The present invention relates generally to archery and more specifically to a crossbow with integral cocking and de-cocking moving latch assembly, which may include a removal electric motor.
It appears that the prior art does not teach or suggest a crossbow with integral cocking, de-cocking, and a moving latch assembly utilizing a worm gear.
The enclosed invention discloses a crossbow, and more specifically a built in cocking mechanism for a crossbow that couples a worm gear with a spool, and may also be utilized with an optional built in, removable motor gearbox assembly and power source. The motor gearbox assembly may or may not have a clutch assembly, whereby the rotational force applied by the said motor gearbox assembly reaches a predetermined amount of force, the rotation of the main drive shaft ceases. A switch may be provided as to start, stop, and reverse the direction of rotation of the motor gearbox assembly, as well as switches and or circuits that may control operation of the motor gear set. A worm gear drive is provided having an external drive receiver and an internal worm gear drive assembly. The worm gear drive may be operably coupled to a spool, or may be integrated with the spool. The spool is operably coupled with a connecting means to connect the spool with a movable string latch assembly or string hook (string retainment device). The spool winds and unwinds the connecting means to and from the spool, allowing movement of the string retainment device. The motor gearbox assembly may be operably coupled with the internal worm gear drive assembly, selectable from an engagement position and a disengagement position.
In a disengaged position, and external drive force may be engaged with the external drive receiver. Rotation of the external drive force in a first direction causes the spool to unwind the connecting means allowing the movable string retainment device to move forward, and rotation of the external drive force in a second direction causes the spool to wind the connecting means allowing the movable string retainment device to move rearward.
In an engaged position, an internal drive force created by the motor gearbox assembly may be engaged with the internal worm gear drive assembly. Rotation of the internal drive force in a first direction causes the spool to unwind the connecting means allowing the string retainment device to move forward, and rotation of the internal drive force in a second direction causes the spool to wind the connecting means and moving the string retainment device to move rearward. An output shaft and drive gear of the motor gearbox assembly may be fixed relative to the motor gearbox, or may have a first position extended wherein the drive gear engages the internal worm gear drive assembly, and a second position retracted wherein the drive gear disengages the internal worm gear drive assembly.
In a first embodiment having a fixed drive shaft, the motor gearbox assembly is select-ably movable from a first disengaged position to a second engaged position. In a second embodiment, the motor gearbox assembly has a solenoid select-ably extending the drive gear and output shaft to an engaged position, and retracting the drive gear and output shaft to a disengaged position. In a third embodiment, direct drive is utilized coupling the worm gear shaft with an external rotational force. Electrical power may be internal, external, USB, or other methods known in the art of electrical energy supply and transmission. The utilization of a worm gear enables the rotation of the spool to cease as soon as rotational forces are removed from the worm gear, eliminating the need for a pawl, clutches, or any other secondary devices required to cease the rotation of the spool.
With reference to
With reference to
When in use, the hand crank 108 is turned a first direction, unwinding the connecting means 300 from the spool 450, allowing the string latch housing assembly 24 to move forward and engage the string 40. Once the string catch 120 is latched to the string 40, the hand crank 108 is rotated in a second direction, winding the connecting means 300 on the spool 450 until the string latch housing assembly 24 is in the ready-to-fire position. A trigger assembly is preferably used as a means to selectively release the string latch housing assembly in the ready-to-fire position.
As shown in
The motor gearbox assembly 28 may or may not have a clutch assembly. When a clutch assembly is present, the rotational force applied by the motor gearbox 28 assembly reaches a predetermined amount of force, the rotation of the output shaft 320 ceases. A switch (not shown) may be provided as to start, stop, and reverse the direction of rotation of the motor gearbox assembly 28.
In use, a clutch assembly in the motor gear assembly 28 would prevent the string latch housing assembly 24 from traveling past the predetermined rearward position of the string latch housing assembly 24 during the cocking procedure. A micro-switch with electronic eye (not shown) may also be used to control the operation of the motor gear box assembly 28. The optional built-in, removable motor gearbox assembly 28 may take the place of the hand crank 108, without removal of the hand crank assembly 26.
Unique to the disclosed invention, is the use of a string retainment device 24 coupled with a spool 450, wherein the rotation of the spool is directly controlled by a worm wheel gear 360. The disclosed hand crank assembly 26 is preferred, however any such system utilizing a rotational force transferred to a worm gear assembly coupled with a spool which moves a string retainment device 24 from a first position 24a to a second position 24b, and again to a first position 24a.
Rotational forces applied to the worm gear drive assembly 610 causes the rotation of the spool 450. The spool 450 is coupled to a first end of a connecting means 300, the second end of the connecting means 300 is coupled to the string retaining means. The worm gear drive assembly 610 may operably couple the worm wheel gear 360 with the spool 450, or integrate the worm wheel gear 360 with the spool 450. As shown in
As illustrated in
When using the internal motor gearbox assembly 28 for rotational force, the hand crank 108 must be removed to prevent injury. As shown in
An alternate embodiment discloses a motor gearbox assembly 28 that is stationary, having a solenoid (not shown) controlling movement of the motor gearbox assembly output shaft 320 and motor gearbox assembly drive gear 310, moveable from an first disengaged position or a second engaged position. The first position disengaged is rearward, and does not allow the motor gearbox assembly drive gear 310 to engage the worm gear drive gear 330. The second position engaged is forward, and allows the motor gearbox assembly drive gear 310 to engage the worm gear drive gear 330. The solenoid is select-ably activated by the supply of electrical current, and deactivated by the removal of electrical current.
An alternate embodiment disclosed by
As shown in
The string retainment device 24 may be positioned in the cocked proximal position 24A by the connecting means 300 until fired, or without the connecting means 300, as by a string retainment device block not shown.
Though the preferred embodiment discloses a certain type of external drive gear 340 and pinion gear 510 to rotate the worm gear shaft 400, any type of gear assembly known in the art may be used to rotate the worm gear shaft 400. Such alterations may be the removal of the motor gearbox assembly 28, the use of an external powered rotational force device powering the rotation of the worm gear drive gear 330, or any combination thereof. The motor gearbox assembly 28 may be fixed, slide-able, removable, or external.
While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5220906 | Choma | Jun 1993 | A |
8950385 | Khoshnood | Feb 2015 | B1 |
9052154 | Prior | Jun 2015 | B1 |
9341432 | Wohleb | May 2016 | B1 |
9404706 | Khoshnood | Aug 2016 | B2 |
9719749 | Prior | Aug 2017 | B1 |
9958232 | Egerdee et al. | May 2018 | B1 |
10139188 | Shaffer | Nov 2018 | B2 |
10900737 | Hensel | Jan 2021 | B1 |
10900738 | Hensel | Jan 2021 | B1 |