The present invention relates generally to training equipment. More specifically, the present invention introduces a treadmill that can be used for cross-training activities such as strength training.
Individuals who intend to lose weight, prepare for an event, or in general achieve personal fitness goals engage in different forms of cardiovascular exercises. Walking and jogging are some of the most favored cardiovascular exercises among individuals of all ages. Since outdoor running and walking is not possible throughout the year, treadmills have a high demand among these users who prefer running or walking as a cardiovascular exercise.
Even though treadmills have numerous cardiovascular benefits, the effectiveness of the workout can be maximized by integrating strength training along with the cardiovascular workout. However, existing treadmills do not allow the user to engage in strength training and cardiovascular activities simultaneously. If the user prefers to incorporate strength training, the user needs to execute the strength training workout and the cardiovascular workout separately. As experienced by many individuals, the need to have two separate sessions for the cardiovascular workout and the strength training workout can be time consuming. Therefore, the need for a method that can combine both strength training and cardiovascular training is clear.
The lack of space is another issue that occurs when attempting to execute cardiovascular workouts and strength training exercises. Since the treadmill that is used for cardiovascular training and the weight equipment that is used for strength training need to be placed separately, a considerable amount of space is needed. Unless the individual has access to a health center, dedicating space for a treadmill and weight equipment may not always be practical.
The objective of the present invention is to address the aforementioned issues. In particular, the present invention is an apparatus that allows the user to obtain the benefits of treadmill training and also the benefits of strength training. In doing so, the present invention resolves issues such as the lack of time and the lack of space. Since the user can engage in cardiovascular training and strength training simultaneously, efficiency of the training session is maximized. On the other hand, since the weight equipment and the treadmill are available as a single unit, the issue of not having sufficient space is also resolved.
An apparatus used for cardiovascular workouts and strength training workouts contains a treadmill, a first weight-engaging pulley mechanism, a second weight-engaging pulley mechanism, a first guide channel, and a second guide channel. The treadmill is used to complete the cardiovascular workouts. The first weight-engaging pulley mechanism and the second weight-engaging pulley mechanism are used for strength training. Since the weight arrangement of the apparatus is movable along the first guide channel and the second guide channel, the user can complete a wide variety of strength training workouts. The apparatus also contains an incline-adjustment mechanism, which orients the treadmill belt track to simulate an incline or a decline. A belt direction-reversing mechanism of the apparatus helps change the direction a belt that is layered along the treadmill belt track.
All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention.
The present invention introduces a single apparatus that allows the user to complete strength training workouts and cardiovascular training workouts. The effective design of the present invention allows the user to perform cardiovascular training and strength training simultaneously or separately. Therefore, the intensity and efficiency of a workout session can be maximized.
To complete the cardiovascular training aspect, the present invention utilizes a treadmill. On the other hand, to complete the strength training aspect, the present invention utilizes a movable weight arrangement. The movable weight arrangement can be positioned per user preference and per the workout executed by the user. Since the movable weight arrangement is moved along the length of the treadmill, multiple workouts can be completed with increased efficiency even in a restricted space.
As illustrated in
As seen in
As seen in
Similar to other existing treadmills, the treadmill 1 of the present invention is also powered through a power source 33 which can be, but is not limited to, a general-purpose alternating-current electric power supply. As illustrated in
The first weight-engaging pulley mechanism 13 and the second weight-engaging pulley mechanism 14 need to be designed to be movable and fulfill the necessities of strength training. As seen in
The preferred weight can be selected differently in varying embodiments of the present inventions. As an example, a selection pin and a pin receiving bar can be used in one embodiment of the present invention. The pin receiving bar, which consists a plurality of equidistantly positioned pin receiving holes, perpendicularly traverses through the set of weights 18 as illustrated in
Since the set of weights 18 apply a considerable amount of pressure on the slidable base 15, the present invention further comprises a rubber damper 30 which is positioned within the holding column 16. Moreover, the rubber damper 30 is pressed against the slidable base 15 so that the force applied on the slidable base 15 by the set of weights 18 is minimized. As in FIG. 4, when the set of weights 18 is stationary, the rubber damper 30 is positioned in between the set of weights 18 and the slidable base 15.
When the preferred weight plate is selected, the preferred weight is controlled with the use of the cable 22. To do so, the cable 22 is mechanically engaged with the first pulley 19 and the second pulley 20 and terminally connected to the set of weights 18 opposite to the rubber damper 30. The first pulley 19 and the second pulley 20 are positioned appropriately to provide the necessary mechanical advantage for moving the set of weights 18. The guide pole 17 is used to position the first pulley 19 in a mechanically advantageous position. To do so, the guide pole 17 is positioned adjacent and parallel to the holding column 16. Similar to the holding column 16, the guide pole 17 is perpendicularly connected to the slidable base 15 so that the holding column 16 and the guide pole 17 move as a single unit along the first guide channel 23 and the second guide channel 24. The positioning of the guide pole 17 allows the first pulley 19 to be terminally connected to the guide pole 17 opposite to the slidable base 15. To correspond with the first pulley 19, the second pulley 20 is connected to the holding column 16 adjacent to the first pulley 19 and opposite to the slidable base 15.
The motor 21 of the first weight-engaging pulley mechanism 13 is used to move the first weight-engaging pulley mechanism 13 along the first guide channel 23. Likewise, the motor 21 of the second weight engaging pulley mechanism 14 is used to move the second weight-engaging pulley mechanism 14 along the second guide channel 24. To do so, the motor 21 is electrically connected to the power source 33. The first guide channel 23 and the second guide channel 24 each comprise a proximal end 25, a channel body 26, and a distal end 27. The channel body 26 extends from the proximal end 25 to the distal end 27. The channel body 26 also determines the range in which the first weight-engaging pulley mechanism 13 and the second weight-engaging pulley mechanism 14 can be moved in. The motor 21 is terminally connected to the distal end 27. Even though the motor 21 is used in the present invention, another comparable device or method can be used in a different embodiment of the present invention. Since the first weight-engaging pulley mechanism 13 and the second weight-engaging pulley mechanism 14 is positioned per user preference, the user needs to have control of the motor 21. To do so, the processing unit 2 is electronically connected to the motor 21.
For the first weight-engaging pulley mechanism 13 and the second weight-engaging pulley mechanism 14 to move together, the present invention further comprises a stabilizing arm 34 as shown in
Different strength training exercises require the cable 22 to be oriented differently. To fulfill the need, the present invention comprises a mobile pulley 28. The mobile pulley 28 is slidably connected along the guide pole 17 so that the height and direction of the cable 22 can be adjusted as preferred. Knowing the exact height of the mobile pulley 28 is also necessary when completing strength training exercises. To fulfill the height requirement, the present invention further comprises a plurality of height-adjustment markers 29 which is distributed along the guide pole 17. The mobile pulley 28 is positioned at the preferred height along the guide pole 17 with the use of the height adjustment markers. Different interlocking mechanisms can be used to position the mobile pulley 28 along the guide pole 17 at the preferred height.
The present invention further comprises a control housing 10 that is used to hold the processing unit 2. Other electronic components such as display screens can also be mounted onto the control housing 10. The control housing 10 is connected to a terminal end 5 of the first lateral edge 3 and the second lateral edge 4. The terminal end 5 is positioned adjacent to the distal end 27 the first guide channel 23 and the distal end 27 of the second guide channel 24. Therefore, the use of the control housing 10 is not hindered by the first weight-engaging pulley mechanism 13 or the second-weight engaging pulley mechanism that move along the first guide channel 23 and the second guide channel 24 respectively.
In existing treadmills, the treadmill belt track 6 can be adjusted only to simulate an incline. Even though using the incline can be extremely beneficial in a training perspective, the inability to simulate a decline can be disadvantageous. As an example, if the user intends on simulating different elevations during the workout, the inability to simulate the decline can be disadvantageous. To address the issue, the treadmill 1 further comprises an incline-adjustment mechanism 7. The processing unit 2 and the incline-adjustment mechanism 7 are electronically connected to each other so that the user can vary the incline as preferred via the processing unit 2. For the treadmill belt track 6 to adjust per user preference, the incline-adjustment mechanism 7 is mechanically integrated into the treadmill belt track 6.
Another issue with existing treadmills is the one-directional movement of the treadmill belt. More specifically, the treadmill belt only allows the user to run or walk in a forward direction. Therefore, if the user intends to train running backwards or walking backwards, the user is forced to turn backwards. To address the issue, the treadmill 1 of the present invention comprises a belt 8 and the present invention comprises a belt direction-reversing mechanism 9. The belt 8 is layered along the treadmill belt track 6. For the user to control the direction of the belt 8, the belt direction-reversing mechanism 9 is electronically connected to the processing unit 2. When the instructions are received through the processing unit 2, the belt direction-receiving mechanism 9 adjusts the direction of the belt 8 accordingly. To do so, the belt is mechanically engaged with the belt-direction reversing mechanism 9.
Ensuring user safety is vital when designing training equipment. To aid the user during the workout, the treadmill further comprises a first retractable arm 11 and a second retractable arm 12. The first retractable arm 11 and the second retractable arm 12 are perpendicularly connected to the control housing 10 so that the user can promptly grasp the first retractable arm 11 and the second retractable arm 12 when additional support is needed. The retractability is especially important so that the operational range of the first weight-engaging pulley mechanism 13 and the operational range of the second weight-engaging pulley mechanism 14 is not hindered.
As an additional safety measure, the present invention further comprises a safety harness 31 as illustrated in
The present invention further comprises an emergency stop mechanism that is integrated into the treadmill 1. The emergency stop mechanism can vary in different embodiments of the present invention. In one embodiment of the present invention the emergency stop mechanism can be a magnetic attachment. In such instances, one end is magnetically attached to the treadmill 1 and an opposite end is clipped onto the user. Therefore, if the user loses balance on the treadmill 1, the magnetic attachment detaches from the treadmill 1 and thereby stopping the movement of the belt.
The following process flow is generally followed when utilizing the present invention. As an example, consider the user completing a cardiovascular workout with the present invention. The user initially steps on the belt 8. By utilizing the processing unit 2, settings such as the speed, incline, direction of movement, and time are set by the user. The treadmill 1 is oriented to be at an incline or decline with the use of the incline-adjustment mechanism 7. The direction of the belt 8 is adjusted to move forward or backwards with the belt direction-reversing mechanism 9. If the user needs additional support, when walking or running on the belt 8, the first retractable arm 11 and the second retractable arm 12 is used. If additional safety is required, the safety harness 31 is used when walking or running on the treadmill 1.
If the user intends on completing a strength training workout while utilizing the treadmill or independently, the first weight-engaging pulley mechanism 13 and/or the second weight-engaging pulley mechanism 14 is used. The cable 22 is used to control the set of weights 18. Different attachments such as a barbell, a rope, or a handle can be used in the process of controlling the set of weights 18 via the cable 22. The mobile pulley 28 allows the user to position the cable 22 at a preferred position per the workout. As an example, if an overhead triceps workout is performed, the mobile pulley 28 will be positioned at a higher position on the guide pole 17. On the other hand, if a cable 22 biceps cable curl is performed, the cable 22 will be positioned at a lower position on the guide pole 17.
As discussed earlier, the effective design of the present invention allows the user to perform strength training exercises while walking or jogging on the treadmill 1. As an example, the user can complete a weighted walking lunges exercise with the use of the present invention. The ability to move the set of weights 18 to different positions along the treadmill 1 increases the number of workouts that can be executed with the present invention.
By utilizing the present invention, the time required to complete a given workout routine is significantly reduced. On the other hand, the limited space requirement allows the user to utilize the present invention as a household item.
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
This application is a continuation of U.S. Nonprovisional application Ser. No. 15/425,862 filed 6 Feb. 2017; that in turn is a US national phase filing of PCT/IB2015/055922 filed 4 Aug. 2015; and in turn claims priority benefit of U.S. Provisional Application Ser. No. 61/999,656 filed 4 Aug. 2014; the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4625962 | Street | Dec 1986 | A |
4861021 | Edwards et al. | Aug 1989 | A |
5951449 | Oppriecht | Sep 1999 | A |
6126575 | Wang | Oct 2000 | A |
6450923 | Vatti | Sep 2002 | B1 |
7575537 | Ellis | Aug 2009 | B2 |
8007409 | Ellis | Aug 2011 | B2 |
8172729 | Ellis | May 2012 | B2 |
8257232 | Albert | Sep 2012 | B2 |
8790222 | Burger | Jul 2014 | B2 |
20020010056 | Borsheim | Jan 2002 | A1 |
20050124471 | Wilkinson | Jun 2005 | A1 |
20050239607 | Chang | Oct 2005 | A1 |
20060281606 | Radow | Dec 2006 | A1 |
20070232463 | Wu | Oct 2007 | A1 |
20070287601 | Burck et al. | Dec 2007 | A1 |
20090270226 | Watterson et al. | Oct 2009 | A1 |
20100113222 | Radow | May 2010 | A1 |
20110082011 | Ellis | Apr 2011 | A1 |
20110118090 | Ellis | May 2011 | A1 |
20110281691 | Ellis | Nov 2011 | A1 |
20110312474 | Ellis | Dec 2011 | A1 |
20130184125 | Maguire | Jul 2013 | A1 |
20140087922 | Bayerlein et al. | Mar 2014 | A1 |
20150087484 | Bayerlein et al. | Mar 2015 | A1 |
20150352401 | Johnson | Dec 2015 | A1 |
20160008650 | Jue et al. | Jan 2016 | A1 |
20160023049 | Dalebout | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
101355242 | Jan 2014 | KR |
Entry |
---|
International Search Report dated Oct. 30, 2015 for International Application No. PCT/IB2015/055922 filed Aug. 4, 2015. |
Number | Date | Country | |
---|---|---|---|
20190336818 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
61999656 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15425862 | Feb 2017 | US |
Child | 16517898 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB2015/055922 | Aug 2015 | US |
Child | 15425862 | US |