Crossbow having a no let-off cam

Information

  • Patent Grant
  • 6460528
  • Patent Number
    6,460,528
  • Date Filed
    Thursday, November 16, 2000
    24 years ago
  • Date Issued
    Tuesday, October 8, 2002
    22 years ago
Abstract
A crossbow includes having no let-off cams permits storage of more energy than a conventional compound crossbow.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates broadly to the field of crossbows. More particular, this invention relates to the use of at least one no let-off cam at the limb tip of a crossbow for increasing the energy stored in the bow limbs and for increasing the initial force applied to the shot.




2. State of the Art




Crossbows in use at the present time include traditional crossbows having flexible limbs which do not include cams at their limb tips and conventional compound crossbows having let off cams at their limb tips. Both the traditional crossbow and the conventional compound crossbow operate in the same general manner. A stirrup on the crossbow is placed against the ground and the shooter's foot is placed within the stirrup. The shooter then draws the bowstring cable against the force of the bow limbs storing energy in the bow limbs. When the bowstring cable is fully drawn, it is held in position by a crossbow trigger mechanism. A bolt is placed on a guide in the crossbow in proximity to the cocked bowstring cable. When the shooter actuates the trigger mechanism, the bowstring cable is released and the energy stored in the bow limbs propels the bolt from the crossbow.




In traditional crossbows, the bowstring cable is directly attached to the outer ends of the bow limbs, so that the amount of force exerted on the bowstring cable, and thus the amount of energy stored in the limbs, is substantially proportional to the distance that the bowstring cable is displaced from the initial, or brace, position. In conventional compound crossbows, the bowstring cable is attached to eccentric cams located on axles journalled in the outer ends of the bow limbs. As the bowstring cable is drawn, it rotates the eccentric cams against the countervailing force of an anchor cable which is also attached to the eccentric cams. The force exerted on the bowstring cable, and the amount of energy stored in the limbs, is dependent upon the force required to rotate the eccentric cams. In conventional compound crossbows, the eccentric cams provided let-off so that the amount of force exerted on the bowstring cable at full draw was less than the force exerted on the bowstring cable at peak weight. In such prior art compound crossbows, it was assumed that let off was necessary to reduce the pressure on the trigger mechanism.




The let off in such conventional compound crossbows was generally achieved by shaping the eccentric cams so that less draw force was required to rotate the cam after the crossbow had been drawn to its peak weight. For example, the distance between the axle on which the eccentric cam was mounted and the path on which the bowstring cable travels might be reduced after peak weight or the distance between the axle on which the eccentric cam was mounted and the eccentric path on which the anchor cable travels might be reduced after peak weight. A reduction of the force exerted on the bowstring cable after let-off caused the energy stored in the bow limbs to be reduced. In addition, because there was less energy stored in the bow limbs after let off, when the crossbow was shot, the bolt traveled with less velocity and with less kinetic energy than if it had been shot at peak weight.




SUMMARY OF THE PRESENT INVENTION




This invention recognizes that in a conventional compound crossbow, the trigger mechanism maintains the bowstring in its fully drawn position and that it is therefore unnecessary to provide let off to enable the shooter to more accurately aim the bowstring. Accordingly, it is an object of this invention to provide such a crossbow having a bowstring cable connected to eccentric cams mounted on the limb tips and wherein the eccentric cams did not provide let off after the crossbow had reached peak weight.




With the provided arrangement more energy is stored in the bow limbs when the bolt is shot and therefore the bolt is shot with higher velocity. In addition, in the present invention, the greatest amount of force exerted on the bowstring cable occurs when the bolt is shot as compared to conventional compound crossbows in which the greatest amount of force on the bowstring cable occurs before the bolt is shot. It is desirable that, as here, the greatest amount of force exerted on the bowstring cable occur when the bolt is shot because that causes the bolt to travel with higher velocity and increased kinetic energy.




Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a top plan view of a crossbow in accordance with an embodiment of the present invention and wherein the crossbow has a bolt guide extending the entire length of the barrel and wherein the crossbow is in the brace position.





FIG. 1A

is a top plan view of a crossbow in accordance with another embodiment of the present invention and wherein the crossbow has a bolt guide extending along a partial length of the barrel and wherein the crossbow is in the brace position.





FIG. 1B

is a partial side view of the crossbow shown in FIG.


1


A.





FIG. 2

is a top plan view of the crossbow shown in

FIG. 1

wherein the bowstring cable is at its half-drawn position and the force on the bowstring cable is at its maximum peak weight.





FIG. 3

is a top plan view of the crossbow shown in

FIG. 1

wherein the bowstring cable is fully drawn and the force on the bowstring cable remains at its peak weight.





FIG. 4

is a top plan view of the right hand eccentric cam of the crossbow shown in FIG.


1


.





FIG. 5

is a top plan view of the cam shown in

FIG. 4

when the bowstring cable is at its half-drawn position.





FIG. 6

is a top plan view of the cam shown in

FIG. 4

when the bowstring cable is at its fully drawn position.





FIG. 7

is a bottom plan view of the right hand eccentric cam shown in FIG.


4


.





FIG. 8

is a bottom plan view of the eccentric cam shown in

FIG. 4

when the bowstring cable is at its half-drawn position.





FIG. 9

is a bottom plan view of the eccentric cam shown in

FIG. 4

when the bowstring cable is at its fully drawn position.





FIG. 10

is a representative force-draw curve for a traditional crossbow.





FIG. 11

is a representative force-draw curve for a conventional compound crossbow.





FIG. 12

is a representative force-draw curve of the no let-off compound bow of the present invention.





FIG. 13

is a composite of the force-draw curves shown in FIG.


10


through

FIG. 12

, and





FIG. 14

is an example of a force-draw curve showing the stored energy in a traditional crossbow, conventional compound crossbow, and in the no let-off compound bow of the patent invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




FIG.


1


through

FIG. 3

, shows a crossbow


2


which includes an elongated barrel


4


connected to a base


6


. Flexible bow limbs


8


and


10


are connected to base


6


and a stirrup


12


in axial alignment with elongated barrel


4


is also connected to base


6


. A bolt guide


26


extends along the entire length of barrel


4


. No let-off eccentrics cams


14


and


16


are journalled on axles


18


and


19


mounted at the respective ends of bow limbs


8


and


10


. A bowstring cable


20


is secured at each end to eccentric cams


14


and


16


. An anchor cable


24


is fixed at one end to axle


19


and connected at the other end to-eccentric cam


14


for rotation therewith. Anchor cable


25


is fixed at one end to axle


18


and connected at the other end to eccentric cam


16


for rotation therewith. In the half-drawn position in

FIG. 2

, the bowstring cable is drawn 6.75 inches and in the fully drawn position in

FIG. 3

, the bowstring cable is drawn 13.5 inches. The crossbow


2


shown in

FIG. 1A

is the same as the crossbow shown in

FIG. 1

, except that the bolt guide


26


extends along only a partial length of barrel


4


.




Elongated barrel


4


includes a conventional trigger mechanism, shown in

FIG. 1B

, such as the trigger mechanism on the crossbow sold by Bear Archery, LLC under its trademark “DEVESTATOR”, for capturing and releasing bowstring cable


20


. A trigger


44


is located within a pistol grip portion


46


. The trigger


44


is connected by suitable mechanism to a release mechanism


48


within housing


50


. When the bowstring


20


is drawn, it is captured in the opening


52


between the release mechanism


48


and the housing


50


. A bolt has its front end resting on arrow rest


7


on base


6


. The rear end of the bolt is supported by release mechanism


48


. The underside of a butt


30


, located at the end of elongated barrel


4


opposite stirrup


12


, rests on the shooter's shoulder to stabilize the bow when it is being shot.




With reference to

FIGS. 4 through 6

, right-hand cam


14


, which is identical to left-hand cam


16


, includes a groove


32


, within which bowstring cable


20


is trained. A loop


34


at the end of bowstring cable


20


is secured to anchor member


36


of cam


14


. In

FIG. 4

, the crossbow


2


is in its brace position. In the embodiment of the present invention disclosed herein, the perpendicular distance, X, between the axle


18


and the anchor cable


24


is 1.1 inches and the perpendicular distance, Y, between the axle


18


and the bowstring cable


20


is 0.7 inches.

FIG. 5

shows the bowstring cable


20


drawn to its peak weight, approximately 160 pounds, which occurs at a draw length of about 7.5 inches. In this position, eccentric cam


14


is rotated counterclock-wise (eccentric cam


16


is also rotated counterclockwise), and the distance, X, is 1.2 inches, and the distance, Y, is 0.6 inches.

FIG. 6

shows the bowstring cable


20


drawn to its full draw length of about 13.5 inches. Unlike a conventional compound crossbow, when the crossbow of the present invention is drawn to its full draw length there is no let-off and the weight remains at the peak weight of 160 pounds.




With reference to

FIGS. 7 through 9

, showing the underside of right-hand cam


14


, when crossbow


2


is in its brace, peak weight and full drawn positions, it is seen that cam


14


includes a groove


38


within which anchor cable


24


is trained. A loop


40


at the end of anchor cable


24


is secured to anchor


42


of cam


14


. In

FIG. 7

, the perpendicular distance between the axle


18


and the anchor cable


24


is 1.1 inches and the perpendicular distance between the axle


18


and the bowstring cable is 0.7 inches. In

FIG. 8

, the perpendicular distance between the axle


18


and the anchor cable


24


is 1.2 inches and the perpendicular distance between the axle


18


and the bowstring cable is 0.6 inches. In

FIG. 9

, the perpendicular distance between the axle


18


and the bowstring cable is 1.1 inches and the perpendicular distance between the axle


18


and the bowstring cable is 1.3 inches.




In operation the stirrup


12


of crossbow


2


is placed against the ground and the shooter's foot is placed within stirrup


12


. The shooter then draws bowstring cable


20


against the force of the bow limbs


8


and


10


storing energy in bow limbs


8


and


10


. When bowstring cable


20


is fully drawn, i.e., when it is at its peak weight, it is held in cocked position in opening


52


between the release mechanism


48


and the housing


50


mechanism. A bolt is placed in release


48


in proximity to the cocked bowstring. When the shooter activates the trigger


44


by pulling it rearward, the release mechanism


48


pivots clockwise so that it no longer is in position to capture bowstring


20


. Thus, bowstring cable


20


is released and the energy stored in the bow limbs


8


and


10


propels the bolt from the crossbow


2


.




The present invention is further illustrated in the graphs shown in FIG.


10


through FIG.


14


. In each graph, the displacement of the bowstring cable


20


from the brace position during draw is shown on the horizontal axis and the force exerted on the bowstring cable


20


during draw is shown on the vertical axis. With reference to

FIG. 10

, there is shown a force-draw curve for a traditional crossbow which does not include any eccentric cams. The force-draw curve for this crossbow is relatively linear. When the bowstring cable is drawn about 12.5 inches, the draw weight is approximately 160 lbs. In

FIG. 11

, there is shown a force-draw curve for an example of a conventional compound crossbow. The peak weight of approximately 160 pounds occurs approximately half way through the draw cycle, at approximately 6.75 inches. As the draw cycle continues to the full draw position, the force exerted on the bowstring cable is reduced, or let-off, to usually between 30 to 75% of the peak weight. The exact amount of the let-off is dependent on the shape of the eccentric cam.

FIG. 12

is a force-draw curve for an example of the no-let compound crossbow of the present invention. Here, again, the peak weight of approximately 160 pounds occurs at approximately 6.75 inches of displacement from the brace position. However, unlike a conventional compound crossbow, the force exerted on the bowstring cable is not reduced. Instead the draw weight of 160 pounds is maintained for the entire draw length. At the end of the draw, the trigger mechanism engages the bowstring cable and maintains it in its full drawn position. When the shooter actuates the trigger mechanism, the bowstring cable is released and the energy stored in the limbs propels the bolt from the crossbow. Because the trigger mechanism maintains the bowstring cable in its fully drawn position, it is unnecessary to provide let-off to enable the shooter to more accurately aim the bowstring cable.

FIG. 13

is a composite of the force-draw curves shown in

FIGS. 10 through 12

to enable comparison of the different bows.




A principal benefit of the present invention is that more energy is stored in the no let-off compound crossbow than in a conventional crossbow, and therefore the bolt is shot with higher velocity. The increased amount of energy stored in the no let-off as compared to the conventional or standard compound bow is illustrated in FIG.


14


. In addition, the fact that the greatest amount of force on the bowstring cable occurs when the bolt is shot causes the bolt to travel with higher velocity and increased kinetic energy, than if the bolt was shot in a conventional crossbow wherein the force on the bowstring cable when the bolt is fired would be between 30 and 70% of the peak weight.




While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise.



Claims
  • 1. A crossbow comprising a base;flexible limbs attached to either side of said base; at least one no let-off cam attached to at least one end of one of said flexible limbs; a bowstring cable attached to said at least one no let-off cam; at least one anchor cable attached to said at least one no let-off cam; an elongated barrel attached to said base and having a bolt guide extending the entire length of the barrel; and a trigger actuated release mechanism for capturing and releasing the bowstring cable when it is drawn.
  • 2. A crossbow according to claim 1, which includes two no let-off cams and two anchor cables.
  • 3. A crossbow according to claim 1 which includes a stirrup attached to the bow.
  • 4. A crossbow according to claim 1 which includes a butt attached to the elongated barrel.
  • 5. A crossbow comprising a base;flexible limbs attached to either side of said base; at least one no let-off cam attached to at least one end of one of said flexible limbs; a bowstring cable attached to said at least one no let-off cam; at least one anchor cable attached to said at least one no let-off cam; an elongated barrel attached to said base and having a bolt guide extending along a partial length of the barrel; and a trigger actuated release mechanism for capturing and releasing the bowstring cable when it is drawn.
  • 6. A crossbow according to claim 5, which includes two no let-off cams and two anchor cables.
  • 7. A crossbow according to claim 5 which includes a stirrup attached to the bow.
  • 8. A crossbow according to claim 5 which includes a butt attached to the elongated barrel.
  • 9. A crossbow comprising a base;flexible limbs attached to either side of said base; at least one no let-off cam attached to at least one end of one of said flexible limbs; a bowstring cable attached to said at least one no let-off cam; at least one anchor cable attached to said at least one no let-off cam; an elongated barrel attached-to said base; and a release mechanism for capturing and releasing the bowstring cable when it is drawn.
  • 10. A crossbow according to claim 9 which includes two no let-off cams and two anchor cables.
  • 11. A crossbow according to claim 9 which includes a stirrup attached to the bow.
  • 12. A crossbow according to claim 9 which includes a butt attached to the elongated barrel.
Parent Case Info

This application is a continuation-in-part of pending U.S. patent application Ser. No. 09/490,043, filed Jan. 24, 2000 now U.S. Pat. No. 6,155,243 and entitled “Crossbow Having a No Let-Off Cam”.

US Referenced Citations (7)
Number Name Date Kind
4879987 Nishioka Nov 1989 A
4917071 Bozek Apr 1990 A
5119797 Anderson Jun 1992 A
5630405 Nizov May 1997 A
5678528 Hadley Oct 1997 A
6155243 Gallops Dec 2000 A
6267108 McPherson et al. Jul 2001 B1
Continuation in Parts (1)
Number Date Country
Parent 09/490043 Jan 2000 US
Child 09/714046 US