adjacent to the combustors. If the ignition ends in all the combustors and air amounts, fuel amounts, and pressures of the respective combustors are the same, there is no pressure difference between the combustors and there is no current of the combustion exhaust gas that circulates in the crossfire tube assembly. In this case, a time in which the high-temperature combustion exhaust gas circulates in the crossfire tube assembly is only a short time during the ignition.
However, actually, fluctuation occurs in the air amounts, the fuel amounts, the pressures, and combustion states in each of the combustors. Therefore, in some case, a pressure difference occurs between the adjacent combustors and the high-temperature combustion exhaust gas continues to circulate through the crossfire tube assembly. At this point, the crossfire tube assembly continues to be exposed to the high-temperature combustion exhaust gas to have high temperature. Therefore, the crossfire tube assembly needs to be cooled for prevention of thermal deformation and fire damage of the crossfire tube assembly.
As one of methods of cooling the crossfire tube assembly, there is a method of guiding a part of the combustion air having temperature lower than the temperature of the high-temperature combustion exhaust gas into the crossfire tube assembly through holes (air holes) provided in the crossfire tube assembly to cool the crossfire tube assembly. The wall surface of the inner tube is cooled by causing the combustion air in the outer tube to flow into the inner tube from the air holes provided on the wall surface of the inner tube of the crossfire tube assembly.
When cooling the wall surface of the inner tube, if a guide ring having a circular shape concentric with the inner tube is provided in a position opposed to the axial direction of the air holes in the inner tube inside, one end face is closed, and an end face on one side is opened to the inner tube inside, the air flowing in from the air holes flows along the inner circumferential wall surface of the inner tube from the open end face of the guide ring. Since the low-temperature cooling air flows along the inner tube wall surface, it is possible to prevent the inner tube wall surface from being exposed to the high-temperature combustion exhaust gas and prevent thermal deformation and fire damage of the crossfire tube assembly.
However, in the configuration explained above, the inner circumference side of the guide ring is exposed to the current of the high-temperature combustion exhaust gas. The guide ring is cooled by a so-called impingement effect at the time when the air circulating from the air holes collides with the outer circumference side of the guide ring. However, a cooling range of the air is limited to the peripheries of the air holes. In particular, the air less easily flows on the closed end side where an end portion is closed in an annular space between the inner tube and the guide ring. Therefore, the temperature of the guide ring rises. There is a risk of thermal deformation and fire damage.
To lower the temperature of the guide ring, there are a method of increasing the sectional area of the air holes to increase a cooling air amount and a method of reducing the length of the guide ring to narrow a range exposed to the current of the high-temperature combustion exhaust gas. However, in the method of increasing the cooling air amount, it is likely that the temperature of the combustion exhaust gas passing through the crossfire tube assembly is lowered during ignition of the gas turbine combustor to hinder flame propagation. In the method of reducing the length of the guide ring, an effect of the current of the air being guided by the guide ring decreases and the cooling range of the inner tube is narrowed. There is a problem in that positions where the air holes are provided are limited and machining cost increases.
The present invention has been devised in view of the problems and an object of the present invention is to provide a multi-can type gas turbine including a plurality of combustors. The gas turbine cools a crossfire tube assembly without lowering the temperature of a combustion exhaust gas passing through the crossfire tube assembly during ignition of a gas turbine combustor and prevents thermal deformation and fire damage of the crossfire tube assembly.
In order to solve the problem, a gas turbine according to the present invention is a multi-can type gas turbine including a plurality of combustors. The gas turbine is applied to a form in which the combustors adjacent to one another are connected by a crossfire tube assembly and the combustors are ignited by flame propagation. Further, the crossfire tube assembly is configured by a double pipe and configured by an inner tube that connects combustion chambers of the adjacent combustors and an outer tube that covers the inner tube and connects combustion air channels of the adjacent combustors. Further, holes (air holes) for introducing the air into the inside are provided in the inner tube. A guide ring having a circular shape concentric with the inner tube is provided in a position opposed to the axial direction of the air holes. One end face is closed and an end face on one side (the other end face) is opened to the inner tube inside.
In the gas turbine including the crossfire tube assembly having the configuration explained above, a part of the air holes is drilled toward the closed end side.
Besides changing the drilling direction of the air holes, an obstacle for suppressing the air supplied from the air holes from flowing and guiding the air to the closed end face may be provided in a position opposed to the air holes on the outer circumference side of the guide ring.
Note that, in the gas turbine including the crossfire tube assembly having the configuration explained above, an annular space may be provided between a partition wall of the inner tube and the guide ring. The annular space on the closed end side may be expanded to set the distance between the air holes and the closed end to be three times or more as large as the diameter of the air holes.
According to the present invention, it is possible to facilitate cooling of the crossfire tube assembly under a condition in which an amount of cooling air circulated into the inner tube of the crossfire tube assembly for cooling is small. Therefore, it is possible to suppress, during ignition of the gas turbine combustor, the temperature of a high-temperature combustion exhaust gas passing through the crossfire tube assembly from falling because of mixing with the cooling air and surely carry out flame propagation between the combustors. It is possible to prevent thermal deformation and fire damage of the crossfire tube assembly through the cooling of the crossfire tube assembly.
In the present invention, the guide ring having the circular shape concentric with the inner tube is provided in the position opposed to the axial direction of the air holes provided in the inner tube, the one end face is closed, and the end face on the one side is opened to the inner tube inside. Then, the air flowing in from the air holes flows along the inner circumferential wall surface of the inner tube from the opened end face of the guide ring. Since the low-temperature cooling air flows along the inner tube wall surface, it is possible to prevent the crossfire tube assembly from being exposed to the high-pressure combustion exhaust gas and prevent thermal deformation and fire damage of the crossfire tube assembly.
In this case, a part of the air holes is drilled toward the closed end side to forcibly feed a part of the air to the closed end side and cause a current of the air on the closed end side to facilitate the cooling of the guide ring. Since drilling directions of the air holes are different for each of the holes, a range cooled by a so-called impingement effect at the time when the air circulating from the air holes collides with the outer circumference side of the guide ring expands to the axial direction of the guide ring. Therefore, the guide ring is easily cooled. The inner circumference side of the guide ring is exposed to the high-temperature combustion exhaust gas. However, since the range cooled by the impingement effect on the outer circumference side of the guide ring expands and the current of the air on the closed end side is generated, it is possible to prevent thermal deformation and fire damage of the crossfire tube assembly including the guide ring with a small air amount.
When the obstacle for guiding the air supplied from the air holes to the closed end face is provided in the position opposed to the air holes on the outer circumference side of the guide ring, the same effect is obtained. That is, by guiding a part of the air to the closed end side with the obstacle, a current of the air is caused on the closed end side to facilitate cooling of the guide ring. The range cooled by the so-called impingement effect at the time when the air circulating from the air holes collides with the outer circumference side of the guide ring expands to the closed end side of the guide ring. Therefore, it is possible to prevent thermal deformation and fire damage of the crossfire tube assembly including the guide ring with a small air amount.
Note that, in the annular space between the partition wall of the inner tube and the guide ring, if the distance between the air holes and the closed end is set to three times or more as large as the diameter of the air holes, the air flowing to the closed end side in the air flowing in from the air holes easily reverses and flows out from the open end side. Therefore, an amount of the air flowing to the closed end side increases. It is easy to cool the closed end side of the guide ring.
Problems, configurations, and effects other than these explained above are clarified by the following explanation of embodiments.
Gas turbines according to embodiments of the present invention are explained below with reference to the drawings. Note that, in the explanation, the same reference numerals and signs are used for the same components and explanation of the components is sometimes omitted.
[First Embodiment]
A gas turbine according to a first embodiment of the present invention is explained with reference to
First, a role and a problem of the crossfire tube assembly are explained with reference to
In
The combustor head portions 9A and 9B of the combustors 3A and 3B are disposed on the compressor 2 side. The combustor tail portions 10A and 10B of the combustors 3A and 3B are disposed on the turbine 4 side. The combustors 3A and 3B are configured by combustion chambers 11A and 11B, partition walls (liners) 12A and 12B configuring the combustion chambers, combustion air channels 13A and 13B, and outer circumferential partition walls 14A and 14B in order from the center side toward the outer circumference side. The combustion air 7 discharged from the compressor 2 reverses (turns) a flowing direction at the combustor tail portions 10A and 10B of the combustors, passes through the combustion air channels 13A and 13B, and flows to the combustor head portions 9A and 9B of the combustors.
The combustion air 7 reverses (turns) the flowing direction again at the combustor head portions 9A and 9B of the combustors and is mixed with the fuel 15 supplied from the outside at the combustor head portions 9A and 9B to burn in the combustion chambers 11A and 11B. The combustion exhaust gas 8 flows into the turbine 4 from the combustor tail portions 10A and 10B of the combustors.
Note that, to simplify explanation, two combustors are shown in
In the gas turbine shown in
During ignition of the gas turbine, a mixture of the fuel 15 and the combustion air 7 in the combustion chamber 11A is ignited by the ignitor 17 set in the combustor 3A. Pressure in the combustion chamber 11A is increased by generation of a combustion exhaust gas. However, since ignition is not performed in the combustion chamber 11B yet, pressure in the combustion chamber 11B is low. Therefore, the high-temperature combustion exhaust gas 16 is sent into the combustion chamber 11B from the combustion chamber 11A through the inner tube 21 that connects the combustion chambers 11A and 11B. In the combustion chamber 11B, the mixture of the fuel 15 and the combustion air 7 is ignited by the high-temperature combustion exhaust gas 16 flowed through the inner tube 21. The combustors adjacent to each other via the crossfire tube assembly 20 are sequentially ignited, whereby all the combustors can be ignited.
If air amounts, fuel flow rates, and pressures of the respective combustors are the same, there is no pressure difference between the combustors when the ignition ends in all the combustors. In this case, there is no current of the high-temperature combustion exhaust gas 16 circulating in the inner tube 21 of the crossfire tube assembly 20. Time in which the high-temperature combustion exhaust gas 16 circulates in the inner tube 21 is only a short time during the ignition. However, actually, fluctuation sometimes occurs in the air amounts, the fuel flow rates, the pressures, and combustion states in each of the combustors. In this case, the high-temperature combustion exhaust gas 16 sometimes continues to circulate in the inner tube 21 according to a pressure difference between the adjacent combustors 3A and 3B. The inner tube 21 has high temperature because the high-temperature combustion exhaust gas 16 circulates. Deformation and damage easily occur in operation for a long time. The inner tube 21 needs to be cooled for prevention of the deformation and the damage.
Details of the crossfire tube assembly are shown in
In the inner tube 21 of the crossfire tube assembly, air holes 33 (33A to 33D) for introducing a part of the combustion air 7 into the inner tube 21 are provided. Guide rings 34A and 34B are respectively provided in positions opposed to the axial direction of the air holes 33 (33A to 33D).
The configuration of the vicinity of the air holes 33A and 33C is shown in
In the conventional example shown in
The outer surface of the guide ring 34A is cooled by the current of the air. On the other hand, the inner circumference side of the guide ring 34A is heated by the current of the high-temperature gas (the combustion exhaust gas 16). Therefore, cooling from the outer surface needs to be facilitated as in the inner tube 21. When being cooled by the currents 44A and 44C of the air, so-called impingement cooling for obtaining high cooling performance according to collision of the current of the air acts on the outer circumferential surface of the guide ring 34A opposed to the air holes 43A and 43C.
Cooling by the currents 44A and 44C of the air strongly works from the air holes 43A and 43C toward the open end 37. On the other hand, on the closed end 36 side from the air holes 43A and 43C, the cooling less easily works because the closed end 36 side is away from the currents 44A and 44C of the air. The temperature of the guide ring 34A rises. That is, in the conventional example shown in
Therefore, it is desirable to narrow a space on the closed end 36 side of the annular space 35. However, when fixing of the guide rings 34 (34A and 34B) and adjustment of the positions of the guide rings 34 and the air holes 43 (43A to 43D) are taken into account, a space is formed on the closed end 36 side of the annular space 35. When it is attempted to narrow the space, more machining accuracy is required for the fixing of the guide rings 34 and the adjustment of the positions of the guide rings 34 and the air holes 43 (43A to 43D) and cost increases. Therefore, the closed end 36 side of the annular space 35 usually has length twice to three times of the diameter of the air holes 43. The temperature on the closed end 36 side of the guide rings 34 sometimes rises.
On the other hand, in the first embodiment of the present invention shown in
The air flowing in from the air hole 33C drilled to tilt with respect to the inner tube 21 has a flow velocity component directed toward the closed end 36 side according to the shape of the air hole. Therefore, the air once flows to the closed end 36 side, circulates in the annular space 35 near the closed end 36, and is thereafter discharged to the space 25 in the inner tube from the open end 37. A portion on which so-called impingement cooling for obtaining high cooling performance according to collision of the current of the air acts expands to the closed end 36 side of the air hole 33C. In this embodiment, by changing the drilling direction of the air holes, the portion on which the impingement cooling acts is formed in a wide range in the axial direction of the inner tube 21 centering on the air holes 33. Since a current 24C of the air flows to the closed end 36 side, a portion cooled by the current 24C of the air flowing in from the air holes expands to the annular space 35.
Since a cooling range on the outer surface of the guide ring 34A expands, it is possible to cool the crossfire tube assembly including the guide ring 34A and reliability is improved. Since it is possible to cool the crossfire tube assembly with a smaller cooling air amount, it is possible to reduce a cooling air amount, cool the crossfire tube assembly without lowering the temperature of the combustion exhaust gas passing through the crossfire tube assembly during the ignition, and prevent thermal deformation and fire damage of the crossfire tube assembly. Since margins for the fixing of the guide ring 34A and the adjustment of the positions of the guide ring 34A and the air holes 33 (33A to 33D) are formed by the space on the closed end 36 side of the annular space 35, it is possible to suppress accuracy necessary for machining and machining cost.
In the embodiment shown in
In the first embodiment of the present invention shown in
A modification of the crossfire tube assembly shown in
As explained above, according to the first embodiment of the present invention, by combining the inner tubes in which the drilling directions of the air holes 33 are changed, it is possible to achieve both of cooling and prevention of thermal deformation and fire damage of the crossfire tube assembly and a reduction in manufacturing cost due to the easiness of the assembly.
[Second Embodiment]
A gas turbine according to a second embodiment of the present invention is explained with reference to
The second embodiment of the present invention is characterized in that the obstacle 51 is provided on the open end 37 side of the air hole 33C. The second embodiment includes a case where, as shown in
In the air hole 33C, near which the obstacle 51 is provided, a current 54C of the air flowed into the annular space 35 is suppressed from flowing to the open end 37 side by the obstacle 51. Therefore, the current 54C of the air once flows to the closed end 36 side, circulates in the annular space 35 near the closed end 36, and is thereafter discharged from the open end 37 to the space 25 in the inner tube. A portion on which so-called impingement cooling for obtaining high cooling performance according to collision of the current of the air acts expands to the closed end 36 side of the air hole 33C. On the other hand, in the air hole 33A, near which the obstacle 51 is not provided, a current 54A of the air flowed into the annular space 35 flows into the space 25 in the inner tube from the open end 37.
As indicated by the currents 54A and 54C of the air shown in
Since the cooling range on the outer surface of the guide ring 34A expands, it is possible to cool the crossfire tube assembly including the guide ring 34A and reliability is improved. Since it is possible to cool the crossfire tube assembly with a smaller cooling air amount, it is possible to reduce a cooling air amount, cool the crossfire tube assembly without lowering the temperature of the combustion exhaust gas passing through the crossfire tube assembly during the ignition, and prevent thermal deformation and fire damage of the crossfire tube assembly. Since margins for fixing of the guide ring 34A and adjustment of the positions of the guide ring 34A and the air holes 33 (33A to 33D) are formed by the space on the closed end 36 side of the annular space 35, it is possible to suppress accuracy necessary for machining and machining cost.
Further, the structure in the second embodiment of the present invention can also be applied to the crossfire tube assembly in which the inner tube is divided as shown in FIG. 5. As explained in the second embodiment of the present invention, by providing the obstacle 51 on the outer surface of the guide ring and combining the divided inner tubes shown in
An example of evaluation of the temperature of the guide ring 34A in the crossfire tube assembly (
In Table 1, in the conventional example (
In this test, the temperature of high-temperature gas flowing into the inner tube 21 is as low as 260° C. However, in an actual gas turbine combustor, high-temperature gas of approximately 1200° C. or more flows in. Therefore, a temperature difference is 100° C. or more. It is predicted that the temperature on the closed end 36 side in the conventional example (
Note that
[Third Embodiment]
An example of a gas turbine according to a third embodiment of the present invention is shown in
In
Further, in the gas turbine shown in
Note that the present invention is not limited to the embodiments explained above and includes various modifications. For example, the embodiments are explained in detail in order to clearly explain the present invention. The embodiments are not always limited to embodiments including all the components explained above. A part of the components of a certain embodiment can be substituted with the components of another embodiment. The components of another embodiment can also be added to the components of a certain embodiment. The other components can be added to, deleted from, and substituted with a part of the components of the embodiments.
Number | Date | Country | Kind |
---|---|---|---|
2016-156416 | Aug 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5402635 | Smith | Apr 1995 | A |
6334294 | Belsom | Jan 2002 | B1 |
8220246 | Widener | Jul 2012 | B2 |
8959925 | Romig | Feb 2015 | B2 |
20030188537 | Martling et al. | Oct 2003 | A1 |
20100107645 | Kollati | May 2010 | A1 |
20110067406 | Widener | Mar 2011 | A1 |
20150204543 | Kishida et al. | Jul 2015 | A1 |
20160003481 | Taniguchi et al. | Jan 2016 | A1 |
20170284680 | Okazaki | Oct 2017 | A1 |
20190137106 | Okazaki | May 2019 | A1 |
Number | Date | Country |
---|---|---|
102022752 | Apr 2011 | CN |
2 617 964 | Jul 2013 | EP |
3 032 176 | Jun 2016 | EP |
10-339440 | Dec 1998 | JP |
11-14056 | Jan 1999 | JP |
2010-106829 | May 2010 | JP |
10-2015-0110757 | Oct 2015 | KR |
WO 2016025054 | Feb 2016 | WO |
Entry |
---|
Korean-language Office Action issued in counterpart Korean Application No. 10-2017-0098493 dated Aug. 29, 2018 with English translation (11 pages). |
Chinese-language Search Report issued in counterpart Chinese Application No. 2017106717933 dated Dec. 20, 2018 with partial English translation (three (3) pages). |
Korean-language Notice of Final Rejection issued in counterpart Korean Application No. 10-2017-0098493 dated Feb. 27, 2019 with English translation (eight (8) pages). |
Extended European Search Report issued in counterpart European Application No. 17182231.5 dated Nov. 28, 2017 (five pages). |
Number | Date | Country | |
---|---|---|---|
20180045416 A1 | Feb 2018 | US |