NONE.
This invention relates generally to work tables and more specifically to work tables used in operations that create airborne contaminants such as for example, welding fumes, grinding dust, etc.
The present invention generally relates to work tables, particularly work tables used for welding, grinding, etc. For example, work tables used in welding operations are typically heavy metal tables used to support the material to be welded. The tables are usually defined by a table top made of metal supported on metal legs. Some tables may also include side partitions to shield the welding operation.
As will be appreciated, welding operations create fumes and other airborne contaminants. Typically, the fumes are drawn into an air filtering system which filters the contaminants from the air and returns the filtered air to the work environment. The filtering system usually includes for example a work station and filter unit. The work station is typically an enclosed area surrounding the work table. The filter unit is operatively connected to the work station and draws air from the work station to filter the air.
In another example, a fume arm is used to extract and filter the contaminated air produced at the work table. These units can take various forms, but generally there is an air filter unit with a movable arm that can be moved into proximity to the work area. The fume arm pulls the contaminants from the area and the air is filtered through the air filtering unit.
Another example is known as a downdraft table where the work operations are performed on a slotted table or bar grate work surface or similar perforated surface. With this type of table, the contaminated air is drawn vertically down through the work surface, and then filtered through the air filtering unit
Known work tables and associated air filter systems generally require a large amount of floor space which is costly. The work table and air filtering unit are separate and generally require their own floor space. Additionally, the known units are not easily moved to different locations if desired. Also, the typical work tables and associated filter units cannot be arrayed easily to conserve space. An efficient array of multiple workstations is very desirable in applications such a welding training school to maximize the number of workstations that are able to be accommodated in a given area.
In some of the above examples, in particular the downdraft table, the generated fume is not captured in an effective manner, due to attempting to draw the air downwards when the positive buoyancy of the heated air and fume from welding operations or similar is causing the fume to rise and escape from being captured and filtered.
In addition, many of the above examples discharge the filtered air at the sides of the air filter unit, which either prohibits the workstations and filter units being placed closely adjacent side to side or back to back as the discharge area would become obstructed, or the air is blown forward toward the operator at the workstation causing annoyance and discomfort.
It is desirable to provide a self-contained work table and air filtering unit. A desirable work table and filtering unit would be compact to reduce the floor space required. Additionally, the work table and air filtering unit would be capable of being arrayed in the most desirable array to efficiently take advantage of available floor space. The work table would also efficiently and effectively filter the air and discharge the filtered air.
In general terms, this invention provides a compact work table and air filtering system in a single unit. The unit includes a housing with side panels and a back panel that have no protrusions which allows the unit to be arrayed side by side and back to back with other units to efficiently take advantage of available floor space. The unit houses a self-contained air filtering unit which employs a unique cross flow system to keep the system compact. The air intake path and the air exhaust path of the cross flow system are generally parallel to reduce the size of the unit.
The unit has access panels at the front of the unit for access to the operational components, the blower and fan and the filter. Having the access panels at the front allows easy access. The unit front also provides a unique cleanout system for removing particulates that are discharged during cleaning. The particulates are discharged from the filter and collected along a trough. The trough is operatively connected to a port that is adapted to receive a vacuum to vacuum the particulates form the trough.
These and other features and advantages of this invention will become more apparent to those skilled in the art from the detailed description of a preferred embodiment. The drawings that accompany the detailed description are described below.
The cross flow table of the present invention is shown generally at 10 in
Fork lift pockets 32 are provided on the bottom 20 to facilitate easy movement of the table 10 by a forklift. It will be appreciated by those of ordinary skill that other moving devices could be used to move the table 10, such as for example, wheels, tracks, skids, etc.
The cross flow housing 10 has a work surface 22, side walls or partitions 24 and an exposed back wall 26 defining an open workspace area. Positioned between the top panel 12 and the back wall 26 is an air intake 28 which in the disclosed embodiment includes a spark arrestor, see
The cross flow table can also include front access panels 38 and 40 which provide easy access to the blower unit which includes the motor and blower 50 and 52 respectively shown in
Additionally in
With reference to
In the disclosed embodiment, the filter 36 is a hollow cylindrical style filter. It will be appreciated by those of ordinary skill in the art that other types of filters could be used, for example flat filters, bag filters, etc.
Referring more specifically to
With reference to
The pulse tube 54 is used to inject compressed air into the interior of filter 36 to blow contaminants off the outer surface of filter 36 into a collection trough 59. In the disclosed embodiment, there are two collection troughs 59 on opposed sides of the filter 36. When the gauge, not shown, coupled through the gauge access port 42 indicates that the filter 36 has reached a certain level of contamination, the operator through manual operation will reverse pulse compressed air through the pulse tube 54 to create a positive pressure within the filter 36 blowing the contaminant from the outside of the filter 36 into the collection trough 59. In this way, the filter 36 can be repeatedly cleaned during operation and increase the life of the filter 36 substantially.
With reference to
In the disclosed embodiment, the collection trough 59 extends the full-length from the front panel 14 to the interior work area back wall 26. A suction gap 65 is created between the dust collection walls 62 and 64 and the interior floor 60. This gap in the disclosed embodiment is approximately 3/16 inches wide and extends the length of the collection trough 59. The gap 65 is in fluid communication with a suction chamber 67 which is in turn in fluid communication with the cleanout ports 44 and 46. In operation, a suction device, such as a shop vacuum with a hose and nozzle attachment can be inserted in to the ports 44 and 46 to create a vacuum within the suction chamber 67. This in turn creates a large vacuum at the very small gaps 65 to then suck the contaminants within the collection trough 59 through the gap 65 and out the ports 44 and 46 respectively.
In operation, a worker, for example a welder, will weld upon the work table 22 creating welding fumes. The blower motor 50 will be energized and blower fan 52 will pull air within the work area into the air intake 28. The air is then pulled through the intake air flow path and into the filter 36. The filter 36 allows air to pass through and retains the contaminants in the filter 36. The filtered air then passes through the exhaust flow path 49 and exits through the air exhaust 30.
As the contaminants accumulate on the filter 36, the effectiveness of the filter 36 is reduced. At a pre-determined accumulation, the filter 36 must be cleaned to ensure continued effectiveness. The differential pressure minihelic gauge will indicate when the filter 36 needs to be cleaned. Once the gauge indicates that cleaning is needed, the operator will manually initiate the cleaning cycle.
The cleaning cycle includes the reverse pulse of compressed air into the pulse tube 54. The pulse tube 54 injects compressed air into the interior of the filter 36. The compressed air blows the contaminants from the filter 36 and into the trough 59. The cleaning process can be done during operation of the blower motor 50 or when the blower motor 50 is not operational. The particulate from the filter 36 accumulates in the trough 59 and can be removed through the ports 44 and 46. To remove the accumulated particulates, a vacuum, such as a shop vacuum is inserted into the ports 44 and 46 to suck out the particulates. As described above, the particulates are pulled through the gap 65 into the suction chamber 67 and into to the vacuum.
The foregoing invention has been described in accordance with the relevant legal standards, thus the description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiment may become apparent to those skilled in the art and do come within the scope of the invention. Accordingly, the scope of legal protection afforded this invention can only be determined by studying the following claims.
This application claims the benefit of U.S. Provisional Application No. 62/235,675 filed Oct. 1, 2015, which is incorporated herein by reference in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 62235675 | Oct 2015 | US |