Generally, the invention relates to the field of electrical connectors. More particularly, the invention relates to lightweight, low cost, high density electrical connectors that provide impedance controlled, high-speed, low interference communications, even in the absence of shields between the contacts, and that provide for a variety of other benefits not found in prior art connectors.
Electrical connectors provide signal connections between electronic devices using signal contacts. Often, the signal contacts are so closely spaced that undesirable interference, or “cross talk,” occurs between adjacent signal contacts. As used herein, the term “adjacent” refers to contacts (or rows or columns) that are next to one another. Cross talk occurs when one signal contact induces electrical interference in an adjacent signal contact due to intermingling electrical fields, thereby compromising signal integrity. With electronic device miniaturization and high speed, high signal integrity electronic communications becoming more prevalent, the reduction of cross talk becomes a significant factor in connector design.
One commonly used technique for reducing cross talk is to position separate electrical shields, in the form of metallic plates, for example, between adjacent signal contacts. The shields act to block cross talk between the signal contacts by blocking the intermingling of the contacts' electric fields.
Because of the demand for smaller, lower weight communications equipment, it is desirable that connectors be made smaller and lower in weight, while providing the same performance characteristics. Shields take up valuable space within the connector that could otherwise be used to provide additional signal contacts, and thus limit contact density (and, therefore, connector size). Additionally, manufacturing and inserting such shields substantially increase the overall costs associated with manufacturing such connectors. In some applications, shields are known to make up 40% or more of the cost of the connector. Another known disadvantage of shields is that they lower impedance. Thus, to make the impedance high enough in a high contact density connector, the contacts would need to be so small that they would not be robust enough for many applications.
The dielectrics that are typically used to insulate the contacts and retain them in position within the connector also add undesirable cost and weight.
Therefore, a need exists for a lightweight, high-speed electrical connector (i.e., one that operates above 1 Gb/s and typically in the range of about 10 Gb/s) that reduces the occurrence of cross talk without the need for separate shields, and provides for a variety of other benefits not found in prior art connectors.
An electrical connector according to the invention may include a first signal contact positioned within a first linear array of electrical contacts and a second signal contact positioned within a second linear array of electrical contacts that is adjacent to the first linear array. Either of the signal contacts may be a single-ended signal conductor, or one of a differential signal pair. The connector may be devoid of shields between the signal contacts. The connector may be devoid of shields between the first linear array and the second linear array. The connector may be devoid of ground contacts adjacent to the signal contacts.
The connector may include a third signal contact or a ground contact disposed within the first linear array adjacent to the first signal contact. The first and third signal contacts may have a gap between them of between about 0.3 mm and 0.4 mm, and may be edge-coupled to one another. Such a connector may comprise a first column of electrical contacts comprising a first arrangement of differential signal pairs separated from one another by first ground contacts, a second column of electrical contacts comprising a second arrangement of differential signal pairs separated from one another by second ground contacts, wherein one differential signal pair in the second arrangement of differential signal pairs is a victim differential signal pair, and a third column of electrical contacts comprising a third arrangement of differential signal pairs separated from one another by third ground contacts. The second column may be adjacent to the first column, and the third column adjacent to the second column. The connector may be devoid of electrical shields between the first column and the second column, and between the second column and the third column. The contacts in the first column may be spaced apart from the contacts in the second column by a column-spacing distance of about 1.8–2.0 millimeters, and the contacts in the second column may be spaced apart from the contacts in the third column by the same column-spacing distance. Each of the differential signal pairs may define a gap distance between the electrical contacts that form the pair. The gap distance relative to the column-spacing distance may be such that differential signals with rise times of 200 picoseconds in the six differential signal pairs in the first, second, and third columns that are closest to the victim pair produce no more than 6% worst-case, multi-active cross talk on the victim differential signal pair.
The connector may be a high-speed connector, i.e., a connector that operates at signal speeds in a range of about one gigabit/sec to about ten gigabits/sec. Such a high-speed connector may comprise a first column of electrical contacts comprising a first arrangement of differential signal pairs each separated from one another by first ground contacts a second column of electrical contacts comprising a second arrangement of differential signal pairs each separated from one another by second ground contacts, wherein one differential signal pair in the second arrangement of differential signal pairs is a victim pair and a third column of electrical contacts comprising a third arrangement of differential signal pairs each separated from one another by third ground contacts. The second column may be adjacent to the first column, and the third column may be adjacent to the second column. The connector may be devoid of electrical shields between the first column and the second column, and between the second column and the third column. The first column, the second column, and the third column may be evenly spaced apart from one another by an equal column-spacing distance of about 1.8 to 2 millimeters. Each of the differential signal pairs may define a gap distance between electrical contacts that form each differential signal pair. The gap distance relative to the column-spacing distance may be such that differential signals with rise times of 40 picoseconds in the six differential signal pairs in the first, second, and third columns that are closest to the victim pair produce no more than an acceptable level of worst-case, multi-active cross talk on the victim pair.
The invention is further described in the detailed description that follows, by reference to the noted drawings by way of non-limiting illustrative embodiments of the invention, in which like reference numerals represent similar parts throughout the drawings, and wherein:
Certain terminology may be used in the following description for convenience only and should not be considered as limiting the invention in any way. For example, the terms “top,” “bottom,” “left,” “right,” “upper,” and “lower” designate directions in the figures to which reference is made. Likewise, the terms “inwardly” and “outwardly” designate directions toward and away from, respectively, the geometric center of the referenced object. The terminology includes the words above specifically mentioned, derivatives thereof, and words of similar import.
I-Shaped Geometry for Electrical Connectors—Theoretical Model
The originally contemplated I-shaped transmission line geometry is shown in
The lines 30, 32, 34, 36 and 38 in
Given the mechanical constraints on a practical connector design, it was found in actuality that the proportioning of the signal conductor (blade/beam contact) width and dielectric thicknesses could deviate somewhat from the preferred ratios and some minimal interference might exist between adjacent signal conductors. However, designs using the above-described I-shaped geometry tend to have lower cross talk than other conventional designs.
Exemplary Factors Affecting Cross Talk Between Adjacent Contacts
In accordance with the invention, the basic principles described above were further analyzed and expanded upon and can be employed to determine how to even further limit cross talk between adjacent signal contacts, even in the absence of shields between the contacts, by determining an appropriate arrangement and geometry of the signal and ground contacts.
Thus, as shown in
Through further analysis of the above-described I-shaped model, it has been found that the unity ratio of height to width is not as critical as it first seemed. It has also been found that a number of factors can affect the level of cross talk between adjacent signal contacts. A number of such factors are described in detail below, though it is anticipated that there may be others. Additionally, though it is preferred that all of these factors be considered, it should be understood that each factor may, alone, sufficiently limit cross talk for a particular application. Any or all of the following factors may be considered in determining a suitable contact arrangement for a particular connector design:
a) Less cross talk has been found to occur where adjacent contacts are edge-coupled (i.e., where the edge of one contact is adjacent to the edge of an adjacent contact) than where adjacent contacts are broad side coupled (i.e., where the broad side of one contact is adjacent to the broad side of an adjacent contact) or where the edge of one contact is adjacent to the broad side of an adjacent contact. The tighter the edge coupling, the less the coupled signal pair's electrical field will extend towards an adjacent pair and the less the towards the unity height-to-width ratio of the original I-shaped theoretical model a connector application will have to approach. Edge coupling also allows for smaller gap widths between adjacent connectors, and thus facilitates the achievement of desirable impedance levels in high contact density connectors without the need for contacts that are too small to perform adequately. For example, it has been found than a gap of about 0.3–0.4 mm is adequate to provide an impedance of about 100 ohms where the contacts are edge coupled, while a gap of about 1 mm is necessary where the same contacts are broad side coupled to achieve the same impedance. Edge coupling also facilitates changing contact width, and therefore gap width, as the contact extends through dielectric regions, contact regions, etc.;
b) It has also been found that cross talk can be effectively reduced by varying the “aspect ratio,” i.e., the ratio of column pitch (i.e., the distance between adjacent columns) to the gap between adjacent contacts in a given column;
c) The “staggering” of adjacent columns relative to one another can also reduce the level of cross talk. That is, cross talk can be effectively limited where the signal contacts in a first column are offset relative to adjacent signal contacts in an adjacent column. The amount of offset may be, for example, a full row pitch (i.e., distance between adjacent rows), half a row pitch, or any other distance that results in acceptably low levels of cross talk for a particular connector design. It has been found that the optimal offset depends on a number of factors, such as column pitch, row pitch, the shape of the terminals, and the dielectric constant(s) of the insulating material(s) around the terminals, for example. It has also been found that the optimal offset is not necessarily “on pitch,” as was often thought. That is, the optimal offset may be anywhere along a continuum, and is not limited to whole fractions of a row pitch (e.g., full or half row pitches).
As shown in the graph of
d) Through the addition of outer grounds, i.e., the placement of ground contacts at alternating ends of adjacent contact columns, both near-end cross talk (“NEXT”) and far-end cross talk (“FEXT”) can be further reduced;
e) It has also been found that scaling the contacts (i.e., reducing the absolute dimensions of the contacts while preserving their proportional and geometric relationship) provides for increased contact density (i.e., the number of contacts per linear inch) without adversely affecting the electrical characteristics of the connector.
By considering any or all of these factors, a connector can be designed that delivers high-performance (i.e., low incidence of cross talk), high-speed (e.g., greater than 1 Gb/s and typically about 10 Gb/s) communications even in the absence of shields between adjacent contacts. It should also be understood that such connectors and techniques, which are capable of providing such high speed communications, are also useful at lower speeds. Connectors according to the invention have been shown, in worst case testing scenarios, to have near-end cross talk of less than about 3% and far-end cross talk of less than about 4%, at 40 picosecond rise time, with 63.5 mated signal pairs per linear inch. Such connectors can have insertion losses of less than about 0.7 dB at 5 GHz, and impedance match of about 100±8 ohms measured at a 40 picosecond rise time.
Exemplary Contact Arrangements According to the Invention
Alternatively, as shown in
By comparison of the arrangement shown in
Regardless of whether the signal pairs are arranged into rows or columns, each differential signal pair has a differential impedance Z0 between the positive conductor Sx+ and negative conductor Sx− of the differential signal pair. Differential impedance is defined as the impedance existing between two signal conductors of the same differential signal pair, at a particular point along the length of the differential signal pair. As is well known, it is desirable to control the differential impedance Z0 to match the impedance of the electrical device(s) to which the connector is connected. Matching the differential impedance Z0 to the impedance of electrical device minimizes signal reflection and/or system resonance that can limit overall system bandwidth. Furthermore, it is desirable to control the differential impedance Z0 such that it is substantially constant along the length of the differential signal pair, i.e., such that each differential signal pair has a substantially consistent differential impedance profile.
The differential impedance profile can be controlled by the positioning of the signal and ground conductors. Specifically, differential impedance is determined by the proximity of an edge of signal conductor to an adjacent ground and by the gap between edges of signal conductors within a differential signal pair.
As shown in
For single ended signaling, single ended impedance can also be controlled by positioning of the signal and ground conductors. Specifically, single ended impedance is determined by the gap between a signal conductor and an adjacent ground. Single ended impedance is defined as the impedance existing between a signal conductor and ground, at a particular point along the length of a single ended signal conductor.
To maintain acceptable differential impedance control for high bandwidth systems, it is desirable to control the gap between contacts to within a few thousandths of an inch. Gap variations beyond a few thousandths of an inch may cause unacceptable variation in the impedance profile; however, the acceptable variation is dependent on the speed desired, the error rate acceptable, and other design factors.
As described above, by offsetting the columns, the level of multi-active cross talk occurring in any particular terminal can be limited to a level that is acceptable for the particular connector application. As shown in
Exemplary Connector Systems According to the Invention
As can be seen, first section 801 comprises a plurality of modules 805. Each module 805 comprises a column of conductors 830. As shown, first section 801 comprises six modules 805 and each module 805 comprises six conductors 830; however, any number of modules 805 and conductors 830 may be used. Second section 802 comprises a plurality of modules 806. Each module 806 comprises a column of conductors 840. As shown, second section 802 comprises six modules 806 and each module 806 comprises six conductors 840; however, any number of modules 806 and conductors 840 may be used.
Each module 806 comprises a plurality of conductors 840 secured in frame 852. Each conductor 840 comprises a contact interface 841 and a connection pin 842. Each contact interface 841 extends from frame 852 for connection to a blade 836 of first section 801. Each contact interface 840 is also electrically connected to a connection pin 842 that extends from frame 852 for electrical connection to second electrical device 812.
Each module 805 comprises a first hole 856 and a second hole 857 for alignment with an adjacent module 805. Thus, multiple columns of conductors 830 may be aligned. Each module 806 comprises a first hole 847 and a second hole 848 for alignment with an adjacent module 806. Thus, multiple columns of conductors 840 may be aligned.
Module 805 of connector 800 is shown as a right angle module. That is, a set of first connection pins 832 is positioned on a first plane (e.g., coplanar with first electrical device 810) and a set of second connection pins 842 is positioned on a second plane (e.g., coplanar with second electrical device 812) perpendicular to the first plane. To connect the first plane to the second plane, each conductor 830 turns a total of about ninety degrees (a right angle) to connect between electrical devices 810 and 812.
To simplify conductor placement, conductors 830 can have a rectangular cross section; however, conductors 830 may be any shape. In this embodiment, conductors 830 have a high ratio of width to thickness to facilitate manufacturing. The particular ratio of width to thickness may be selected based on various design parameters including the desired communication speed, connection pin layout, and the like.
Returning now to illustrative connector 800 of
In addition to conductor placement, differential impedance and insertion losses are also affected by the dielectric properties of material proximate to the conductors. Generally, it is desirable to have materials having very low dielectric constants adjacent and in contact with as much as the conductors as possible. Air is the most desirable dielectric because it allows for a lightweight connector and has the best dielectric properties. While frame 850 and frame 852 may comprise a polymer, a plastic, or the like to secure conductors 830 and 840 so that desired gap tolerances may be maintained, the amount of plastic used is minimized. Therefore, the rest of connector comprises an air dielectric and conductors 830 and 840 are positioned both in air and only minimally in a second material (e.g., a polymer) having a second dielectric property. Therefore, to provide a substantially constant differential impedance profile, in the second material, the spacing between conductors of a differential signal pair may vary.
As shown, the conductors can be exposed primarily to air rather than being encased in plastic. The use of air rather than plastic as a dielectric provides a number of benefits. For example, the use of air enables the connector to be formed from much less plastic than conventional connectors. Thus, a connector according to the invention can be made lower in weight than convention connectors that use plastic as the dielectric. Air also allows for smaller gaps between contacts and thereby provides for better impedance and cross talk control with relatively larger contacts, reduces cross-talk, provides less dielectric loss, increases signal speed (i.e., less propagation delay).
Through the use of air as the primary dielectric, a lightweight, low-impedance, low cross talk connector can be provided that is suitable for use as a ball grid assembly (“BGA”) right-angle connector. Typically, a right angle connector is “off-balance, i.e., disproportionately heavy in the mating area. Consequently, the connector tends to “tilt” in the direction of the mating area. Because the solder balls of the BGA, while molten, can only support a certain mass, prior art connectors typically are unable to include additional mass to balance the connector. Through the use of air, rather than plastic, as the dielectric, the mass of the connector can be reduced. Consequently, additional mass can be added to balance the connector without causing the molten solder balls to collapse.
As shown in
As can be seen, within frame 852, conductor 840 jogs, either inward or outward to maintain a substantially constant differential impedance profile and to mate with connectors on second electrical device 812. For arrangement into columns, conductors 830 and 840 are positioned along a centerline of frames 850, 852, respectively.
As shown in
Plug 902 comprises housing 905 and a plurality of lead assemblies 908. The housing 905 is configured to contain and align the plurality of lead assemblies 908 such that an electrical connection suitable for signal communication is made between a first electrical device 910 and a second electrical device 912 via receptacle 1100. In one embodiment of the invention, electrical device 910 is a backplane and electrical device 912 is a daughtercard. Electrical devices 910 and 912 may, however, be any electrical device without departing from the scope of the invention.
As shown, the connector 902 comprises a plurality of lead assemblies 908. Each lead assembly 908 comprises a column of terminals or conductors 930 therein as will be described below. Each lead assembly 908 comprises any number of terminals 930.
In one embodiment, the housing 905 is made of plastic, however, any suitable material may be used. The connections to electrical devices 910 and 912 may be surface or through mount connections.
As is also shown in
As shown, the ground contacts 937A and 937B extend a greater distance from the insert molded lead assembly 933. As shown in
Lead assembly 908 of connector 900 is shown as a right angle module. To explain, a set of first connection pins 932 is positioned on a first plane (e.g., coplanar with first electrical device 910) and a set of second connection pins 942 is positioned on a second plane (e.g., coplanar with second electrical device 912) perpendicular to the first plane. To connect the first plane to the second plane, each conductor 930 is formed to extend a total of about ninety degrees (a right angle) to electrically connect electrical devices 910 and 912.
To simplify conductor placement, conductors 930 have a rectangular cross section as shown in
Receptacle 1100 includes a plurality of receptacle contact assemblies 1160 each containing a plurality of terminals (only the tails of which are shown). The terminals provide the electrical pathway between the connector 900 and any mated electrical device (not shown).
In another embodiment of the invention, it is contemplated that the offset distance, d, may vary throughout the length of the terminals in the connector. In this manner, the offset distance may vary along the length of the terminal as well as at either end of the conductor. To illustrate this embodiment and referring now to
In accordance with the invention, the offset of adjacent columns may vary along the length of the terminals within the lead assembly. More specifically, the offset between adjacent columns varies according to adjacent sections of the terminals. In this manner, the offset distance between columns is different in section A of the terminals than in section B of the terminals.
As shown in
Similarly,
In another embodiment of the invention, to further reduce cross talk, the offset between adjacent terminal columns is different than the offset between vias on a mated printed circuit board. A via is conducting pathway between two or more layers on a printed circuit board. Typically, a via is created by drilling through the printed circuit board at the appropriate place where two or more conductors will interconnect.
To illustrate such an embodiment,
In accordance with this embodiment of the invention, the offset between adjacent terminal columns is different than the offset between vias on a mated printed circuit board. Specifically, as shown in
To attain desirable gap tolerances over the length of conductors 903, connector 900 may be manufactured by the method as illustrated in
Preferably, to provide the best performance, the current carrying path through the connector should be made as highly conductive as possible. Because the current carrying path is known to be on the outer portion of the contact, it is desirable that the contacts be plated with a thin outer layer of a high conductivity material. Examples of such high conductivity materials include gold, copper, silver, a tin alloy.
It is to be understood that the foregoing illustrative embodiments have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the invention. Words which have been used herein are words of description and illustration, rather than words of limitation. Further, although the invention has been described herein with reference to particular structure, materials and/or embodiments, the invention is not intended to be limited to the particulars disclosed herein. Rather, the invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims. Those skilled in the art, having the benefit of the teachings of this specification, may affect numerous modifications thereto and changes may be made without departing from the scope and spirit of the invention in its aspects.
This application is a continuation of U.S. patent application Ser. No. 10/294,966, filed Nov. 14, 2002, now U.S. Pat. No. 6,976,886 which is a continuation-in-part of U.S. patent application Ser. No. 09/990,794, filed Nov. 14, 2001, now U.S. Pat. No. 6,692,272, and of U.S. patent application Ser. No. 10/155,786, filed May 24, 2002, now U.S. Pat. No. 6,652,318. The contents of each of the above-referenced patents and patent applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3286220 | Marley et al. | Nov 1966 | A |
3538486 | Shlesinger, Jr. | Nov 1970 | A |
3669054 | Desso et al. | Jun 1972 | A |
3748633 | Lundergan | Jul 1973 | A |
4076362 | Ichimura | Feb 1978 | A |
4159861 | Anhalt | Jul 1979 | A |
4260212 | Ritchie et al. | Apr 1981 | A |
4288139 | Cobaugh et al. | Sep 1981 | A |
4383724 | Verhoeven | May 1983 | A |
4402563 | Sinclair | Sep 1983 | A |
4560222 | Dambach | Dec 1985 | A |
4717360 | Czaja | Jan 1988 | A |
4776803 | Pretchel et al. | Oct 1988 | A |
4815987 | Kawano et al. | Mar 1989 | A |
4867713 | Ozu et al. | Sep 1989 | A |
4907990 | Bertho et al. | Mar 1990 | A |
4913664 | Dixon et al. | Apr 1990 | A |
4973271 | Ishizuka et al. | Nov 1990 | A |
5066236 | Broeksteeg | Nov 1991 | A |
5077893 | Mosquera et al. | Jan 1992 | A |
5174770 | Sasaki et al. | Dec 1992 | A |
5238414 | Yaegashi et al. | Aug 1993 | A |
5254012 | Wang | Oct 1993 | A |
5274918 | Reed | Jan 1994 | A |
5277624 | Champion et al. | Jan 1994 | A |
5286212 | Broeksteeg | Feb 1994 | A |
5302135 | Lee | Apr 1994 | A |
5342211 | Broeksteeg | Aug 1994 | A |
5356300 | Costello et al. | Oct 1994 | A |
5356301 | Champion et al. | Oct 1994 | A |
5357050 | Baran et al. | Oct 1994 | A |
5431578 | Wayne | Jul 1995 | A |
5475922 | Tamura et al. | Dec 1995 | A |
5558542 | O'Sullivan et al. | Sep 1996 | A |
5586914 | Foster, Jr. et al. | Dec 1996 | A |
5590463 | Feldman et al. | Jan 1997 | A |
5609502 | Thumma | Mar 1997 | A |
5713746 | Olson et al. | Feb 1998 | A |
5730609 | Harwath | Mar 1998 | A |
5741144 | Elco et al. | Apr 1998 | A |
5741161 | Cahaly et al. | Apr 1998 | A |
5795191 | Preputnick et al. | Aug 1998 | A |
5817973 | Elco | Oct 1998 | A |
5853797 | Fuchs et al. | Dec 1998 | A |
5908333 | Perino et al. | Jun 1999 | A |
5961355 | Morlion et al. | Oct 1999 | A |
5967844 | Doutrich et al. | Oct 1999 | A |
5971817 | Longueville | Oct 1999 | A |
5980321 | Cohen et al. | Nov 1999 | A |
5993259 | Stokoe et al. | Nov 1999 | A |
6050862 | Ishii | Apr 2000 | A |
6068520 | Winings et al. | May 2000 | A |
6116926 | Ortega et al. | Sep 2000 | A |
6123554 | Ortega et al. | Sep 2000 | A |
6125535 | Chiou et al. | Oct 2000 | A |
6129592 | Mickievicz et al. | Oct 2000 | A |
6139336 | Olson | Oct 2000 | A |
6146157 | Lenoir et al. | Nov 2000 | A |
6146203 | Elco et al. | Nov 2000 | A |
6190213 | Reichart et al. | Feb 2001 | B1 |
6212755 | Shimada et al. | Apr 2001 | B1 |
6219913 | Uchiyama | Apr 2001 | B1 |
6220896 | Bertoncici et al. | Apr 2001 | B1 |
6227882 | Ortega et al. | May 2001 | B1 |
6269539 | Takahashi et al. | Aug 2001 | B1 |
6293827 | Stokoe et al. | Sep 2001 | B1 |
6319075 | Clark et al. | Nov 2001 | B1 |
6322379 | Ortega et al. | Nov 2001 | B1 |
6322393 | Doutrich et al. | Nov 2001 | B1 |
6328602 | Yamasaki et al. | Dec 2001 | B1 |
6343955 | Billman et al. | Feb 2002 | B1 |
6347952 | Hasegawa et al. | Feb 2002 | B1 |
6350134 | Fogg et al. | Feb 2002 | B1 |
6354877 | Shuey et al. | Mar 2002 | B1 |
6358061 | Regnier | Mar 2002 | B1 |
6361366 | Shuey et al. | Mar 2002 | B1 |
6363607 | Chen et al. | Apr 2002 | B1 |
6364710 | Billman et al. | Apr 2002 | B1 |
6371773 | Crofoot et al. | Apr 2002 | B1 |
6379188 | Cohen et al. | Apr 2002 | B1 |
6386914 | Collins et al. | May 2002 | B1 |
6409543 | Astbury et al. | Jun 2002 | B1 |
6431914 | Billman | Aug 2002 | B1 |
6435914 | Billman | Aug 2002 | B1 |
6461202 | Kline | Oct 2002 | B1 |
6471548 | Bertoncini et al. | Oct 2002 | B1 |
6482038 | Olson | Nov 2002 | B1 |
6485330 | Doutrich | Nov 2002 | B1 |
6494734 | Shuey | Dec 2002 | B1 |
6506081 | Blanchfield et al. | Jan 2003 | B1 |
6520803 | Dunn | Feb 2003 | B1 |
6527587 | Ortega et al. | Mar 2003 | B1 |
6537111 | Brammer et al. | Mar 2003 | B1 |
6540559 | Kemmick et al. | Apr 2003 | B1 |
6554647 | Cohen et al. | Apr 2003 | B1 |
6572410 | Volstorf et al. | Jun 2003 | B1 |
6652318 | Winings et al. | Nov 2003 | B1 |
6692272 | Lemke et al. | Feb 2004 | B1 |
6695627 | Ortega et al. | Feb 2004 | B1 |
6776649 | Pape et al. | Aug 2004 | B1 |
6843686 | Ohnishi et al. | Jan 2005 | B1 |
6851974 | Doutrich | Feb 2005 | B1 |
6869292 | Johnescu et al. | Mar 2005 | B1 |
6913490 | Whiteman, Jr. et al. | Jul 2005 | B1 |
6981883 | Raistrick et al. | Jan 2006 | B1 |
20020143894 | Takayama | Oct 2002 | A1 |
20030220021 | Whiteman, Jr. et al. | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
0 273 683 | Mar 1993 | EP |
1 148 587 | Apr 2005 | EP |
06-236778 | Aug 1994 | JP |
07-114958 | May 1995 | JP |
2000-003743 | Jan 2000 | JP |
2000-003744 | Jan 2000 | JP |
2000-003745 | Jan 2000 | JP |
2000-003746 | Jan 2000 | JP |
WO 0129931 | Apr 2001 | WO |
WO 0139332 | May 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050287849 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10294966 | Nov 2002 | US |
Child | 11052167 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10155786 | May 2002 | US |
Child | 10294966 | US | |
Parent | 09990794 | Nov 2001 | US |
Child | 10155786 | US |