Fluids used in industrial applications may accumulate solid particulates and form into a slurry. These fluids maybe oil-based, synthetic-based, and water-based. One example of a fluid circulated in an industrial environment may be a drilling fluid. Drilling fluid, often called “mud,” serves multiple purposes in the Oilfield industry. Drilling mud acts as a lubricant to lubricate rotary drill bits and facilitate faster drilling rates. Furthermore, the drilling mud counterbalances pressure encountered in the subterranean formation. Various weighting and lubrication agents are mixed into the drilling mud to obtain the right mixture for the type and construction of the formation to be drilled. Because the mud evaluation and mixture process may be time consuming and expensive, drillers and service companies prefer to reclaim the returned drilling mud and recycle it for continued use. Another purpose of the drilling mud is to carry the cuttings away from the drill bit to the surface. In the well bore, the cutting solids enter the drilling mud to form the slurry. To save time and expense, companies prefer to reuse the drilling mud instead of replacing it. However, the solids must be removed before the drilling mud maybe reused.
The recirculation of the fluid requires quick and efficient removal of the solids. One type of device used to remove solids is commonly referred to in the industry as a “shale shaker.” A shale shaker, also known as a vibratory separator, is a vibrating sieve-like table upon which the slurry is deposited and through which substantially cleaner fluid emerges. Typically, the shale shaker is an angled table with a generally perforated filter screen bottom. Returning slurry is deposited at the top of the shale shaker. As the slurry travels down the incline toward the lower end, the fluid component falls through the perforations to a reservoir below thereby leaving the solid particulate material behind. The combination of the angle of inclination with the vibrating action of the shale shaker table moves the solid particles left behind until they fall off the lower end of the shaker table.
Screens used with shale shakers are typically placed in a generally horizontal fashion on a generally horizontal bed or support within a basket in the shaker.
The basket in which the screens are mounted may be inclined towards a discharge end of the shale shaker. The shale shaker imparts a rapidly reciprocating motion to the basket and the screens. The slurry is poured onto a back end of the basket and flows toward a discharge end of the basket. Large particles that are unable to move through the screen remain on top of the screen and move toward the discharge end of the basket where they are collected. The fluids flow through the screen and collect in a reservoir beneath the screen. However, the throughput of the shale shaker is reduced by providing vibration at frequencies and motions that optimize the conveyance of the solids from the separating screens to the discharge end.
Additionally, the throughput of slurry processed by a solids control system is traditionally increased by connecting multiple shakers together. However, increasing the number of shakers increases the footprint of the solids control system. Increasing the footprint of the solids control system may be impractical for some applications. Furthermore, connecting multiple shakers increases the cost and complexity of the solids control system.
The embodiments disclosed herein related to systems and methods for separating solids from oil-based, synthetic-based and water-based fluids. More specifically, embodiments disclosed herein relate to systems and methods for separating solid from fluid using a cross-flow shaker. As used herein, a slurry refers to a mixture of fluid and solids. Cross-flow refers to a direction of flow that may be at least partially across the face of separating screens. Head pressure refers to pressure energy per unit weight of the slurry.
The head pipe 12 may be a pipe with a portion extending vertically to a height 22. Increasing the vertical height 22 of the head pipe 12 may increase the head pressure of the slurry and, as a result, may increase the pressure of the slurry as the slurry enters the intake pipe 14. The increased slurry pressure may result in improved separation of the fluid from the slurry through the screens 20A-20D.
The cross-flow chamber 18 may have a top 24 and a bottom 36. The top 24 of the cross-flow chamber 18 may be connected to a motor support frame 26. A space 28 between the motor support frame 26 and the screen 20B may provide space for the fluid to separate through screen 20B. The fluid that separates from the slurry through the screens 20A-20D may collect in a reservoir, a hopper or a collection pan (not shown) below the cross-flow shaker 10.
As shown in
As the slurry flows through the cross-flow chamber 18, the fluid phase of the slurry may separate from the solids phase of the slurry through the screens 20A-20D. The arrangement of the cross-flow chamber 18 and/or the vibration applied may substantially prevent solids from accumulating on a portion of the screens 20A-20D. As the slurry moves through the length of the cross-flow chamber 18 and the liquid separates, the slurry may become more concentrated. The concentrated slurry may flow to an end cap 32. The end cap 32 forms a wall on the end of the cross-flow chamber 18 opposite the intake pipe 14. The end cap 32 may have an end cap orifice 34 that may restrict the flow of the concentrated slurry from the cross-flow chamber 18. The restriction in the flow rate may cause back pressure on the slurry. The combination of the head provided by the head pipe 12 and the back pressure from the end cap orifice 34 may cause the liquid in the slurry to pass through the screens 20A-20D. The concentrated slurry may flow through the end cap orifice 34 into an additional stage of a solids control system which may include a drying shaker.
The bottom 36 of the cross-flow chamber 18 may be connected to a chamber support frame 38 that has connection points 40A, 40B and 40C. Resilient mounts 42A, 42B and 42C may be coupled to the connection points 40A, 40B and 40C. The resilient mounts 42A, 42B and 42C may connect the chamber support frame 38 to a base frame 44. The resilient mounts 42A, 42B and 42C may isolate the vibration of the cross-flow chamber 18 from the base frame 44. The resilient mounts 42A, 42B and 42C may be springs. The resilient mounts 42A, 42B and 42C may be any other device known to a person of ordinary skill in the art that may isolate vibration, such as hydraulic dampers and/or pneumatic isolators.
In the embodiment illustrated in
Referring to
In the embodiment illustrated in
The end cap orifice 34 may be fixed so that the diameter of end cap orifice 34 remains constant throughout the operation of the cross-flow shaker 10. In another embodiment, the end cap orifice 34 may be adjustable so that the diameter of the end cap orifice 34 may increase or decrease dynamically to compensate for varying flow rates into the cross-flow shaker 10. The adjustable end cap orifice 34 may be mechanically adjusted by a technician at the cross-flow shaker 10. Additionally, the adjustable end cap orifice 34 may be connected to a control system. In this embodiment, the the diameter of the opening 56 of the orifice may be controlled by an analog or digital signal. The control system may include a microprocessor or a proportional-integral-derivative controller. In one embodiment, the end cap orifice 34 may restrict the flow of the slurry from the cross-flow shaker 10. For example, the end cap orifice 34 may restrict the flow of concentrated slurry to 90 percent relative to the rate of flow of the slurry into the cross-flow chamber 18. For example, if the flow rate of the slurry entering the cross-flow chamber 18 is 1200 gallons per minute, the end cap orifice 34 may allow 120-240 gallons per minute of the slurry to flow from the cross-flow chamber 18.
Referring to
The top 24 of the cross-flow chamber 18 may be connected to the motor support frame 26. The bottom 36 of the cross-flow chamber 18 may be connected to the chamber support frame 38 that has connection points 40A, 40B and 40C. Resilient mounts 42A, 42B and 42C may be coupled to the connection points 40A, 40B and 40C. The resilient mounts 42A, 42B and 42C may connect the chamber support frame 38 to the base frame 44. The resilient mounts 42A, 42B and 42C may isolate the vibration of the cross-flow chamber 18 from the base frame 44.
As shown in
The embodiments disclosed herein may be used as part of the solids control system of an on-shore or an off-shore drilling operation. The fluid in the slurry may be a drilling mud used in drilling a well bore.
While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. Accordingly, the scope of the present disclosure should be limited only by the attached claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/823,619, filed 15 May 2013 (15/05/2013), the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/038023 | 5/15/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61823619 | May 2013 | US |