The present disclosure relates to a winding.
Windings and coils are electronic components that are suitable for generating or detecting a magnetic field. They are electrical components or are parts of electronic devices, such as electric motors, speakers, transformers or relays. Moreover, windings and coils are inductive passive components whose main characteristic is a defined in the inductance of the winding. As a passive component they can be employed in signal processing, in LC resonant circuits, low pass filters, high pass filters, for signal phase correction, for suppression of electrical interferences, for current flow smoothing or as energy storage as well as many other electrical applications.
Due to the high variety in the requirements for windings, windings can be found in all kind of sizes, shapes and forms. Nevertheless, a common structure for windings consists in a conductor which is wound around a form element, e.g., a bobbin, in order to form a plurality of adjacent turns. As the form element and the conductor, but also winding mandrels, rotators or other means and components employed for manufacturing the winding, are subjected to production tolerances themselves, the assembled windings exhibit a broad spread and deviations from the intended design, be it the inductance or the extent of the winding.
The above-illustrated issue may lead to a high reject of the produced winding, especially if the precise extent, the shape or the inductance of the winding is critical.
The object of the present disclosure is to provide a winding which allows the above-mentioned technical issues to be overcome.
This object is solved by the features of the independent claim.
A winding is provided, which comprises a form element having a longitudinal axis defining a longitudinal direction and a radial direction perpendicular to the longitudinal axis. The form element comprises a core with a lateral surface, and adjustable elements arranged on the lateral surface of the core. The adjustable elements are elongated and extend along the longitudinal direction. A thickness of the adjustable elements in a radial direction is altered along the longitudinal direction. A conductor is wound around the form element along the longitudinal direction forming turns of the winding.
Since the conductor is wound around the form element, which outer shape is defined by the adjustable elements, the properties of the winding, as the inductance and the extents of the winding, are determined by the design of the adjustable elements, which can be adapted by altering the thickness of them. In this way production tolerances of components building the winding as well as uncertainties introduced by means to manufacture the winding can be compensated by tuning the thickness of the adjustable elements along the longitudinal direction.
As an example, the thickness of the adjustable elements can increase or decrease linearly, or fluctuate along the longitudinal direction, depending on the required compensation and intended design of the winding.
The cross section of the form element perpendicular to the longitudinal axis can be symmetrical to a central point of the cross section to provide an even force distribution in the radial direction of the winding.
Also, the adjustable elements may be arranged uniformly on the lateral surface of the core. As in this configuration the conductor may rest on the evenly distributed adjustable elements, radial forces generated during operation of the winding apply evenly on the core, stabilizing the winding.
For example, 12, 16, 24 or 36 adjustable elements may be arranged on the lateral surface of the core. Depending on the perimeter of the core and the width of the adjustable elements, these number are suited for generating a uniform distribution of the adjustable elements on the core and providing a sound support for the conductor.
In an embodiment the thickness of the adjustable elements in a radial direction can alter gradually along the longitudinal direction. An abrupt change in the thickness of the adjustable elements could lead to a sharp edge on the surface of the adjustable element facing the conductor. This sharp edge in turn might potentially damage the conductor or an electrical insulation on the conductor. By altering the thickness of the adjustable elements gradually, edges as a source of danger are prevented.
The thickness of the adjustable elements in a radial direction may vary by an amount of 0.1 mm to 10 mm along the longitudinal direction. Depending on the production tolerance of the components building the winding more or less variation in the thickness of the adjustable elements is required to compensate the error and achieve the intended properties.
Additionally, the adjustable elements can comprise stacked layers, wherein the thickness of the adjustable elements in a radial direction can be altered by removed or added layers along the longitudinal direction. The layers themselves may have the same thickness or different thicknesses. If different thicknesses of layers are employed the process for altering the thickness of the adjustable elements can be optimized, as the desired thickness can be achieved with less added or removed layers. Furthermore, the layer may be relatively flexible. Thus, the layers can be bent in order to add or remove a layer from in between the stack, and a covering layer facing the conductor can adapt to the variation in thickness of the adjustable elements in a radial direction.
The layers may comprise a first type of layer and a second type of layer, wherein the first type of layer has a greater thickness than the second type of layer. Moreover, the thickness of the adjustable element can be altered along the longitudinal direction by either a removed at least one second type of layer, or by an added at least one second type of layer. As the second type of layer is thinner than the first type of layer, a smaller increment for altering the thickness of the adjustable element can be achieved. The thicker first type of layer meanwhile contributes to the solidity of the adjustable element.
According to one embodiment at least one second type of layer may be arranged on the core in a radial direction and one first type of layer can be stacked on the at least one first type of layer. The thickness of the adjustable element can be altered along the longitudinal direction by either a removed at least one second type of layer, or by an added at least one second type of layer added in between the core and the first type of layer. Therefore, the first type of layer covers and adapts to the edge generated by the removed or added layer altering the thickness of the adjustable elements gradually along the longitudinal direction.
Additionally, a further first type of layer can be arranged on the one first type of layer in a radial direction, and the thickness of the adjustable element may be altered along the longitudinal direction by either a removed at least one second type of layer, or by an added at least one second type of layer added in between the core and the further first type of layer. Adding the at least one second type of layer in between the first type of layers may be beneficial as the first type of layer, which are thicker than the second type of layers, aids in fixing the added second type of layer.
In another embodiment one first type of layer can be arranged on the core in a radial direction and at least one second type of layer can be stacked on the at least one first type of layer, and a second first type of layer can be stacked on the at least one second type of layer. The thickness of the adjustable element may be altered along the longitudinal direction by either a removed at least one second type of layer, or by an added at least one second type of layer added in between the first type of layers. The first type of layer arranged on the core is more durable compared to an alternative of a second type of layer and forms a stable socket for the sacked layers on top. The second first type of layer assists in holding the second type of layer on the first type of layer arranged on the core. Moreover, the second first type of layer being more robust, helps to protect the stacked layer and provides a sound support surface for the wound conductor.
The first type of layer can have a thickness of 3 mm to 10 mm and the second type layer can have a thickness of 0.1 mm to 0.5 mm. The thickness range of 3 mm to 10 mm for the first type of layer allows the first type of layer to be still relatively flexible, which may ease to add or remove a layer during manufacturing process of the winding, while being solid enough to form a loadable adjustable element. The second type of layer with a thickness range of 0.1 mm to 0.5 mm permits a precise adjustment of the thickness of adjustable elements and yet being workable with in the manufacturing process.
Moreover, the layers can be adhered to each other or the core at discrete spots along the longitudinal direction. Depending on the material of the layer and its surface roughness a suitable adhesive or glue can be used. Not adhering the layer over the whole longitudinal length facilitates to add or remove a layer, because just the discrete spots of adhesive have to be loosened for removing a layer or subjoined to add a layer. According to one embodiment the layers can be adhered to each other or the core along a certain length in a longitudinal direction at the beginning or perhaps the end of the adjustable element to enhance the cohesion of the layers.
The layers may comprise materials based on cellulose fiber as paper, pressboard, cardboard, wooden strips, wooden sticks, batten or materials based on a polymer as DDP, epoxy or silicone. These materials are relatively inexpensive and durable enough, notably in an oil which is commonly used for cooling purposes. Besides, these materials are relatively elastic, which can be convenient for the manufacturing process.
In a further embodiment spacer elements may be arranged in between the turns of the winding. The spacer elements may consist of an electrically insulating material in order to prevent short circuits between the turns. By arranging the spacer elements along the longitudinal direction, the winding structure can be consolidated.
Additionally, the spacer elements can be located above the adjustable elements in a radial direction. According to this embodiment spacer elements are located above the adjustable elements, improving the stability of the winding.
In the following, embodiments are described with reference to the figures. Same parts or parts with equivalent effect are referred to by the same reference numbers.
The figures serve solely to illustrate the invention and are therefore only schematic and not drawn to scale. Some parts may be exaggerated or distorted in the dimensions. Therefore, neither absolute nor relative dimensions can be taken from the figures. Identical or identically acting parts are provided with the same reference numerals.
The thickness of the adjustable elements 4 is altered along the longitudinal direction L in order to make up for the production tolerances of the conductor 5 and the core 3. In the embodiment shown in
Due to the altered thickness of the adjustable elements, the turns 6 of the winding 1 can be shifted a bit in the radial direction R, as shown in
Exemplary, all the adjustable elements 4 comprise the first and second type of layer 8 in the beginning of the winding 1. Along the longitudinal direction L, the thickness of the adjustable element 4 is altered by removing second type of layers 8b from two adjustable elements 4 symmetrically on opposite sides of the core 3 as shown in
As can be seen in
In the embodiment shown in
The adjustable element 4 shown in
It has to be noticed that the present disclosure is not limited to the layouts described before and that further layouts can be retrieved by combination of features taken from different figures and embodiments.
Number | Date | Country | Kind |
---|---|---|---|
20206321.0 | Nov 2020 | EP | regional |
This application is a 35 U.S.C. § 371 national stage application of PCT International Application No. PCT/EP2021/080368 filed on Nov. 2, 2021, which in turn claims priority to European Patent Application No. 20206321.0, filed on Nov. 6, 2020, the disclosures and content of which are incorporated by reference herein in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/080368 | 11/2/2021 | WO |