Crossbow cocking system

Information

  • Patent Grant
  • 10295298
  • Patent Number
    10,295,298
  • Date Filed
    Friday, March 2, 2018
    6 years ago
  • Date Issued
    Tuesday, May 21, 2019
    5 years ago
  • Inventors
  • Original Assignees
    • Hunter's Maufacturing Company, Inc. (Suffield, OH, US)
  • Examiners
    • Niconovich; Alexander R
    Agents
    • Emerson Thomson Bennett, LLC
Abstract
Provided is a crossbow cocking system comprising a sled, an elongated cocking cable, a first handle, and a second handle. The sled may have a first side having a first bowstring retainer, a first arm having a first set of handle engagement features adapted for engagement with a first handle, and a first pulley rotatably engaged with the first arm; and a second side having a second bowstring retainer, and a second arm having a second set of handle engagement features adapted for engagement with a second handle, a second pulley rotatably engaged with the second arm. The first and the second handle may each be engaged to the elongated cocking cable, and be ergonomically adapted to permit an associated user to operate the each handle during a cocking operation with a hand in a vertical hand position.
Description
BACKGROUND

The present subject matter is directed to apparatuses and methods regarding crossbows. More specifically the present subject matter is directed to apparatuses and methods for cocking a crossbow.


Crossbows have been used for many years as a weapon for hunting and fishing, and for target shooting. Crossbows typically comprise a bowstring movable between a cocked and uncocked position. The operation of moving the bowstring to the cocked position is a cocking operation.


Cocking operations are sometime assisted using a cocking device. Cocking devices may comprise simple pulley systems operated by pulling one or more handles by hand by an associated user. The design of the one of more handles can influence user comfort or ergonomics or both during a cocking operation. It remains desirable to produce a cocking device with handles that improve user comfort or ergonomics during a cocking operation.


SUMMARY

Provided is a crossbow cocking system comprising a sled, an elongated cocking cable, a first handle, and a second handle. The sled may have a first side having a first bowstring retainer, a first arm having a first set of handle engagement features adapted for engagement with a first handle, and a first pulley rotatably engaged with the first arm; and a second side having a second bowstring retainer, and a second arm having a second set of handle engagement features adapted for engagement with a second handle, a second pulley rotatably engaged with the second arm. The first and the second handle may each be engaged to the elongated cocking cable, and be ergonomically adapted to permit an associated user to operate the each handle during a cocking operation with a hand in a vertical hand position.





BRIEF DESCRIPTION OF THE DRAWINGS

The present subject matter may take physical form in certain parts and arrangement of parts, embodiments of which will be described in detail in this specification and illustrated in the accompanying drawings which form a part hereof and wherein:



FIG. 1 is a perspective view of one embodiment of a crossbow cocking sled.



FIG. 2 is a perspective view of one embodiment of a crossbow and associated components.



FIG. 3 is a picture of a crossbow being cocked by a user.



FIG. 4 is a picture of a crossbow being cocked by a user.



FIG. 5 is a picture of a crossbow being cocked by a user.



FIG. 6 is a picture of a crossbow being cocked by a user.



FIG. 7 is a picture of a crossbow being cocked by a user.



FIG. 8 is a perspective view of one embodiment of a crossbow cocking system.



FIG. 9 is a perspective exploded view of one embodiment of a crossbow cocking system.



FIG. 10 is a view of one embodiment of the underside of the handles of a crossbow cocking system.



FIG. 11 is a view of one embodiment of a crossbow cocking system.



FIG. 12 is a view of one embodiment of a crossbow cocking system.



FIG. 13 is a picture of a crossbow being cocked by a user.



FIG. 14 is a picture of a crossbow being cocked by a user.



FIG. 15 is a picture of a crossbow being cocked by a user.



FIG. 16 is a perspective view of one embodiment of a crossbow cocking system.



FIG. 17 is a perspective exploded view of one embodiment of a crossbow cocking system.



FIG. 18 is a perspective exploded view of one embodiment of a crossbow cocking system.



FIG. 19 is a perspective view of one embodiment of a crossbow cocking system.



FIG. 20 is a view of one embodiment of the underside of the handles of a crossbow cocking system.



FIG. 21 is a picture of a crossbow being cocked by a user.



FIG. 22 is a picture of a crossbow being cocked by a user.



FIG. 23 is a picture of a crossbow being cocked by a user.



FIG. 24 is a picture of a crossbow being cocked by a user.



FIG. 25 is a picture of a crossbow being cocked by a user.



FIG. 26 is a picture of a crossbow being cocked by a user.



FIG. 27 is a picture of a crossbow being cocked by a user.



FIG. 28 is a picture of a crossbow being cocked by a user.



FIG. 29 is a picture of a crossbow being cocked by a user.



FIG. 30 is a picture of a crossbow being cocked by a user.



FIG. 31 is a picture of a crossbow being cocked by a user.



FIG. 32 is a perspective view of one embodiment of a crossbow cocking system.



FIG. 33 is a perspective exploded view of one embodiment of a crossbow cocking system.



FIG. 34 is a perspective view of one embodiment of a crossbow cocking system.



FIG. 35 is a perspective view of one embodiment of a crossbow cocking system.



FIG. 36 is a close up perspective view of one embodiment of a crossbow cocking system.



FIG. 37 is a picture of a user grasping by hand one handle of one embodiment of a crossbow cocking system.



FIG. 38 is a picture of one embodiment of a crossbow cocking system with a first handle in snap fit engagement with the sled and a second handle disengaged from the sled.



FIG. 39 is a perspective view of one embodiment of a crossbow cocking system.



FIG. 40 is a picture of a crossbow being cocked by a user.



FIG. 41 is a picture of a crossbow being cocked by a user.



FIG. 42 is a picture of a crossbow being cocked by a user.



FIG. 43 is a perspective view of one embodiment of a crossbow cocking system.



FIG. 44 is a perspective exploded view of one embodiment of a crossbow cocking system.



FIG. 45 is a perspective view of one embodiment of a crossbow cocking system.



FIG. 46 is a perspective view of one embodiment of a crossbow cocking system.



FIG. 47 is a close up perspective view of one embodiment of a crossbow cocking system.



FIG. 48 is a picture of a crossbow being cocked by a user.



FIG. 49 is a picture of a crossbow being cocked by a user.



FIG. 50 is a picture of a crossbow being cocked by a user.



FIG. 51 is a picture of a crossbow being cocked by a user.



FIG. 52 is a picture of a crossbow being cocked by a user.



FIG. 53 is a picture of a crossbow being cocked by a user.



FIG. 54 is a picture of a crossbow being cocked by a user.



FIG. 55 is a picture of a crossbow being cocked by a user.



FIG. 56 is a picture of a crossbow being cocked by a user.



FIG. 57 is a picture of a crossbow being cocked by a user.



FIG. 58 is a picture of a crossbow being cocked by a user.



FIG. 59 is a picture of a user grasping by hand one handle of one embodiment of a crossbow cocking system.



FIG. 60 is a perspective view of one embodiment of a crossbow cocking system.





DETAILED DESCRIPTION

Referring now to the drawings wherein the showings are for purposes of illustrating embodiments of the present subject matter only and not for purposes of limiting the same, and wherein like reference numerals are understood to refer to like components, provided is a crossbow cocking system 600 and a method for using same. A crossbow cocking system 600 is device adapted to be used by an associated user 610 on an associated crossbow 620 to cock the associated crossbow 620 using one or more hands 612, 614 of the associated user 610.


In some non-limiting embodiment, a crossbow cocking system 600 may comprise a sled 100, an elongated cocking cable 1260, a first handle 870, and a second handle 880. It is contemplated that the first handle may take a variety of forms. First handle 870 is just one acceptable non-limiting form and other acceptable non-limiting forms are described below. It is contemplated that the second handle may take a variety of forms. Second handle 880 is just one acceptable non-limiting form and other acceptable non-limiting forms are described below.


A sled 100 may have a first side 1702, and a second side 1704 opposite the first side 1702 and offset from the first side 1702 by a sled gap 1806. The first side 1702 may have a first bowstring retainer 1712, and a first arm 1722 having a first set of handle engagement features 1822 adapted for engagement with a first handle 870. The first bowstring retainer 1712 may have or define a groove or other similar feature adapted to retain an associated bowstring 242 of an associated crossbow 620 during a cocking operation. The first side 1702 may have a first pulley 3728 rotatably engaged with the first arm 1722. The second side 1704 may have a second bowstring retainer 1714, and a second arm 1724 having a second set of handle engagement features 1824 adapted for engagement with a second handle 880. The second bowstring retainer 1714 may have or define a groove 1716 or other similar feature adapted to retain an associated bowstring 242 of an associated crossbow 620 during a cocking operation. It should be noted that, in some embodiments, the groove 1716 on the second bowstring retainer 1714 may be substantially symmetric across the sled gap 1806 with the groove on the first bowstring retainer 1712. The second side 1704 may have a second pulley 3729 rotatably engaged with the second arm 1724. In some embodiments, the first arm 1722 and the second arm may be substantially linear components parallel to one another, but this is not limiting: it is within the scope of the present subject matter for the sides 1702, 1704 to be angled with respect to one another, or to be curved members where the curvature is described by a planar curve or a three dimensional curve. It should be understood that the handle engagement features 1822, 1824 may be studs adapted to engage counterpart components in the handles by friction forces, they may also comprise magnets adapted to engage ferrous or magnetic counterpart components in the handles by magnetic forces, or a ball and detent set, or otherwise as chosen with good engineering judgment.


The sled gap 1806 may be of sufficient width to accommodate fitting around an associated trigger assembly of an associated crossbow. This accommodation to fit around an associated trigger assembly, may permit the an associated bowstring to be cocked by the sled 100 to some distance in the associated trigger assembly without interfering with or hitting the associated trigger assembly during a cocking operation.


The elongated cocking cable 1260 may have a first end 1262, and a second end 1264 opposite the first end 1262. The elongated cocking cable may comprise a rope, cord, cable, or other elongated flexible component chosen with good engineering judgment. Without limitation, the elongated cocking cable may comprise linen, cotton, coir, jute, straw, sisal, polypropylene, nylon, polyester, polyethylene, aramid, acrylic, or some combination thereof. The elongated cocking cable 1260 is engaged at the first end 1262 to a first handle 870, at the second end 1264 to a second handle 880, and extends through the sled 100.


The first handle 870 may be operationally engaged to the elongated cocking cable 1260 at the first end 1262. The first handle is ergonomically adapted to permit an associated user to operate the first handle during a cocking operation with a first hand in a vertical hand position. Acceptable non-limiting forms for the first handle 870 include first compact handle 872, first transition handle 1872, a first T-handle 3572, and a first loop handle 4472.


A first compact handle 872 may be elongated to define a first forward direction 873 toward a first handle front 874, and may be elongated to define a first rearward direction 875 toward a first handle back 876 opposite the first handle front 874. A first compact handle 872 may have a first cable engagement region 877 biased toward the first handle front 874 to define a first forward handle region 878 between the first handle front 874 and the first cable engagement region 877 and a first rearward handle region 879 between the first handle back 876 and the first cable engagement region 877. The first forward handle region 878 may increase in cross-sectional area in the first forward direction 873 over at least a portion thereof. The first rearward handle region 879 may increase in cross-sectional area in the first rearward direction 875 over at least a portion thereof.


A first transition handle 1872 may be elongated to define a first forward direction 1873 toward a first handle front 1874 and a first rearward direction 1875 toward a first handle back 1876 opposite the first handle front 1874. A first transition handle 1872 may have a cable engagement region 1877 biased toward the first handle front 1874 to define a first forward handle region 1878 between the first handle front 1874 and the cable engagement region 1877, a first rearward handle region 1879 between the first handle back 1876 and the cable engagement region 1877, and a spur 1871 or projection extending from the handle 1872 between the first forward handle region 1878 and the first rearward handle region 1879. In some non-limiting embodiments, the first forward handle region 1878 may have a convex finger receptacle 1871a adjacent to and partially defined by the spur 1871.


A first T-handle 3572 may be elongated to define a first forward direction 3573 toward a first handle front 3574 and a first rearward direction 3575 toward a first handle back 3576 opposite the first handle front 3574. A first T-handle 3572 may have a cable engagement region 3577 biased toward the first handle front 3574 to define a first forward handle region 3578 between the first handle front 3574 and the cable engagement region 3577. The first handle front 3574 may have one or more snap components 3674a adapted for snap fit engagement with one or more counterpart snap components 3674b on the sled 100. A first T-handle 3572 may have a first rearward handle region 3579 between the first handle back 3576 and the cable engagement region 3577. A first rearward handle region 3579 may be T-shaped having a stem 3579a, a first cross piece 3579b perpendicular to stem 3579a, and a second cross piece 3579c perpendicular to stem 3579a. A T-shaped handle may have the conventional meaning of being shaped like the letter “T”. It is contemplated that in some non-limiting embodiments, a T-shaped handle may deviate in some ways from the conventional meaning of being shaped like the letter “T”, the cross pieces may be not quite perpendicular to the stem or the cross pieces may be not quite parallel to one another. As shown in FIGS. 34-35, there may some curvature to the cross pieces 3579b and 3579c in some non-limiting embodiments.


A first loop handle 4472 may be elongated to define a first forward direction 4473 toward a first handle front 4474, and may be elongated to define a first rearward direction 4475 toward a first handle back 4476 opposite the first handle front 4474. A first loop handle 4472 may have a first cable engagement region 4477 biased toward the first handle front 4474 to define a first forward handle region 4478 between the first handle front 4474 and the first cable engagement region 4477 and a first rearward handle region 4479 between the first handle back 4476 and the first cable engagement region 4477. In a first loop handle 4472 the first rearward handle region may have a closed loop 4471 defining a through hole 4471a.


The second handle 880 may be operationally engaged to the elongated cocking cable 1260 at the second end 1264. The second handle is ergonomically adapted to permit an associated user to operate the second handle during a cocking operation with a second hand in a vertical hand position. Acceptable non-limiting forms for the second handle 880 include second compact handle 882, second transition handle 1882 a second T-handle 3582, and a second loop handle 4482.


A second compact handle 882 may be elongated to define a first forward direction 883 toward a first handle front 884, and may be elongated to define a first rearward direction 885 toward a first handle back 886 opposite the first handle front 884. A second compact handle 882 may have a first cable engagement region 887 biased toward the first handle front 884 to define a first forward handle region 888 between the first handle front 884 and the first cable engagement region 887 and a first rearward handle region 889 between the first handle back 886 and the first cable engagement region 887. The first forward handle region 888 may increase in cross-sectional area in the first forward direction 883 over at least a portion thereof. The first rearward handle region 889 may increase in cross-sectional area in the first rearward direction 885 over at least a portion thereof.


A second transition handle 1882 may be elongated to define a first forward direction 1883 toward a first handle front 1884 and a first rearward direction 1885 toward a first handle back 1886 opposite the first handle front 1884. A second transition handle 1882 may have a cable engagement region 1887 biased toward the first handle front 1884 to define a first forward handle region 1888 between the first handle front 1884 and the cable engagement region 1887, a first rearward handle region 1889 between the first handle back 1886 and the cable engagement region 1887, and a spur 1881 or projection extending from the handle 1882 between the first forward handle region 1888 and the first rearward handle region 1889. In some non-limiting embodiments, the first forward handle region 1888 may have a convex finger receptacle 1881a adjacent to and partially defined by the spur 1881.


A first T-handle 3582 may be elongated to define a first forward direction 3583 toward a first handle front 3584 and a first rearward direction 3585 toward a first handle back 3586 opposite the first handle front 3584. A first T-handle 3582 may have a cable engagement region 3587 biased toward the first handle front 3584 to define a first forward handle region 3588 between the first handle front 3584 and the cable engagement region 3587. The first handle front 3584 may have one or more snap components 3684a adapted for snap fit engagement with one or more counterpart snap components 3684b on the sled 100. A first T-handle 3582 may have a first rearward handle region 3589 between the first handle back 3586 and the cable engagement region 3587. A first rearward handle region 3589 may be T-shaped having a stem 3589a, a first cross piece 3589b perpendicular to stem 3589a, and a second cross piece 3589c perpendicular to stem 3589a. A T-shaped handle may have the conventional meaning of being shaped like the letter “T”. It is contemplated that in some non-limiting embodiments, a T-shaped handle may deviate in some ways from the conventional meaning of being shaped like the letter “T”, the cross pieces may be not quite perpendicular to the stem or the cross pieces may be not quite parallel to one another. As shown in FIGS. 34-35, there may some curvature to the cross pieces 3589b and 3589c in some non-limiting embodiments.


A first loop handle 4482 may be elongated to define a first forward direction 4483 toward a first handle front 4484, and may be elongated to define a first rearward direction 4485 toward a first handle back 4486 opposite the first handle front 4484. A first loop handle 4482 may have a first cable engagement region 4487 biased toward the first handle front 4484 to define a first forward handle region 4488 between the first handle front 4484 and the first cable engagement region 4487 and a first rearward handle region 4489 between the first handle back 4486 and the first cable engagement region 4487. In a first loop handle 4482 the first rearward handle region may have a closed loop 4481 defining a through hole 4481a.


Components that are adapted for snap fit engagement with one or more counterpart snap components are components that are selectably engageable by an interference fit. The interference fit is characterized by having some snap force required to join or separate the components from one another. As used in some embodiments of the crossbow cocking devices disclosed herein, components may be adapted for snap fit engagement wherein the snap force is sufficiently high to permit the joined components to be carried about as an assembly by holding only one component and to be engaged with an associated crossbow without the assembly falling apart, but wherein the cocking force input during a cocking operation is greater than the snap force and sufficient to separate the snap fit components.


Numerous embodiments have been described, hereinabove. It will be apparent to those skilled in the art that the above methods and apparatuses may incorporate changes and modifications without departing from the general scope of the present subject matter. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof.


Having thus described the invention, it is now claimed.

Claims
  • 1. A crossbow cocking system comprising a sled having a first side having a first bowstring retainer, anda first arm having a first set of handle engagement features adapted for engagement with a first handle,a first pulley rotatably engaged with the first arm,a second side having a second bowstring retainer, anda second arm having a second set of handle engagement features adapted for engagement with a second handle,a second pulley rotatably engaged with the second arm, andwherein the second side is offset from the first side by a gap;an elongated cocking cable having a first end, anda second end offset from the first end;a first handle being engaged to the elongated cocking cable at the first end,wherein said first handle is ergonomically adapted to permit an associated user to operate the first handle during a cocking operation with a first hand in a vertical hand position; anda second handle engaged to the elongated cocking cable at the second end,wherein said second handle is ergonomically adapted to permit an associated user to operate the second handle during a cocking operation with a second hand in a vertical hand position;wherein the first bowstring retainer defines a first bowstring groove;wherein the second bowstring retainer defines a second bowstring groove;wherein the gap is of sufficient width to accommodate fitting around the trigger assembly of an associated crossbow;wherein at least one handle is a loop handle elongated to define a forward direction toward a handle front anda rearward direction toward a handle back opposite the handle front,having a cable engagement region biased toward the handle front to define a forward handle region between the handle front and the cable engagement region,a rearward handle region between the handle back and the cable engagement region, andthe rearward handle region having a closed loop defining a through hole; andwherein the first set of handle engagement features includes magnets adapted to engage ferrous or magnetic counterpart components.
  • 2. A method of cocking a crossbow comprising providing a crossbow having a bowstring;providing a crossbow cocking system having a sled having a first side having a first bowstring retainer, anda first arm having a first set of handle engagement features adapted for engagement with a first handle,a first pulley rotatably engaged with the first arm,a second side having a second bowstring retainer, anda second arm having a second set of handle engagement features adapted for engagement with a second handle,a second pulley rotatably engaged with the second arm, andwherein the second side is offset from the first side by a gap, andan elongated cocking cable having a first end, anda second end offset from the first end, anda first handle being engaged to the elongated cocking cable at the first end,wherein said first handle is ergonomically adapted to permit an associated user to operate the first handle during a cocking operation with a first hand in a vertical hand position, anda second handle engaged to the elongated cocking cable at the second end,wherein said second handle is ergonomically adapted to permit an associated user to operate the second handle during a cocking operation with a second hand in a vertical hand position;operatively engaging the crossbow cocking system with the crossbow;cocking the crossbow by operating the first handle, andthe second handle;wherein operatively engaging the crossbow cocking system with the crossbow includes retaining the bowstring using the first bowstring retainer;wherein the first bowstring retainer defines a first bowstring groove;wherein the second bowstring retainer defines a second bowstring groove;wherein the gap is of sufficient width to accommodate fitting around the trigger assembly of an associated crossbow;wherein at least one handle is a loop handle elongated to define a forward direction toward a handle front anda rearward direction toward a handle back opposite the handle front,having a cable engagement region biased toward the handle front to define a forward handle region between the handle front and the cable engagement region,a rearward handle region between the handle back and the cable engagement region, andthe rearward handle region having a closed loop defining a through hole; andwherein the first set of handle engagement features includes magnets adapted to engage ferrous or magnetic counterpart components.
  • 3. A crossbow cocking system comprising a sled having a first side having a first bowstring retainer, the first bowstring retainer defining a first bowstring groove,a first arm having a first set of handle engagement features adapted for engagement with a first handle, anda first pulley rotatably engaged with the first arm,a second side having a second bowstring retainer, the second bowstring retainer defininga second bowstring groove anda second arm having a second set of handle engagement features adapted for engagement with a second handle,a second pulley rotatably engaged with the second arm, andwherein the second side is offset from the first side by a gap, the gap being of sufficient width to accommodate fitting around the trigger assembly of an associated crossbow;an elongated cocking cable having a first end, anda second end offset from the first end;a first handle being engaged to the elongated cocking cable at the first end,wherein said first handle is ergonomically adapted to permit an associated user to operate the first handle during a cocking operation with a first hand in a vertical hand position;a second handle engaged to the elongated cocking cable at the second end,wherein said second handle is ergonomically adapted to permit an associated user to operate the second handle during a cocking operation with a second hand in a vertical hand position;wherein at least one handle is a) a compact handle being elongated to define a forward direction toward a handle front, anda rearward direction toward a handle back opposite the handle front, andhaving a cable engagement region biased toward the handle front to define a forward handle region between the handle front and the cable engagement region, the forward handle region increasing in cross-sectional area in the forward direction over at least a portion thereof, anda rearward handle region between the handle back and the cable engagement region, the rearward handle region increasing in cross-sectional area in the rearward direction over at least a portion thereof; orb) a transition handle being elongated to define a forward direction toward a handle front anda rearward direction toward a handle back opposite the handle front,having a cable engagement region biased toward the handle front to define a forward handle region between the handle front and the cable engagement region,a rearward handle region between the handle back and the cable engagement region, anda spur or projection extending from the handle between the forward handle region and the rearward handle region, andwherein the forward handle region has a convex finger receptacle adjacent to and partially defined by the spur; orc) a T-handle being elongated to define a forward direction toward a handle front anda rearward direction toward a handle back opposite the handle front,having a cable engagement region biased toward the handle front defining a forward handle region between the handle front and the cable engagement region, the forward handle region having one or more snap components adapted for snap fit engagement with a counterpart snap components on the sled,a rearward handle region between the handle back and the cable engagement region, andwherein the rearward handle region has a T-shaped handle;ord) a loop handle being elongated to define a forward direction toward a handle front anda rearward direction toward a handle back opposite the handle front,having a cable engagement region biased toward the handle front to define a forward handle region between the handle front and the cable engagement region,a rearward handle region between the handle back and the cable engagement region, andthe rearward handle region having a closed loop defining a through hole;wherein the first set of handle engagement features includes magnets adapted to engage ferrous or magnetic counterpart components; andwherein the second set of handle engagement features includes magnets adapted to engage ferrous or magnetic counterpart components.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/529,022, filed Jul. 6, 2017, the entirety of which is fully incorporated by reference herein.

US Referenced Citations (48)
Number Name Date Kind
2092361 Shim Sep 1937 A
3043287 Nelson Jul 1962 A
3561419 Cucuzza, Sr. Feb 1971 A
3670711 Firestone Jun 1972 A
3739765 Moore Jun 1973 A
4192281 King Mar 1980 A
4246883 Ash Jan 1981 A
4593675 Waiser Jun 1986 A
4603676 Luoma Aug 1986 A
4649892 Bozek Mar 1987 A
4662345 Stephens May 1987 A
4665885 Glomski et al. May 1987 A
4719897 Gaudreau Jan 1988 A
4721092 Waiser Jan 1988 A
4942861 Bozek Jul 1990 A
5115795 Farris May 1992 A
5205267 Burdick Apr 1993 A
5215069 Liu Jun 1993 A
5220906 Choma Jun 1993 A
5243956 Luehring Sep 1993 A
5433186 Corwin Jul 1995 A
5437260 King Aug 1995 A
5445139 Bybee Aug 1995 A
5553596 Bednar Sep 1996 A
5598829 Bednar Feb 1997 A
5649520 Bednar Jul 1997 A
5678528 Hadley Oct 1997 A
5987724 Kleman Nov 1999 A
6095128 Bednar Aug 2000 A
6286496 Bednar Sep 2001 B1
6874491 Bednar Apr 2005 B2
6913007 Bednar Jul 2005 B2
7100590 Chang Sep 2006 B2
7624725 Choma Dec 2009 B1
7784453 Yehle Aug 2010 B1
8443790 Pestrue May 2013 B2
8499753 Bednar Aug 2013 B2
9285182 Bednar Mar 2016 B2
9618295 Rentz Apr 2017 B1
20060086346 Middleton Apr 2006 A1
20080149084 Whalen Jun 2008 A1
20100170488 Rasor et al. Jan 2010 A1
20110232619 Bednar Sep 2011 A1
20120037139 Barnett Feb 2012 A1
20140069403 Simonds Mar 2014 A1
20150000646 Schley Jan 2015 A1
20170003098 Houle Jan 2017 A1
20170343313 Ozanne Nov 2017 A1
Non-Patent Literature Citations (3)
Entry
A Guide to the Crossbow, by W.F. Paterson, published by the Society of Archer-Antiquaries, 1990.
European Crossbows, A Survey by Josef Alm, copyrighted by the Trustees of the Royal Armouries and the Arms and Armour Society, 1994.
The Book of the Crossbow, by Ralph Payne-Gallwey, published by Dover Publications, Inc. of New York, 1995.
Related Publications (1)
Number Date Country
20190011215 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
62529022 Jul 2017 US