The present subject matter is directed to apparatuses and methods regarding crossbows. More specifically the present subject matter is directed to apparatuses and methods for cams for a crossbow.
Crossbows have been used for many years as a weapon for hunting and fishing, and for target shooting. Crossbows typically comprise a bowstring engaged through a set of pulleys or cams to a set of limbs and to a set of power cords. Engagement of the set of power cords is of interest. It is of interest to make the engagement of the set of power cords reliable, light, inexpensive, low maintenance, efficient, safe, and adjustable.
One known issue affecting or relevant to reliability, weight, cost, maintenance, efficiency, and safety is “cam lean”. Cam lean is the operation of one or more cams out of alignment with a design operational plane due to force imbalances or other factors.
It remains desirable to improve engagement of the set of power cords to reduce, minimize, or eliminate cam lean.
Provided is a crossbow comprising a bow having: a riser having a first riser side and a second riser side; a first cam set having a first shaft, a first power cord cam of the first cam set, a bowstring cam, and a second power cord cam of the first cam set; a second cam set having a second shaft, a first power cord cam of the second cam set, a bowstring cam, and a second power cord cam of the second cam set; a first power cord engaged with the first power cord cam of the first cam set and the first riser side; a second power cord engaged with the first power cord cam of the second cam set and the second riser side; and a third power cord engaged between the second power cord cams
The present subject matter may take physical form in certain parts and arrangement of parts, embodiments of which will be described in detail in this specification and illustrated in the accompanying drawings which form a part hereof and wherein:
The following definitions are controlling for the disclosed subject matter:
“Arrow” means a projectile that is shot with (or launched by) a bow assembly.
“Bow” means a bent, curved, or arched object.
“Bow Assembly” means a weapon comprising a bow and a bowstring that shoots or propels arrows powered by the elasticity of the bow and the drawn bowstring.
“Bowstring” means a string or cable attached to a bow.
“Compound Bow” means a crossbow that has wheels, pulleys or cams at each end of the bow through which the bowstring passes.
“Crossbow” means a weapon comprising a bow assembly and a trigger mechanism both mounted to a main beam.
“Draw Weight” means the amount of force required to draw or pull the bowstring on a crossbow into a cocked condition.
“Main Beam” means the longitudinal structural member of a weapon used to support the trigger mechanism and often other components as well. For crossbows, the main beam also supports the bow assembly. The main beam often comprises a stock member, held by the person using the weapon, and a barrel, used to guide the projectile being shot or fired by the weapon.
“Power Stroke” means the linear distance that the bowstring is moved between the uncocked condition and the cocked condition.
“Trigger Mechanism” means the portion of a weapon that shoots, fires or releases the projectile of a weapon. As applied to crossbows, trigger mechanism means any device that holds the bowstring of a crossbow in the drawn or cocked condition and which can thereafter be operated to release the bowstring out of the drawn condition to shoot an arrow.
“Weapon” means any device that can be used in fighting or hunting that shoots or fires a projectile including bow assemblies and crossbows.
Referring now to the drawings wherein the showings are for purposes of illustrating embodiments of the present subject matter only and not for purposes of limiting the same, and wherein like reference numerals are understood to refer to like components, provided are a crossbow cam and a method of using a crossbow cam.
The crossbow 10 has a main beam 12 which may include a stock member 14, and a barrel 16. The main beam 12 may be made by assembling the stock member 14 and the barrel 16 together as separate components or, in another embodiment, the main beam 12 may be made as one piece. A handgrip 18 may be mounted to the main beam 12 in any conventional manner chosen with sound judgment by a person of ordinary skill in the art. A trigger mechanism suitable for shooting an arrow is mounted to the main beam 12 in any suitable manner. It should be noted that the crossbow 10 may comprise any trigger mechanism chosen with sound judgment by a person of ordinary skill in the art. The crossbow 10 also includes a bow assembly 30 adapted to propel an associated arrow and having a bow 32 and a bowstring 34. The bow 32 may include a set of limbs 36, 36 that receive the bowstring 34 in any conventional manner chosen with sound judgment by a person of ordinary skill in the art. For the embodiment shown, a pair of wheels, pulleys, or cams 38, 38 mounted to the limbs 36, 36 receive the bowstring 34 in an operational manner. In each of the non-limiting embodiments, the set of limbs has a first limb set 36a and a second limb set 36b opposite the first limb set 36a with first limb set 36a being operationally engaged with a first cam 38 and second limb set 36b being operationally engaged with a second cam 38. The bow may also include a riser 40. The riser 40 may comprise a set of limb pockets 42, 42 adapted to receive the limbs 36, 36, as shown in
Without limitations, other crossbow components may be optionally used with a crossbow as provided herein. Without limitation, in some non-limiting embodiments, a crossbow 10 shown may include a scope 50 attached to a scope mount 52 that is supported on the main beam 12. Other optional components shown include a cocking unit 56, and arrow holder 58. In certain non-limiting embodiments, the riser 40 may have an opening 72 formed therein defining a foot stirrup 74 adapted for holding and balancing the crossbow by foot.
A crossbow 10 may have a power stroke distance PD. The distance between the pivot axes of the wheels, pulleys, or cams 38, 38 may be some distance WD.
With reference to the non-limiting configurations of cams 38 shown in
With continuing reference to the non-limiting configurations of cams 38 shown in
In some non-limiting embodiments, a cam 38 may be arranged in a cam set 204 with one or more other cams 38 with the surface 436, 437 or end plane 458, 459 of a first cam 38 in contact with the surface 436, 437 or end plane 458, 459 of a second cam 38. In the non-limiting embodiment shown in
As shown in
Referring now to
In operation, each cam 204 is operationally engaged with a crossbow 10 such that when the bowstring 34 is being cocked, moved from the uncocked position shown in
In some non-limiting embodiments, in the cam set 206, the first power cord cam 222 is a planar cam 38a, the bowstring cam 232 is a planar cam 38a, and the second power cord is a helical cam 38b. In some non-limiting embodiments, in the cam set 208, the first power cord cam 222 is a planar cam 38a, the bowstring cam 232 is a planar cam 38a, and the second power cord is a helical cam 38b.
With reference now to the non-limiting schematic diagram shown in
With reference now to
Numerous embodiments have been described, hereinabove. It will be apparent to those skilled in the art that the above methods and apparatuses may incorporate changes and modifications without departing from the general scope of the present subject matter. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof.
This application claims the benefit of U.S. Provisional Application No. 62/591,836, filed Nov. 29, 2017, the entirety of which is fully incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2092361 | Shim | Sep 1937 | A |
3043287 | Nelson | Jul 1962 | A |
3561419 | Cucuzza, Sr. | Feb 1971 | A |
3670711 | Firestone | Jun 1972 | A |
3739765 | Moore | Jun 1973 | A |
4192281 | King | Mar 1980 | A |
4246883 | Ash | Jan 1981 | A |
4593675 | Waiser | Jun 1986 | A |
4603676 | Luoma | Aug 1986 | A |
4649892 | Bozek | Mar 1987 | A |
4662345 | Stephens | May 1987 | A |
4665885 | Glomski et al. | May 1987 | A |
4719897 | Gaudreau | Jan 1988 | A |
4721092 | Waiser | Jan 1988 | A |
4942861 | Bozek | Jul 1990 | A |
5115795 | Farris | May 1992 | A |
5205267 | Burdick | Apr 1993 | A |
5215069 | Liu | Jun 1993 | A |
5220906 | Choma | Jun 1993 | A |
5243956 | Luehring | Sep 1993 | A |
5433186 | Corwin | Jul 1995 | A |
5437260 | King | Aug 1995 | A |
5445139 | Bybee | Aug 1995 | A |
5553596 | Bednar | Sep 1996 | A |
5598829 | Bednar | Feb 1997 | A |
5649520 | Bednar | Jul 1997 | A |
5678528 | Hadley | Oct 1997 | A |
5987724 | Kleman | Nov 1999 | A |
6095128 | Bednar | Aug 2000 | A |
6286496 | Bednar | Sep 2001 | B1 |
6874491 | Bednar | Apr 2005 | B2 |
6913007 | Bednar | Jul 2005 | B2 |
7100590 | Chang | Sep 2006 | B2 |
7624725 | Choma | Dec 2009 | B1 |
7784453 | Yehle | Aug 2010 | B1 |
8443790 | Pestrue | May 2013 | B2 |
8499753 | Bednar | Aug 2013 | B2 |
9243861 | Kempf | Jan 2016 | B1 |
9879938 | Isenhower | Jan 2018 | B1 |
10018442 | Kempf | Jul 2018 | B1 |
10048036 | Kempf | Aug 2018 | B1 |
10139191 | Kempf | Nov 2018 | B1 |
20060086346 | Middleton | Apr 2006 | A1 |
20100170488 | Rasor et al. | Jan 2010 | A1 |
20150285581 | Chang | Oct 2015 | A1 |
20180094895 | Yehle | Apr 2018 | A1 |
Entry |
---|
A Guide to the Crossbow, by W.F. Paterson, published by the Society of Archer-Antiquaries, 1990. |
European Crossbows, A Survey by Josef Alm, copyrighted by the Trustees of the Royal Armouries and the Arms and Armour Society, 1994. |
The Book of the Crossbow, by Ralph Payne-Gallwey, published by Dover Publications, Inc. of New York, 1995. |
Number | Date | Country | |
---|---|---|---|
20190162500 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62591836 | Nov 2017 | US |